College of the Holy Cross, Fall 2018 Math 244, Homework 9 Solutions

- 1. For each matrix do the following:
 - Find all real eigenvalues.
 - For each eigenvalue λ , find a basis for E_{λ} .
 - Determine whether or not the matrix is diagonalizable, and if it is, find an eigenbasis.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

Solution. The characteristic polynomial of A os

$$p_A(\lambda) = \det(A - \lambda I) = (1 - \lambda)(6 - \lambda) - 6 = \lambda^2 - 7\lambda = \lambda(\lambda - 7)$$

so the eigenvalues of A are $\lambda = 0$ and $\lambda = 7$. Since

$$\operatorname{rref}(A - 0I) = \begin{bmatrix} 1 & 3\\ 0 & 0 \end{bmatrix}$$
 and $\operatorname{rref}(A - 7I) = \begin{bmatrix} 1 & -\frac{1}{2}\\ 0 & 0 \end{bmatrix}$

the eigenspaces are

$$E_0 = \operatorname{Ker}(A - 0I) = \operatorname{Span}\left(\begin{bmatrix} -3\\1 \end{bmatrix}\right) \quad \text{and} \quad E_7 = \operatorname{Ker}(A - 7I) = \operatorname{Span}\left(\begin{bmatrix} 1\\2 \end{bmatrix}\right).$$

A is diagonalizable with eigenbasis $\left\{\begin{bmatrix} -3\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}\right\}.$

(b) $A = \begin{bmatrix} 0 & 4 \\ 9 & 0 \end{bmatrix}$

Solution. $p_A(\lambda) = \lambda^2 - 36 = (\lambda - 6)(\lambda + 6)$ so the eigenvalues are $\lambda = 6$ and $\lambda = -6$.

$$\operatorname{rref}(A-6I) = \begin{bmatrix} 1 & -\frac{2}{3} \\ 0 & 0 \end{bmatrix} \implies E_6 = \operatorname{Span}\left(\begin{bmatrix} 2 \\ 3 \end{bmatrix} \right)$$
$$\operatorname{rref}(A+6I) = \begin{bmatrix} 1 & \frac{2}{3} \\ 0 & 0 \end{bmatrix} \implies E_{-6} = \operatorname{Span}\left(\begin{bmatrix} -2 \\ 3 \end{bmatrix} \right)$$

A is diagonalizable with eigenbasis $\left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} -2\\3 \end{bmatrix} \right\}$.

(c) $A = \begin{bmatrix} 3 & 0 \\ 5 & 3 \end{bmatrix}$

Solution. $p_A(\lambda) = (\lambda - 3)^2$, so $\lambda = 3$ is the only eigenvalue of A.

$$\operatorname{rref}(A - 3I) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \implies E_3 = \operatorname{Span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

A is not diagonalizable.

(d)
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 3 \end{bmatrix}$$

Solution. $p_A(\lambda) = (2 - \lambda)(-1 - \lambda)(3 - \lambda)$ so the eigenvalues of A are $\lambda = 2$,
 $\lambda = -1$ and $\lambda = 3$.
 $\operatorname{rref}(A - 2I) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies E_2 = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)$
 $\operatorname{rref}(A + I) = \begin{bmatrix} 1 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies E_{-1} = \operatorname{Span}\left(\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} \right)$
 $\operatorname{rref}(A - 3I) = \begin{bmatrix} 1 & 0 & \frac{1}{4} \\ 0 & 1 & -\frac{3}{4} \\ 0 & 0 & 0 \end{bmatrix} \implies E_3 = \operatorname{Span}\left(\begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix} \right)$

 $\begin{bmatrix} 0 & 0 & 0^4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0^4 \end{bmatrix}$ *A* is diagonalizable with eigenbasis $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 4 \end{bmatrix} \right\}$.

(e)
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 5 & 1 & 3 \\ 2 & 0 & 1 \end{bmatrix}$$

Solution. $p_A(\lambda) = (2 - \lambda)(1 - \lambda)^2$, so $\lambda = a$ and $\lambda = 2$ are the eigenvalues of A.

$$\operatorname{rref}(A - I) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \implies E_1 = \operatorname{Span}\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right)$$
$$\operatorname{rref}(A - 2I) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{11}{2} \\ 0 & 0 & 0 \end{bmatrix} \implies E_2 = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 11 \\ 2 \end{bmatrix} \right)$$

A is not diagonalizable since $\dim(E_1) + \dim(E_2) = 2 < 3$.

(f)
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

Solution $n_{+}(\lambda) =$

 $\begin{bmatrix} -1 & -1 & 1 \end{bmatrix}$ Solution. $p_A(\lambda) = (1+\lambda)(2-\lambda)^2$ so $\lambda = -1$ and $\lambda = 2$ are the eigenvalues of A.

$$\operatorname{rref}(A+I) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \implies E_{-1} = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)$$
$$\operatorname{rref}(A-2I) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies E_{2} = \operatorname{Span}\left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right)$$

A is diagonalizable with eigenbasis
$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

- 2. Suppose A and B are similar matrices, so $B = C^{-1}AC$ for some matrix C.
 - (a) Show that the characteristic polynomials of A and B are the same, and thus A and B have the same eigenvalues.Solution. Since

$$B - \lambda I = C^{-1}AC - \lambda I = C^{-1}AC - \lambda C^{-1}IC = C^{-1}AC - \lambda C^{-1}(\lambda I)C = C^{-1}(A - \lambda I)C$$

we have

$$p_B(\lambda) = \det(B - \lambda I) = \det(C^{-1}(A - \lambda I)C)$$
$$= \det(C^{-1})\det(A - \lambda I)\det(C)$$
$$= \frac{1}{\det(C)}\det(A - \lambda I)\det(C)$$
$$= \det(A - \lambda I) = p_A(\lambda),$$

so the characteristics polynomials of A and B are the same.

(b) Show that if **v** is an eigenvector of *B* with eigenvalue λ , then C**v** is an eigenvector of *A* with eigenvalue λ .

Solution. Suppose \mathbf{v} is an eigenvector of B with eigenvalue λ . Then $B\mathbf{v} = \lambda \mathbf{v}$. This implies $C^{-1}AC\mathbf{v} = \lambda \mathbf{v}$. If we left-multiply by C, we get $AC\mathbf{v} = C\lambda \mathbf{v} = \lambda C\mathbf{v}$. That is, $A(C\mathbf{v}) = \lambda(C\mathbf{v})$, so $C\mathbf{v}$ is an eigenvector of A with eigenvalue λ .

- 3. Let A be an invertible matrix.
 - (a) Show that 0 is not an eigenvalue of A.

Solution. 0 is an eigenvalue of A if and only if det(A) = det(A - 0I) = 0, which holds if and only if A is not invertible. Thus if A is invertible, 0 cannot be an eigenvalue of A.

(b) Suppose **v** is an eigenvector of A with eigenvalue λ . Show that **v** is an eigenvector of A^{-1} with eigenvalue λ^{-1} .

Solution. If \mathbf{v} is an eigenvector of A with eigenvalue λ , then $A\mathbf{v} = \lambda \mathbf{v}$. Multiplying both sides by A^{-1} gives $\mathbf{v} = A^{-1}(\lambda \mathbf{v}) = \lambda A^{-1}\mathbf{v}$. From part (a) we know $\lambda \neq 0$ so we can multiply both sides by λ^{-1} to get $\lambda^{-1}\mathbf{v} = A^{-1}\mathbf{v}$, so \mathbf{v} is an eigenvector of A^{-1} with eigenvalue λ^{-1} .

(c) Show that A is diagonalizable if and only if A⁻¹ is diagonalizable. Solution. Suppose A is diagonalizable. Then A has an eigenbasis α. By part (b), each vector in α is also an eigenvector of A⁻¹, and thus α is an eigenbasis of A⁻¹ as well. Hence A⁻¹ is diagonalizable. Conversely, if A⁻¹ is diagonalizable, it has an eigenbasis α, which by part (b) is also an eigenbasis of A, so A is diagonalizable. Another way to prove this is to observe that if A is diagonalizable, then $A = CDC^{-1}$ for some matrix C, where D is a diagonal matrix whose diagonal entries are the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A. Since these eigenvalues are all nonzero, D is invertible and D^{-1} is the diagonal matrix with diagonal entries $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$. Thus

$$A^{-1} = (CDC^{-1})^{-1} = (C^{-1})^{-1}D^{-1}C^{-1} = CD^{-1}C^{-1}$$

so A^{-1} is similar to the diagonal matrix D^{-1} and therefore diagonalizable. Conversely, if A^{-1} is diagonalizable, then $A^{-1} = CDC^{-1}$, so $A = CD^{-1}C^{-1}$ and thus A is diagonalizable.

- 4. Let W be a subspace of \mathbb{R}^n .
 - (a) Prove that W^{\perp} is a also subspace of \mathbf{R}^{n} . Solution. Let \mathbf{v}_{1} and \mathbf{v}_{2} be in W^{\perp} and let $c \in \mathbf{R}$. Then $\mathbf{v}_{1} \cdot \mathbf{w} = \mathbf{v}_{2} \cdot \mathbf{w} = 0$ for every $\mathbf{w} \in W$. Then

$$(c\mathbf{v}_1 + \mathbf{v}_2) \cdot \mathbf{w} = c(\mathbf{v}_1 \cdot \mathbf{w}) + \mathbf{v}_2 \cdot \mathbf{w} = c0 + 0 = 0$$

for every $\mathbf{w} \in W$, which implies $c\mathbf{v}_1 + \mathbf{v}_2 \in W^{\perp}$. Thus W^{\perp} is a subspace of \mathbf{R}^n

(b) Prove that $W \cap W^{\perp} = \{\mathbf{0}\}$

Solution. Let $\mathbf{w} \in W \cap W^{\perp}$. Then $\mathbf{w} \cdot \mathbf{w} = 0$. But $\mathbf{w} \cdot \mathbf{w} = w_1^2 + \cdots + w_n^2$, so if $w_i \neq 0$ for some *i* then $\mathbf{w} \cdot \mathbf{w} > 0$. Hence $w_i = 0$ for each *i*, which implies $\mathbf{w} = \mathbf{0}$.

(c) Prove $(W^{\perp})^{\perp} = W$.

Solution. We need to show $(W^{\perp})^{\perp} \subseteq W$ and $W \subseteq (W^{\perp})^{\perp}$. First suppose $\mathbf{w} \in W$. Then for any $\mathbf{v} \in W^{\perp}$, $\mathbf{v} \cdot \mathbf{w} = 0$. This implies $\mathbf{w} \in (W^{\perp})^{\perp}$ and thus $W \subseteq (W^{\perp})^{\perp}$.

Next suppose $\mathbf{x} \in (W^{\perp})^{\perp}$. By the theorem proven in class, we know $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where $\mathbf{x}_1 \in W$ and $\mathbf{x}_2 \in W^{\perp}$. Since $\mathbf{x} \in (W^{\perp})^{\perp}$ and $\mathbf{x}_2 \in W^{\perp}$, we have $\mathbf{x} \cdot \mathbf{x}_2 = 0$. Also, since $\mathbf{x}_1 \in W$ and $\mathbf{x}_2 \in W^{\perp}$ we have $\mathbf{x}_1 \cdot \mathbf{x}_2 = 0$. Thus

$$0 = \mathbf{x} \cdot \mathbf{x}_2 = \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{x}_2 \cdot \mathbf{x}_2 = \mathbf{x}_2 \cdot \mathbf{x}_2$$

This implies $\mathbf{x}_2 = \mathbf{0}$, so $\mathbf{x} = \mathbf{x}_1 \in W$, and thus $(W^{\perp})^{\perp} \subseteq W$.

Alternately, instead of proving the second subset relation we could have counted dimensions. We know $\dim(W) + \dim(W^{\perp}) = n$ and $\dim(W^{\perp}) + \dim((W^{\perp})^{\perp}) = n$, so it follows that $\dim((W^{\perp})^{\perp}) = \dim(W)$. Thus since W is a subset of $(W^{\perp})^{\perp}$, W is a subspace of $(W^{\perp})^{\perp}$ with the same dimension as $(W^{\perp})^{\perp}$. But we know that any subspace of a vector space V with the same dimension as V must equal V. Hence $W = (W^{\perp})^{\perp}$.

5. Let W_1 and W_2 be subspaces of \mathbf{R}^n . Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.

Solution. We need to prove the two subset relations $(W_1 + W_2)^{\perp} \subseteq W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 + W_2)^{\perp} \subseteq W_1^{\perp} \cap W_2^{\perp}$

First suppose $\mathbf{v} \in (W_1 + W_2)^{\perp}$. Then $\mathbf{v} \cdot \mathbf{x} = 0$ for any $\mathbf{x} \in W_1 + W_2$. Let $\mathbf{w}_1 \in W_1$. Then $\mathbf{w}_1 = \mathbf{w}_1 + \mathbf{0}$ is in $W_1 + W_2$, so $\mathbf{v} \cdot \mathbf{w}_1 = 0$. Thus $\mathbf{v} \in W_1^{\perp}$. Likewise, $\mathbf{v} \cdot \mathbf{w}_2 = 0$ for any $\mathbf{w}_2 \in W_2$ so $\mathbf{v} \in W_1^{\perp} \cap W_2^{\perp}$. Since this is true for any $\mathbf{v} \in (W_1 + W_2)^{\perp}$, we have $(W_1 + W_2)^{\perp} \subseteq W_1^{\perp} \cap W_2^{\perp}$.

Next suppose $\mathbf{v} \in W_1^{\perp} \cap W_2^{\perp}$, and let \mathbf{x} be any element of $W_1 + W_2$. Then $\mathbf{x} = \mathbf{w}_1 + \mathbf{w}_2$ for some $\mathbf{w}_1 \in W_1$ and some $\mathbf{w}_2 \in W_2$. Because $\mathbf{v} \in W_1^{\perp}$ and $\mathbf{v} \in W_2^{\perp}$, we have $\mathbf{v} \cdot \mathbf{w}_1 = 0$ and $\mathbf{v} \cdot \mathbf{w}_2 = 0$, so $\mathbf{v} \cdot \mathbf{x} = \mathbf{v} \cdot \mathbf{w}_1 + \mathbf{v} \cdot \mathbf{w}_2 = 0 + 0 = 0$. Since this is true for any $\mathbf{x} \in W_1 + W_2$, we have $\mathbf{v} \in (W_1 + W_2)^{\perp}$. Since this is true for any $\mathbf{v} \in W_1^{\perp} \cap W_2^{\perp}$, it follows that c

6. Use the Gram-Schmidt process to find an orthonormal basis for the plane in \mathbb{R}^3 spanned by (1, 2, 3) and (2, 0, -1).

Solution. Call the given vectors \mathbf{u}_1 and \mathbf{u}_2 . First define

$$\mathbf{v}_1 = \mathbf{u}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 and $W_1 = \operatorname{Span}(\mathbf{v}_1)$

Then define

$$\mathbf{v}_{2} = \mathbf{u}_{2} - P_{W_{1}}(\mathbf{u}_{2}) = \mathbf{u}_{2} - \left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} = \begin{bmatrix} 2\\0\\-1 \end{bmatrix} - \frac{-1}{14} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 29\\2\\-11 \end{bmatrix}$$

The set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for the plane. Dividing each vector by its length produces the orthonormal basis

$$\left\{\frac{1}{\sqrt{14}}\begin{bmatrix}1\\2\\3\end{bmatrix},\frac{1}{\sqrt{966}}\begin{bmatrix}29\\2\\-11\end{bmatrix}\right\}$$

7. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by (1, 1, 1, 1), (0, 0, 1, 1) and (1, 0, 1, 0).

Solution. Call the given vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 . First define

$$\mathbf{v}_1 = \mathbf{u}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 and $W_1 = \operatorname{Span}(\mathbf{v}_1)$

Next let

$$\mathbf{v}_{2} = \mathbf{u}_{2} - P_{W_{1}}(\mathbf{u}_{2}) = \mathbf{u}_{2} - \left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix}$$

and set $W_2 = \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Finally, let

$$\mathbf{v}_{3} = \mathbf{u}_{3} - P_{W_{2}}(\mathbf{u}_{3}) = \mathbf{u}_{3} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \frac{0}{1} \begin{bmatrix} -\frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2} \end{bmatrix}$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for the subspace. The vectors \mathbf{v}_2 and \mathbf{v}_3 already have length 1, so dividing \mathbf{v}_1 by its length produces the orthonormal basis

$$\left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right\}$$