College of the Holy Cross, Fall 2018

Math 244, Homework 9 Solutions

1. For each matrix do the following:

- Find all real eigenvalues.
- For each eigenvalue λ, find a basis for E_{λ}.
- Determine whether or not the matrix is diagonalizable, and if it is, find an eigenbasis.
(a) $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$

Solution. The characteristic polynomial of A os

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=(1-\lambda)(6-\lambda)-6=\lambda^{2}-7 \lambda=\lambda(\lambda-7)
$$

so the eigenvalues of A are $\lambda=0$ and $\lambda=7$. Since

$$
\operatorname{rref}(A-0 I)=\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right] \quad \text { and } \quad \operatorname{rref}(A-7 I)=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]
$$

the eigenspaces are

$$
E_{0}=\operatorname{Ker}(A-0 I)=\operatorname{Span}\left(\left[\begin{array}{c}
-3 \\
1
\end{array}\right]\right) \quad \text { and } \quad E_{7}=\operatorname{Ker}(A-7 I)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)
$$

A is diagonalizable with eigenbasis $\left\{\left[\begin{array}{c}-3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$.
(b) $A=\left[\begin{array}{ll}0 & 4 \\ 9 & 0\end{array}\right]$

Solution. $p_{A}(\lambda)=\lambda^{2}-36=(\lambda-6)(\lambda+6)$ so the eigenvalues are $\lambda=6$ and $\lambda=-6$.

$$
\begin{aligned}
& \operatorname{rref}(A-6 I)=\left[\begin{array}{cc}
1 & -\frac{2}{3} \\
0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{6}=\operatorname{Span}\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right) \\
& \operatorname{rref}(A+6 I)=\left[\begin{array}{ll}
1 & \frac{2}{3} \\
0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{-6}=\operatorname{Span}\left(\left[\begin{array}{c}
-2 \\
3
\end{array}\right]\right)
\end{aligned}
$$

A is diagonalizable with eigenbasis $\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right\}$.
(c) $A=\left[\begin{array}{ll}3 & 0 \\ 5 & 3\end{array}\right]$

Solution. $p_{A}(\lambda)=(\lambda-3)^{2}$, so $\lambda=3$ is the only eigenvalue of A.

$$
\operatorname{rref}(A-3 I)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{3}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

A is not diagonalizable.
(d) $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 3\end{array}\right]$

Solution. $p_{A}(\lambda)=(2-\lambda)(-1-\lambda)(3-\lambda)$ so the eigenvalues of A are $\lambda=2$, $\lambda=-1$ and $\lambda=3$.

$$
\begin{gathered}
\operatorname{rref}(A-2 I)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{2}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
\operatorname{rref}(A+I)=\left[\begin{array}{lll}
1 & \frac{1}{3} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{-1}=\operatorname{Span}\left(\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]\right) \\
\operatorname{rref}(A-3 I)=\left[\begin{array}{ccc}
1 & 0 & \frac{1}{4} \\
0 & 1 & -\frac{3}{4} \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{3}=\operatorname{Span}\left(\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]\right)
\end{gathered}
$$

A is diagonalizable with eigenbasis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right]\right\}$.
(e) $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 5 & 1 & 3 \\ 2 & 0 & 1\end{array}\right]$

Solution. $p_{A}(\lambda)=(2-\lambda)(1-\lambda)^{2}$, so $\lambda=a$ and $\lambda=2$ are the eigenvalues of A.

$$
\begin{aligned}
\operatorname{rref}(A-I)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right) \\
\operatorname{rref}(A-2 I)=\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{11}{2} \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{2}=\operatorname{Span}\left(\left[\begin{array}{c}
1 \\
11 \\
2
\end{array}\right]\right)
\end{aligned}
$$

A is not diagnonalizable since $\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)=2<3$.
(f) $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right]$

Solution. $p_{A}(\lambda)=(1+\lambda)(2-\lambda)^{2}$ so $\lambda=-1$ and $\lambda=2$ are the eigenvalues of A.

$$
\begin{gathered}
\operatorname{rref}(A+I)=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{-1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \\
\operatorname{rref}(A-2 I)=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad E_{2}=\operatorname{Span}\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
\end{gathered}
$$

A is diagonalizable with eigenbasis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
2. Suppose A and B are similar matrices, so $B=C^{-1} A C$ for some matrix C.
(a) Show that the characteristic polynomials of A and B are the same, and thus A and B have the same eigenvalues.
Solution. Since
$B-\lambda I=C^{-1} A C-\lambda I=C^{-1} A C-\lambda C^{-1} I C=C^{-1} A C-\lambda C^{-1}(\lambda I) C=C^{-1}(A-\lambda I) C$,
we have

$$
\begin{aligned}
p_{B}(\lambda) & =\operatorname{det}(B-\lambda I)=\operatorname{det}\left(C^{-1}(A-\lambda I) C\right) \\
& =\operatorname{det}\left(C^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(C) \\
& =\frac{1}{\operatorname{det}(C)} \operatorname{det}(A-\lambda I) \operatorname{det}(C) \\
& =\operatorname{det}(A-\lambda I)=p_{A}(\lambda),
\end{aligned}
$$

so the characteristics polynomials of A and B are the same.
(b) Show that if \mathbf{v} is an eigenvector of B with eigenvalue λ, then $C \mathbf{v}$ is an eigenvector of A with eigenvalue λ.
Solution. Suppose \mathbf{v} is an eigenvector of B with eigenvalue λ. Then $B \mathbf{v}=\lambda \mathbf{v}$. This implies $C^{-1} A C \mathbf{v}=\lambda \mathbf{v}$. If we left-multiply by C, we get $A C \mathbf{v}=C \lambda \mathbf{v}=\lambda C \mathbf{v}$. That is, $A(C \mathbf{v})=\lambda(C \mathbf{v})$, so $C \mathbf{v}$ is an eigenvector of A with eigenvalue λ.
3. Let A be an invertible matrix.
(a) Show that 0 is not an eigenvalue of A.

Solution. 0 is an eigenvalue of A if and only if $\operatorname{det}(A)=\operatorname{det}(A-0 I)=0$, which holds if and only if A is not invertible. Thus if A is invertible, 0 cannot be an eigenvalue of A.
(b) Suppose \mathbf{v} is an eigenvector of A with eigenvalue λ. Show that \mathbf{v} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.
Solution. If \mathbf{v} is an eigenvector of A with eigenvalue λ, then $A \mathbf{v}=\lambda \mathbf{v}$. Multiplying both sides by A^{-1} gives $\mathbf{v}=A^{-1}(\lambda \mathbf{v})=\lambda A^{-1} \mathbf{v}$. From part (a) we know $\lambda \neq 0$ so we can multiply both sides by λ^{-1} to get $\lambda^{-1} \mathbf{v}=A^{-1} \mathbf{v}$, so \mathbf{v} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.
(c) Show that A is diagonalizable if and only if A^{-1} is diagonalizable.

Solution. Suppose A is diagonalizable. Then A has an eigenbasis α. By part (b), each vector in α is also an eigenvector of A^{-1}, and thus α is an eigenbasis of A^{-1} as well. Hence A^{-1} is diagonalizable. Conversely, if A^{-1} is diagonalizable, it has an eigenbasis α, which by part (b) is also an eigenbasis of A, so A is diagonalizable.

Another way to prove this is to observe that if A is diagonalizable, then $A=$ $C D C^{-1}$ for some matrix C, where D is a diagonal matrix whose diagonal entries are the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A. Since these eigenvalues are all nonzero, D is invertible and D^{-1} is the diagonal matrix with diagonal entries $\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}$. Thus

$$
A^{-1}=\left(C D C^{-1}\right)^{-1}=\left(C^{-1}\right)^{-1} D^{-1} C^{-1}=C D^{-1} C^{-1}
$$

so A^{-1} is similar to the diagonal matrix D^{-1} and therefore diagonalizable. Conversely, if A^{-1} is diagonalizable, then $A^{-1}=C D C^{-1}$, so $A=C D^{-1} C^{-1}$ and thus A is diagonalizable.
4. Let W be a subspace of \mathbf{R}^{n}.
(a) Prove that W^{\perp} is a also subspace of \mathbf{R}^{n}.

Solution. Let \mathbf{v}_{1} and \mathbf{v}_{2} be in W^{\perp} and let $c \in \mathbf{R}$. Then $\mathbf{v}_{1} \cdot \mathbf{w}=\mathbf{v}_{2} \cdot \mathbf{w}=0$ for every $\mathbf{w} \in W$. Then

$$
\left(c \mathbf{v}_{1}+\mathbf{v}_{2}\right) \cdot \mathbf{w}=c\left(\mathbf{v}_{1} \cdot \mathbf{w}\right)+\mathbf{v}_{2} \cdot \mathbf{w}=c 0+0=0
$$

for every $\mathbf{w} \in W$, which implies $c \mathbf{v}_{1}+\mathbf{v}_{2} \in W^{\perp}$. Thus W^{\perp} is a subspace of \mathbf{R}^{n}
(b) Prove that $W \cap W^{\perp}=\{\mathbf{0}\}$

Solution. Let $\mathbf{w} \in W \cap W^{\perp}$. Then $\mathbf{w} \cdot \mathbf{w}=0$. But $\mathbf{w} \cdot \mathbf{w}=w_{1}^{2}+\cdots+w_{n}^{2}$, so if $w_{i} \neq 0$ for some i then $\mathbf{w} \cdot \mathbf{w}>0$. Hence $w_{i}=0$ for each i, which implies $\mathbf{w}=\mathbf{0}$.
(c) Prove $\left(W^{\perp}\right)^{\perp}=W$.

Solution. We need to show $\left(W^{\perp}\right)^{\perp} \subseteq W$ and $W \subseteq\left(W^{\perp}\right)^{\perp}$.
First suppose $\mathbf{w} \in W$. Then for any $\mathbf{v} \in W^{\perp}, \mathbf{v} \cdot \mathbf{w}=0$. This implies $\mathbf{w} \in\left(W^{\perp}\right)^{\perp}$ and thus $W \subseteq\left(W^{\perp}\right)^{\perp}$.
Next suppose $\mathbf{x} \in\left(W^{\perp}\right)^{\perp}$. By the theorem proven in class, we know $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$, where $\mathbf{x}_{1} \in W$ and $\mathbf{x}_{2} \in W^{\perp}$. Since $\mathbf{x} \in\left(W^{\perp}\right)^{\perp}$ and $\mathbf{x}_{2} \in W^{\perp}$, we have $\mathbf{x} \cdot \mathbf{x}_{2}=0$. Also, since $\mathbf{x}_{1} \in W$ and $\mathbf{x}_{2} \in W^{\perp}$ we have $\mathbf{x}_{1} \cdot \mathbf{x}_{2}=0$. Thus

$$
0=\mathrm{x} \cdot \mathbf{x}_{2}=\mathrm{x}_{1} \cdot \mathrm{x}_{2}+\mathrm{x}_{2} \cdot \mathrm{x}_{2}=\mathrm{x}_{2} \cdot \mathrm{x}_{2}
$$

This implies $\mathbf{x}_{2}=\mathbf{0}$, so $\mathbf{x}=\mathbf{x}_{1} \in W$, and thus $\left(W^{\perp}\right)^{\perp} \subseteq W$.
Alternately, instead of proving the second subset relation we could have counted dimensions. We know $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n$ and $\operatorname{dim}\left(W^{\perp}\right)+\operatorname{dim}\left(\left(W^{\perp}\right)^{\perp}\right)=n$, so it follows that $\operatorname{dim}\left(\left(W^{\perp}\right)^{\perp}\right)=\operatorname{dim}(W)$. Thus since W is a subset of $\left(W^{\perp}\right)^{\perp}$, W is a subspace of $\left(W^{\perp}\right)^{\perp}$ with the same dimension as $\left(W^{\perp}\right)^{\perp}$. But we know that any subspace of a vector space V with the same dimension as V must equal V. Hence $W=\left(W^{\perp}\right)^{\perp}$.
5. Let W_{1} and W_{2} be subspaces of \mathbf{R}^{n}. Prove that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$.

Solution. We need to prove the two subset relations $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \cap W_{2}^{\perp}$ and $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \cap W_{2}^{\perp}$

First suppose $\mathbf{v} \in\left(W_{1}+W_{2}\right)^{\perp}$. Then $\mathbf{v} \cdot \mathbf{x}=0$ for any $\mathbf{x} \in W_{1}+W_{2}$. Let $\mathbf{w}_{1} \in W_{1}$. Then $\mathbf{w}_{1}=\mathbf{w}_{1}+\mathbf{0}$ is in $W_{1}+W_{2}$, so $\mathbf{v} \cdot \mathbf{w}_{1}=0$. Thus $\mathbf{v} \in W_{1}^{\perp}$. Likewise, $\mathbf{v} \cdot \mathbf{w}_{2}=0$ for any $\mathbf{w}_{2} \in W_{2}$ so $\mathbf{v} \in W_{1}^{\perp} \cap W_{2}^{\perp}$. Since this is true for any $\mathbf{v} \in\left(W_{1}+W_{2}\right)^{\perp}$, we have $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \cap W_{2}^{\perp}$.
Next suppose $\mathbf{v} \in W_{1}^{\perp} \cap W_{2}^{\perp}$, and let \mathbf{x} be any element of $W_{1}+W_{2}$. Then $\mathbf{x}=\mathbf{w}_{1}+\mathbf{w}_{2}$ for some $\mathbf{w}_{1} \in W_{1}$ and some $\mathbf{w}_{2} \in W_{2}$. Because $\mathbf{v} \in W_{1}^{\perp}$ and $\mathbf{v} \in W_{2}^{\perp}$, we have $\mathbf{v} \cdot \mathbf{w}_{1}=0$ and $\mathbf{v} \cdot \mathbf{w}_{2}=0$, so $\mathbf{v} \cdot \mathbf{x}=\mathbf{v} \cdot \mathbf{w}_{1}+\mathbf{v} \cdot \mathbf{w}_{2}=0+0=0$. Since this is true for any $\mathbf{x} \in W_{1}+W_{2}$, we have $\mathbf{v} \in\left(W_{1}+W_{2}\right)^{\perp}$. Since this is true for any $\mathbf{v} \in W_{1}^{\perp} \cap W_{2}^{\perp}$, it follows that c
6. Use the Gram-Schmidt process to find an orthonormal basis for the plane in \mathbf{R}^{3} spanned by $(1,2,3)$ and $(2,0,-1)$.
Solution. Call the given vectors \mathbf{u}_{1} and \mathbf{u}_{2}. First define

$$
\mathbf{v}_{1}=\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad W_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)
$$

Then define

$$
\mathbf{v}_{2}=\mathbf{u}_{2}-P_{W_{1}}\left(\mathbf{u}_{2}\right)=\mathbf{u}_{2}-\left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]-\frac{-1}{14}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}
29 \\
2 \\
-11
\end{array}\right]
$$

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for the plane. Dividing each vector by its length produces the orthonormal basis

$$
\left\{\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \frac{1}{\sqrt{966}}\left[\begin{array}{c}
29 \\
2 \\
-11
\end{array}\right]\right\}
$$

7. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbf{R}^{4} spanned by $(1,1,1,1),(0,0,1,1)$ and $(1,0,1,0)$.
Solution. Call the given vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}. First define

$$
\mathbf{v}_{1}=\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad W_{1}=\operatorname{Span}\left(\mathbf{v}_{1}\right)
$$

Next let

$$
\mathbf{v}_{2}=\mathbf{u}_{2}-P_{W_{1}}\left(\mathbf{u}_{2}\right)=\mathbf{u}_{2}-\left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

and set $W_{2}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Finally, let

$$
\mathbf{v}_{3}=\mathbf{u}_{3}-P_{W_{2}}\left(\mathbf{u}_{3}\right)=\mathbf{u}_{3}-\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{0}{1}\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]
$$

Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for the subspace. The vectors \mathbf{v}_{2} and \mathbf{v}_{3} already have length 1 , so dividing \mathbf{v}_{1} by its length produces the orthonormal basis

$$
\left\{\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]\right\}
$$

