College of the Holy Cross, Fall 2018 Math 244, Homework 7

1. Define

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 6 \\ 5 & -1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 7 & 2 \\ 1 & 1 \\ -2 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 5 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

There are 16 possible matrix products that can be formed by multiplying these matrices by one another (AA, AB, AC, AD, \ldots) . Determine which of these are defined and compute them.

Solution.

$$AA = \begin{bmatrix} 2 & 5 \\ -10 & 7 \end{bmatrix} \quad AB = \begin{bmatrix} 7 & -1 & 14 \\ 13 & -3 & -6 \end{bmatrix} \quad AC \text{ is undefined} \quad AD \text{ is undefined}$$
$$BA \text{ is undefined} \quad BB \text{ is undefined} \quad BC = \begin{bmatrix} -5 & 26 \\ 30 & 17 \end{bmatrix} \quad BD = \begin{bmatrix} 11 & 7 & 9 \\ 26 & 6 & 17 \end{bmatrix}$$
$$CA = \begin{bmatrix} 10 & 13 \\ 0 & 4 \\ -12 & 10 \end{bmatrix} \quad CB = \begin{bmatrix} 17 & -2 & 46 \\ 6 & -1 & 8 \\ 18 & -4 & -4 \end{bmatrix} \quad CC \text{ is undefined} \quad CD \text{ is undefined}$$
$$DA \text{ is undefined} \quad DB \text{ is undefined} \quad DC = \begin{bmatrix} 30 & 23 \\ 15 & 5 \\ 6 & 7 \end{bmatrix} \quad DD = \begin{bmatrix} 30 & 9 & 18 \\ 12 & 3 & 6 \\ 8 & 3 & 4 \end{bmatrix}$$

- 2. Let $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v}) = \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$ denote the projection onto the line spanned by \mathbf{a} .
 - (a) Prove that $\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}} = \operatorname{Proj}_{\mathbf{a}}$ Solution. Let $\mathbf{v} \in \mathbf{R}^2$ and set $\mathbf{w} = \operatorname{Proj}_{\mathbf{a}}(\mathbf{v})$. Then

$$(\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}})(\mathbf{v}) = \operatorname{Proj}_{\mathbf{a}}(\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})) = \operatorname{Proj}_{\mathbf{a}}(\mathbf{w}) = \left(\frac{\mathbf{w} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} = \left(\frac{\left(\left(\frac{\mathbf{w} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}\right) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$$
$$= \left(\frac{\left(\frac{\mathbf{w} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) (\mathbf{a} \cdot \mathbf{a})}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} = \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} = \operatorname{Proj}_{\mathbf{a}}(\mathbf{v})$$

- (b) Prove that $\operatorname{Proj}_{\mathbf{a}}$ is not invertible. **Solution.** Let \mathbf{v} be any nonzero vector such that $\mathbf{v} \cdot \mathbf{a} = 0$. If $\mathbf{a} = (a_1, a_2)$, then $\mathbf{v} = (-a_2, a_1)$ is one such vector. Since $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v}) = \mathbf{0}$, \mathbf{v} is a nonzero vector in the kernel of $\operatorname{Proj}_{\mathbf{a}}$, and thus $\operatorname{Proj}_{\mathbf{a}}$ is not invertible.
- 3. Find the inverse of each matrix, or show that it is not invertible.

$$\begin{array}{l} \text{(f)} \ F = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix} \\ \textbf{Solution.} \\ \\ \begin{array}{l} \begin{bmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & | & 1 & 0 & 0 & -1 \\ 0 & 2 & 3 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & | & 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ \end{array} \right].$$

- 4. Let $\operatorname{Rot}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote counter-clockwise rotation through angle θ . Recall that its matrix with respect to the standard basis for \mathbf{R}^2 is $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
 - (a) Prove $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi} = \operatorname{Rot}_{\theta+\phi}$. **Solution.** Making use of the identities $\cos(\theta + \phi) - \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$ and $\sin(\theta+\phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$ we see that the matrix for $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}$ is $\int_{\operatorname{Rot}_{\theta}} \frac{d\theta}{d\theta} = \frac{1}{2} \int_{\operatorname{Rot}_{\theta}} \frac{d\theta}{d\theta} = \int_{\operatorname{R$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} = \begin{bmatrix} \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) & -\cos(\theta)\sin(\phi) - \sin(\theta)\cos(\phi) \\ \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi) & -\sin(\theta)\sin(\phi) + \cos(\theta)\cos(\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix},$$

which is the matrix for $\operatorname{Rot}_{\theta+\phi}$.

(b) Prove $(\operatorname{Rot}_{\theta})^{-1} = \operatorname{Rot}_{-\theta}$.

Solution. By the result in part (a), $\operatorname{Rot}_{-\theta} \circ \operatorname{Rot}_{\theta} = \operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{-\theta} = \operatorname{Rot}_{0}$, but $\operatorname{Rot}_{0} = I$, the identity transformation. Therefore $(\operatorname{Rot}_{\theta})^{-1} = \operatorname{Rot}_{-\theta}$.

- 5. Let $\operatorname{Ref}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote reflection across the line that makes angle θ with the positive *x*-axis. In the notation of the text this is $R_{\mathbf{a}}$, where $\mathbf{a} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$.
 - (a) Prove that the matrix for $\operatorname{Ref}_{\theta}$ is $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.

Solution. As derived in a previous homework assignment, the matrix for reflection across the line spanned by $\mathbf{a} = (a_1, a_2)$ is

$$\frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 - a_2^2 & 2a_1a_2\\ 2a_1a_2 & a_2^2 - a_1^2 \end{bmatrix}$$

Substituting $a_1 = \cos(\theta)$ and $a_2 = \sin(\theta)$ and using the identities $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ and $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$, this becomes

$$\frac{1}{\cos^2(\theta) + \sin^2(\theta)} \begin{bmatrix} \cos^2(\theta) - \sin^2(\theta) & 2\sin(\theta)\cos(\theta) \\ 2\sin(\theta)\cos(\theta) & \sin^2(\theta) - \cos^2(\theta) \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

(b) Prove that $(\operatorname{Ref}_{\theta})^{-1} = \operatorname{Ref}_{\theta}$. Solution. The matrix for $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\theta}$ is

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} = \begin{bmatrix} \cos^2(\theta) + \sin^2(\theta) & 0 \\ 0 & \sin^2(\theta) + \cos^2(\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

which is the matrix for the identity transformation on \mathbf{R}^2 , so it follows that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\theta} = I$, so $\operatorname{Ref}_{\theta}$ is its own inverse.

(c) Prove that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a *rotation* through some angle. What angle? Solution. The matrix for $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} = \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\sin(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta - 2\phi) & -\sin(2\theta - 2\phi) \\ \sin(2\theta - 2\phi) & \cos(2\theta - 2\phi) \end{bmatrix}$$

This is the matrix for $\operatorname{Rot}_{\alpha}$ where $\alpha = 2\theta - 2\phi$.

(d) Let $\operatorname{Rot}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote rotation through angle θ . Prove that $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a reflection across some line. What line? Solution. The matrix for $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} = \begin{bmatrix} \cos(\theta)\cos(2\phi) - \sin(\theta)\sin(2\phi) & \cos(\theta)\sin(2\phi) + \sin(\theta)\cos(2\phi) \\ \sin(\theta)\cos(2\phi) + \cos(\theta)\sin(2\phi) & \sin(\theta)\sin(2\phi) - \cos(\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta + 2\phi) & \sin(\theta + 2\phi) \\ \sin(\theta + 2\phi) & -\cos(\theta + 2\phi) \end{bmatrix}$$

This is the matrix for $\operatorname{Ref}_{\alpha}$, were $\alpha = \phi + \frac{1}{2}\theta$.

(e) Prove that $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is a reflection across some line. What line?

Solution. The matrix for $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is

$$\begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos(2\phi)\cos(\theta) + \sin(2\phi)\sin(\theta) & -\cos(2\phi)\sin(\theta) + \sin(2\phi)\cos(\theta) \\ \sin(2\phi)\cos(\theta) - \cos(2\phi)\sin(\theta) & -\sin(2\phi)\sin(\theta) - \cos(2\phi)\cos(\theta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\phi - \theta) & \sin(2\phi - \theta) \\ \sin(2\phi - \theta) & -\cos(2\phi - \theta) \end{bmatrix}$$

This is the matrix for $\operatorname{Ref}_{\alpha}$, were $\alpha = \phi - \frac{1}{2}\theta$.

- 6. Let $S: U \to V$ and $T: V \to W$ be linear transformations
 - (a) Prove that $\operatorname{Im}(T \circ S) \subseteq \operatorname{Im}(T)$. Give an example for which $\operatorname{Im}(T \circ S) \neq \operatorname{Im}(T)$. Solution. Let $\mathbf{w} \in \operatorname{Im}(T \circ S)$. Then there exists $\mathbf{u} \in U$ such that $(T \circ S)(\mathbf{u}) = \mathbf{w}$. But $(T \circ S)(\mathbf{u}) = T(S(\mathbf{u}))$, so setting $\mathbf{v} = S(\mathbf{u})$ it follows that $\mathbf{v} \in V$ and $T(\mathbf{v}) = \mathbf{w}$ so $\mathbf{w} \in \operatorname{Im}(T)$.

As an example where the two images are not the same, let $S : \mathbf{R}^2 \to \mathbf{R}^2$ be the zero transformation, and let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the identity transformation. Then $T(\mathbf{v}) = \mathbf{v}$ for all $\mathbf{v} \in \mathbf{R}^2$, so $\operatorname{Im}(T) = \mathbf{R}^2$, but $(T \circ S)(\mathbf{u}) = T(S(\mathbf{u})) = T(\mathbf{0}) = \mathbf{0}$ for all $\mathbf{u} \in U$, so $\operatorname{Im}(T \circ S) = \{\mathbf{0}\}$.

(b) Suppose S and T are invertible. Prove that $T \circ S$ is invertible and $(T \circ S)^{-1} = S^{-1} \circ T^{-1}$.

Solution. Let $\mathbf{u} \in U$. Then

$$(S^{-1} \circ T^{-1})((T \circ S)(\mathbf{u})) = S^{-1}(T^{-1}(T(S(\mathbf{u})))) = S^{-1}(S(\mathbf{u})) = \mathbf{u}$$

Likewise, for any $\mathbf{w} \in W$,

$$(T \circ S)((S^{-1} \circ T^{-1})(\mathbf{w})) = T(S(S^{-1}(T^{-1}(\mathbf{w})))) = T(T^{-1}(\mathbf{w})) = \mathbf{w}.$$

Thus, by definition of inverses, $S^{-1} \circ T^{-1}$ is the inverse of $T \circ S$.

7. Let $V = P_3(\mathbf{R})$ and $W = P_4(\mathbf{R})$, and define $S : V \to W$ by $S(p(x)) = \int_0^x p(t) dt$ and $T : W \to V$ by T(p(x)) = p'(x). Let $\alpha = \{1, x, x^2, x^3\}$ and $\beta = \{1, x, x^2, x^3, x^4\}$. Find $[S]^{\beta}_{\alpha}, [T]^{\alpha}_{\beta}, [S \circ T]^{\beta}_{\beta}$ and $[T \circ S]^{\alpha}_{\alpha}$.

Solution. Since

$$S(1) = x = 0 \cdot 1 + 1 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3} + 0 \cdot x^{4}$$

$$S(x) = \frac{1}{2}x^{2} = 0 \cdot 1 + 0 \cdot x + \frac{1}{2} \cdot x^{2} + 0 \cdot x^{3} + 0 \cdot x^{4}$$

$$S(x^{2}) = \frac{1}{3}x^{3} = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + \frac{1}{3} \cdot x^{3} + 0 \cdot x^{4}$$

$$S(x^{3}) = \frac{1}{4}x^{4} = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3} + \frac{1}{4} \cdot x^{4}$$

we have

$$[S]^{\beta}_{\alpha} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$

Since

$$T(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x^{3}) = 3x^{2} = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x^{4}) = 4x^{3} = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 4 \cdot x^{3}$$

we have

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

Thus

$$[S \circ T]^{\beta}_{\beta} = [S]^{\beta}_{\alpha}[T]^{\alpha}_{\beta} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad [T \circ S]^{\alpha}_{\alpha} = [T]^{\alpha}_{\beta}[S]^{\beta}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

8. Let $\alpha = {\mathbf{u}_1, \mathbf{u}_2}$ and $\alpha' = {\mathbf{u}'_1, \mathbf{u}'_2}$ be bases for \mathbf{R}^2 , where $\mathbf{u}_1 = \begin{bmatrix} 3\\2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2\\1 \end{bmatrix}$, $\mathbf{u}'_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$, and $\mathbf{u}'_2 = \begin{bmatrix} 2\\1 \end{bmatrix}$.

(a) Find the change of basis matrices $[I]^{\alpha'}_{\alpha}$ and $[I]^{\alpha}_{\alpha'}$. Solution. Since

$$\operatorname{rref} \left[\begin{array}{cc|c} 1 & 2 & 3 & -2 \\ 1 & 1 & 2 & 1 \end{array} \right] = \left[\begin{array}{cc|c} 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -3 \end{array} \right]$$

it follows that

$$[I]_{\alpha'}^{\alpha} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix} \text{ and } [I]_{\alpha}^{\alpha'} = ([I]_{\alpha'}^{\alpha})^{-1} = \frac{1}{7} \begin{bmatrix} 3 & 4 \\ 1 & -1 \end{bmatrix}$$

(b) Let β be the standard basis. Find $[I]^{\beta}_{\alpha}$ and $[I]^{\alpha}_{\beta}$. Solution.

$$[I]_{\alpha}^{\beta} = \begin{bmatrix} 3 & -2\\ 2 & 1 \end{bmatrix}$$
 and $[I]_{\beta}^{\alpha} = ([I]_{\alpha}^{\beta})^{-1} = \frac{1}{7} \begin{bmatrix} 1 & 2\\ -2 & 3 \end{bmatrix}$.

(c) Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation such that $[T]^{\alpha}_{\alpha} = \begin{bmatrix} 5 & 0 \\ 0 & -3 \end{bmatrix}$. Find $[T]^{\alpha'}_{\alpha'}$. Solution.

$$[T]^{\alpha'}_{\alpha'} = [I]^{\alpha'}_{\alpha}[T]^{\alpha}_{\alpha}[I]^{\alpha}_{\alpha'} = \frac{1}{7} \begin{bmatrix} 3 & 4\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0\\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 4\\ 1 & -3 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 3 & 96\\ 8 & 11 \end{bmatrix}$$

(d) Find $[T]^{\beta}_{\beta}$ where T is the transformation in part (c). Solution.

$$[T]^{\beta}_{\beta} = [I]^{\beta}_{\alpha}[T]^{\alpha}_{\alpha}[I]^{\alpha}_{\beta} = \begin{bmatrix} 3 & -2\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0\\ 0 & -3 \end{bmatrix} \frac{1}{7} \begin{bmatrix} 1 & 2\\ -2 & 3 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 3 & 48\\ 16 & 11 \end{bmatrix}$$