College of the Holy Cross, Fall 2018
 Math 244, Homework 9

1. For each matrix do the following:

- Find all real eigenvalues.
- For each eigenvalue λ, find a basis for E_{λ}.
- Determine whether or not the matrix is diagonalizable, and if it is, find an eigenbasis.
(a) $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$
(c) $A=\left[\begin{array}{ll}3 & 0 \\ 5 & 3\end{array}\right]$
(e) $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 5 & 1 & 3 \\ 2 & 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}0 & 4 \\ 9 & 0\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 3\end{array}\right]$
(f) $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right]$

2. Suppose A and B are similar matrices, so $B=C^{-1} A C$ for some matrix C.
(a) Show that the characteristic polynomials of A and B are the same, and thus A and B have the same eigenvalues.
(b) Show that if \mathbf{v} is an eigenvector of B with eigenvalue λ, then $C \mathbf{v}$ is an eigenvector of A with eigenvalue λ.
3. Let A be an invertible matrix.
(a) Show that 0 is not an eigenvalue of A.
(b) Suppose \mathbf{v} is an eigenvector of A with eigenvalue λ. Show that \mathbf{v} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.
(c) Show that A is diagonalizable if and only if A^{-1} is diagonalizable.
4. Let W be a subspace of \mathbf{R}^{n}.
(a) Prove that W^{\perp} is a also subspace of \mathbf{R}^{n}.
(b) Prove that $W \cap W^{\perp}=\{\mathbf{0}\}$
(c) Prove $\left(W^{\perp}\right)^{\perp}=W$.
5. Let W_{1} and W_{2} be subspaces of \mathbf{R}^{n}. Prove that $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$.
6. Use the Gram-Schmidt process to find an orthonormal basis for the plane in \mathbf{R}^{3} spanned by $(1,2,3)$ and $(2,0,-1)$.
7. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbf{R}^{4} spanned by $(1,1,1,1),(0,0,1,1)$ and ($1,0,1,0$).
