College of the Holy Cross, Fall 2018
Math 244, Homework 9 Solutions

1. For each matrix do the following:

(a)

Find all real eigenvalues.
For each eigenvalue A, find a basis for F).

Determine whether or not the matrix is diagonalizable, and if it is, find an eigen-
basis.

1 3
ol
Solution. The characteristic polynomial of A os
pa(A) =det(A—AX)=(1-X)6-X) 6=\ =TA=AX\—-7)

so the eigenvalues of A are A =0 and A = 7. Since

1 3

rref(A —0I) = [0 0

1
} and rref(A—?I):[(l) 02},

the eigenspaces are

szmﬂA—OD:Smn<rﬂ) am_Ew:NﬂA—7D:Smn(BD.

A is diagonalizable with eigenbasis { [_3} , [1] }

1|2
0 4
N

Solution. p4s(A\) = A? — 36 = (A — 6)(\ + 6) so the eigenvalues are A = 6 and

A= —6.
rref(A—Gf):{(l) _Og} — E6=Span([§D

2
L3

rref(A + 61) = L) O} - 4E6::Spm1<[?f])

A is diagonalizable with eigenbasis { [g] , [_2} }

3
30
NE

Solution. pa(\) = (A — 3)% so A = 3 is the only eigenvalue of A.

rref(A — 31) = Llj 8} — E3:Span(m)

A is not diagonalizable.



2 1 -1
(d A=1{0 -1 3
0 0 3

Solution. pa(A) = (2 = A)(—=1 — A\)(3 — A) so the eigenvalues of A are A\ = 2,
A=—1land A =3.

010 1
rref(A—21)= |0 0 1 — E,=Span| |0
0 00 0
1+ 0 1
rref(A+1)=10 0 1 — E_;=Span| |3
0 00 0
1o 1 -1
rref(A—3I) =10 1 —32 =  FE3 = Span 3
00 O 4

1 1 -1
A is diagonalizable with eigenbasis { |:O] , |:3] , [ 3 ] }
0 0 4

Solution. ps(\) = (2 —X)(1 — X)?, s0 A = a and A = 2 are the eigenvalues of A.

() A=

N O DN
o = O
— w o

1 00 0
rref(A—1)= (0 0 1 — FE; =Span| |1
000 0

ool

rref(A —21) = [

o O =

| = el

im(Ey) + dim(Fy) =2 < 3.

o O = O
)

A is not diagnonalizable since

1 -1 -1
-1 1 -1
-1 -1 1

Solution. pa(A) = (1+A)(2—X)? so A = —1 and A = 2 are the eigenvalues of A.

(f) A=

1 0 -2 1
rref(A+1)= 10 1 —1 — FE_;=Span| |1
00 O 1

1 11 —1 —1
rref(A—21)=10 0 0 =  FE5 = Span 11,10
000 0 1

2



1 -1 —1
A is diagonalizable with eigenbasis 11,{11]1,]0
1 0 1

2. Suppose A and B are similar matrices, so B = C~1AC for some matrix C.

(a)

Show that the characteristic polynomials of A and B are the same, and thus A
and B have the same eigenvalues.

Solution. Since
B\ =C'AC-)\I =CtAC-)\C'IC = CflAC—)\C’*l(AI)C = Cil(A—)\[)C,
we have

pe(\) = det(B — M) = det(C™'(A — AXI)C)
= det(C 1) det(A — A1) det(C)
1

[N

= Jei(cy detA — AD det(C)

= det(A — AI) = pa(N),

so the characteristics polynomials of A and B are the same.
Show that if v is an eigenvector of B with eigenvalue A, then C'v is an eigenvector
of A with eigenvalue \.

Solution. Suppose v is an eigenvector of B with eigenvalue A\. Then Bv = Av.
This implies C~1ACv = Av. If we left-multiply by C, we get ACv = CAv = A\Cv.
That is, A(Cv) = A(C'v), so C'v is an eigenvector of A with eigenvalue .

3. Let A be an invertible matrix.

(a)

Show that 0 is not an eigenvalue of A.

Solution. 0 is an eigenvalue of A if and only if det(A) = det(A — 0/) = 0, which
holds if and only if A is not invertible. Thus if A is invertible, 0 cannot be an
eigenvalue of A.

Suppose v is an eigenvector of A with eigenvalue A. Show that v is an eigenvector
of A=! with eigenvalue A7t

Solution. If v is an eigenvector of A with eigenvalue A, then Av = Av. Multiply-
ing both sides by A™! gives v = A~}(A\v) = AA~!v. From part (a) we know A # 0
so we can multiply both sides by A7 to get A™'v = A71v, so v is an eigenvector
of A=t with eigenvalue A71.

Show that A is diagonalizable if and only if A~! is diagonalizable.

Solution. Suppose A is diagonalizable. Then A has an eigenbasis a. By part (b),
each vector in « is also an eigenvector of A~!, and thus « is an eigenbasis of A~! as
well. Hence A~! is diagonalizable. Conversely, if A~! is diagonalizable, it has an
eigenbasis «, which by part (b) is also an eigenbasis of A, so A is diagonalizable.



Another way to prove this is to observe that if A is diagonalizable, then A =
CDC™! for some matrix C, where D is a diagonal matrix whose diagonal entries

are the eigenvalues A{,..., A\, of A. Since these eigenvalues are all nonzero, D
is invertible and D! is the diagonal matrix with diagonal entries A[*, ..., A\~ 1.
Thus

Al = (DY)t =(Cc ) Do =D

so A™! is similar to the diagonal matrix D~! and therefore diagonalizable. Con-
versely, if A~ is diagonalizable, then A= = CDC~! so A = CD~'C~! and thus
A is diagonalizable.

4. Let W be a subspace of R".

(a)

Prove that W+ is a also subspace of R™.

Solution. Let v; and vy be in W+ and let ¢ € R. Then v; -w = vy - w = 0 for
every w € W. Then

(cvi+vy) - w=c(vi-w)+vy- w=c0+0=0

for every w € W, which implies ¢v; + vy € W+, Thus W+ is a subspace of R"

Prove that W N W+ = {0}

Solution. Let w € W N W+, Then w-w =0. But w-w = w} +--- +w?, so if
w; # 0 for some 7 then w - w > 0. Hence w; = 0 for each i, which implies w = 0.
Prove (W)Lt =W.

Solution. We need to show (W)X C W and W C (W)L,

First suppose w € W. Then for any v.€ W+, v.-w = 0. This implies w € (W=)+
and thus W C (W)+,

Next suppose x € (W+)+. By the theorem proven in class, we know x = x; + Xo,
where x; € W and x5 € W+, Since x € (I/Vl)L and x, € W+, we have x-x9 = 0.
Also, since x; € W and x, € W+ we have x; - xo = 0. Thus

0=X X0 =X1 Xo+ X9 X9 = X5+ Xo

This implies x5 = 0, so x = x; € W, and thus (W+)+ C W.

Alternately, instead of proving the second subset relation we could have counted
dimensions. We know dim(W)+dim(W+) = n and dim(W+)+dim((W+)1) = n,
so it follows that dim((W+)1) = dim(W). Thus since W is a subset of (W+)+,
W is a subspace of (W)t with the same dimension as (W+)+. But we know

that any subspace of a vector space V' with the same dimension as V' must equal
V. Hence W = (W+)+.

5. Let W, and W, be subspaces of R™. Prove that (W, + Wy)t = Wit n Wi

Solution. We need to prove the two subset relations (W) + W)t € Wit N Wik and
(W1 + Wa)*: C Wit N W3



First suppose v € (W; + W)+, Then v -x = 0 for any x € W, + Ws. Let wy € W.
Then wy =w; +0isin Wy + W5, sov-w; =0. Thus v € WlL Likewise, v - wo = 0
for any wy € Wy so v.e Wi-NWit. Since this is true for any v € (W, + W)+, we have
(Wi +Wo)t C Wi nWwi.

Next suppose v € VVIL N W;, and let x be any element of Wi 4+ W,. Then x = wy +wy
for some w; € W; and some wy € W5, Because v € Wﬁ and v € WQL, we have
v-wi=0andv-wys=0,80V:-Xx=Vv-W;+V-wy =0+0=0. Since this is true for
any x € Wy + Ws, we have v € (W) + W), Since this is true for any v € Wit N Wi,
it follows that ¢

. Use the Gram-Schmidt process to find an orthonormal basis for the plane in R? spanned
by (1,2,3) and (2,0, —1).

Solution. Call the given vectors u; and u,. First define

1
vi=u; = |2 and W, = Span(vy)
3
Then define
U v 2 —1 1 1 29
VQZUQ—Pwl(UQ):LIQ—(Z 1)V1: 0 _ﬁ 2 :ﬁ 2
Vit ~1 3 ~11

The set {vy, vo} is an orthogonal basis for the plane. Dividing each vector by its length
produces the orthonormal basis

1 1 1 29

, 2
VI | 5| V966 | 4

. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of R*
spanned by (1,1,1,1), (0,0,1,1) and (1,0,1,0).

Solution. Call the given vectors u;, uy and us. First define

1
1
vi=w = and W, = Span(vy)
1
Next let

0 1 -1
Uy - vV 0 211 ~1
—w — P W — _ _z _ |72
1 1 5



and set Wy = Span(vy, vs). Finally, let

1 1
1 1 —3 3
u3 - vy u3 - Vo o 2|1 o0]-1 —1
= —P = — — — — __ 2| — 2
o) L] L L

Then {vq,vs,vs} is an orthogonal basis for the subspace. The vectors vy and vj
already have length 1, so dividing v; by its length produces the orthonormal basis

17 r_1 1
2 2 2
Il |21 [
2 2 2
Il 7] |1
2 2 2
T 1 1
2 2 2



