College of the Holy Cross, Fall 2018 Math 244, Homework 9

- 1. For each matrix do the following:
 - Find all real eigenvalues.
 - For each eigenvalue λ , find a basis for E_{λ} .
 - Determine whether or not the matrix is diagonalizable, and if it is, find an eigenbasis.

(a)
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 3 & 0 \\ 5 & 3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 2 & 0 & 0 \\ 5 & 1 & 3 \\ 2 & 0 & 1 \end{bmatrix}$
(b) $A = \begin{bmatrix} 0 & 4 \\ 9 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 3 \end{bmatrix}$ (f) $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$

- 2. Suppose A and B are similar matrices, so $B = C^{-1}AC$ for some matrix C.
 - (a) Show that the characteristic polynomials of A and B are the same, and thus A and B have the same eigenvalues.
 - (b) Show that if **v** is an eigenvector of *B* with eigenvalue λ , then C**v** is an eigenvector of *A* with eigenvalue λ .
- 3. Let A be an invertible matrix.
 - (a) Show that 0 is not an eigenvalue of A.
 - (b) Suppose **v** is an eigenvector of A with eigenvalue λ . Show that **v** is an eigenvector of A^{-1} with eigenvalue λ^{-1} .
 - (c) Show that A is diagonalizable if and only if A^{-1} is diagonalizable.
- 4. Let W be a subspace of \mathbb{R}^n .
 - (a) Prove that W^{\perp} is a also subspace of \mathbf{R}^{n} .
 - (b) Prove that $W \cap W^{\perp} = \{\mathbf{0}\}$
 - (c) Prove $(W^{\perp})^{\perp} = W$.
- 5. Let W_1 and W_2 be subspaces of \mathbf{R}^n . Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.
- 6. Use the Gram-Schmidt process to find an orthonormal basis for the plane in \mathbb{R}^3 spanned by (1, 2, 3) and (2, 0, -1).
- 7. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by (1, 1, 1, 1), (0, 0, 1, 1) and (1, 0, 1, 0).