College of the Holy Cross, Fall 2018
 Math 244, Homework 8

1. Find the determinant of each matrix.
(a) $\left[\begin{array}{cc}3 & 7 \\ 2 & -1\end{array}\right]$
(b) $\left[\begin{array}{cc}3 & -6 \\ -2 & 4\end{array}\right]$
(c) $\left[\begin{array}{cc}11 & 0 \\ 0 & 4\end{array}\right]$
(d) $\left[\begin{array}{cc}0 & 11 \\ 4 & 0\end{array}\right]$
(e) $\left[\begin{array}{cc}0 & 11 \\ 0 & 4\end{array}\right]$
2. Find the determinant of the matrix for each transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with respect to the standard basis.
(a) $\operatorname{Rot}_{\theta}$
(b) $\operatorname{Ref}_{\theta}$
(c) $\operatorname{Proj}_{\mathrm{a}}$
3. Give an example of 2×2 matrices A and B such that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
4. Show that for any 2×2 matrix A and any $c \in \mathbf{R}$, $\operatorname{det}(c A)=c^{2} \operatorname{det}(A)$.
5. Let A and B be 2×2 matrices. Prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
6. Suppose A is a 2×2 invertible matrix. Show that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
7. Find the determinant of each matrix.
(a) $\left[\begin{array}{ccc}3 & 1 & 2 \\ 1 & 1 & 1 \\ -3 & 3 & 4\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 4 & 7 \\ 5 & 7 & 9\end{array}\right]$
(f) $\left[\begin{array}{ccccc}5 & 0 & 0 & 0 & 0 \\ 7 & 2 & 0 & 0 & 0 \\ -3 & 6 & -1 & 0 & 0 \\ 4 & -8 & 3 & 7 & 0 \\ 9 & 6 & 3 & 7 & 3\end{array}\right]$
(b) $\left[\begin{array}{lll}7 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 5\end{array}\right]$
(g) $\left[\begin{array}{ccccc}2 & 1 & 3 & 1 & 2 \\ 6 & 2 & 11 & 5 & 3 \\ 4 & -8 & 3 & 7 & 13 \\ 2 & 1 & 3 & 1 & 2 \\ 9 & 6 & 3 & 7 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}2 & 7 & 2 \\ 0 & 5 & 9 \\ 0 & 0 & -3\end{array}\right]$
(e) $\left[\begin{array}{cccc}1 & 5 & 3 & 2 \\ 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 1 \\ 2 & -1 & 4 & 3\end{array}\right]$
8. For which real numbers x is each of the following matrices invertible?
(a) $\left[\begin{array}{cc}1-x & 2 \\ 3 & 5-x\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & x \\ x & -1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & x \\ x & x^{2}\end{array}\right]$
(d) $\left[\begin{array}{lll}x & 1 & 2 \\ 1 & x & 1 \\ 2 & 1 & x\end{array}\right]$
9. The transpose of a matrix A is the matrix A^{t} whose entry in row i column j is the entry of A in row j column i. For example, if

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \text { then } \quad A^{t}=\left[\begin{array}{ccc}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] .
$$

Prove that for any 3×3 matrix $A, \operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

