College of the Holy Cross, Fall 2018
 Math 244, Homework 7

1. Define

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 0 & 6 \\
5 & -1 & 2
\end{array}\right] \quad C=\left[\begin{array}{cc}
7 & 2 \\
1 & 1 \\
-2 & 4
\end{array}\right] \quad D=\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

There are 16 possible matrix products that can be formed by multiplying these matrices by one another $(A A, A B, A C, A D, \ldots)$. Determine which of these are defined and compute them.

Solution.

$A A=\left[\begin{array}{cc}2 & 5 \\ -10 & 7\end{array}\right] \quad A B=\left[\begin{array}{ccc}7 & -1 & 14 \\ 13 & -3 & -6\end{array}\right] \quad A C$ is undefined $\quad A D$ is undefined
$B A$ is undefined $\quad B B$ is undefined $\quad B C=\left[\begin{array}{cc}-5 & 26 \\ 30 & 17\end{array}\right] \quad B D=\left[\begin{array}{ccc}11 & 7 & 9 \\ 26 & 6 & 17\end{array}\right]$
$C A=\left[\begin{array}{cc}10 & 13 \\ 0 & 4 \\ -12 & 10\end{array}\right] \quad C B=\left[\begin{array}{ccc}17 & -2 & 46 \\ 6 & -1 & 8 \\ 18 & -4 & -4\end{array}\right] \quad C C$ is undefined $C D$ is undefined
$D A$ is undefined $\quad D B$ is undefined $\quad D C=\left[\begin{array}{cc}30 & 23 \\ 15 & 5 \\ 6 & 7\end{array}\right] \quad D D=\left[\begin{array}{ccc}30 & 9 & 18 \\ 12 & 3 & 6 \\ 8 & 3 & 4\end{array}\right]$
2. Let $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right)$ a denote the projection onto the line spanned by \mathbf{a}.
(a) Prove that $\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}}=\operatorname{Proj}_{\mathbf{a}}$

Solution. Let $\mathbf{v} \in \mathbf{R}^{2}$ and set $\mathbf{w}=\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})$. Then

$$
\begin{aligned}
\left(\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}}\right)(\mathbf{v}) & =\operatorname{Proj}_{\mathbf{a}}\left(\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})\right)=\operatorname{Proj}_{\mathbf{a}}(\mathbf{w})=\left(\frac{\mathbf{w} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\left(\frac{\left(\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}\right) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} \\
& =\left(\frac{\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right)(\mathbf{a} \cdot \mathbf{a})}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})
\end{aligned}
$$

(b) Prove that Proj_{a} is not invertible.

Solution. Let \mathbf{v} be any nonzero vector such that $\mathbf{v} \cdot \mathbf{a}=0$. If $\mathbf{a}=\left(a_{1}, a_{2}\right)$, then $\mathbf{v}=\left(-a_{2}, a_{1}\right)$ is one such vector. Since $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})=\mathbf{0}, \mathbf{v}$ is a nonzero vector in the kernel of $\operatorname{Proj}_{\mathbf{a}}$, and thus $\operatorname{Proj}_{\mathbf{a}}$ is not invertible.
3. Find the inverse of each matrix, or show that it is not invertible.
(a) $A=\left[\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right]$

Solution. $\operatorname{rref}(A)=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right] \neq I_{2}$ so A is not invertible.
(b) $B=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$

Solution. $B^{-1}=\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$
(c) $C=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27\end{array}\right]$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
1 & 4 & 9 & 0 & 1 & 0 \\
1 & 8 & 27 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 2 & 6 & -1 & 1 & 0 \\
0 & 6 & 24 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -3 & 2 & -1 & 0 \\
0 & 2 & 6 & -1 & 1 & 0 \\
0 & 0 & 6 & 2 & -3 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -3 & 2 & -1 & 0 \\
0 & 1 & 3 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 3 & 1 & -\frac{3}{2} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 3 & -\frac{5}{2} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{3}{2} & 2 & -\frac{1}{2} \\
0 & 0 & 3 & 1 & -\frac{3}{2} & \frac{1}{2}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rrrrr}
1 & 0 & 0 & 3 & -\frac{5}{2} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{3}{2} & 2 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{1}{2} & \frac{1}{6}
\end{array}\right]
\end{aligned}
$$

Thus $C^{-1}=\left[\begin{array}{ccc}3 & -\frac{5}{2} & \frac{1}{2} \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{6}\end{array}\right]$.
(d) $D=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$

Solution. Since $\operatorname{rref}(D)=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \neq I_{3}, D$ is not invertible.
(e) $E=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Solution.

$$
\left[\begin{array}{rrr|rrr}
5 & 0 & 0 & 1 & 0 & 0 \\
0 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & \frac{1}{5} & 0 & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{3}
\end{array}\right]
$$

Thus $E^{-1}=\left[\begin{array}{ccc}\frac{1}{5} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$.
(f) $F=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4\end{array}\right]$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{rrrr|rrrr}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 2 & 3 & 0 & 1 & 0 & 0 & -1 \\
0 & 2 & 3 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 2 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrrr}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
\end{aligned}
$$

Thus $F^{-1}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4}\end{array}\right]$.
4. Let $\operatorname{Rot}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote counter-clockwise rotation through angle θ. Recall that its matrix with respect to the standard basis for \mathbf{R}^{2} is $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
(a) Prove $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}=\operatorname{Rot}_{\theta+\phi}$.

Solution. Making use of the identities $\cos (\theta+\phi)-\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi)$ and $\sin (\theta+\phi)=\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi)$ we see that the matrix for $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}$ is

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{cc}
\cos (\phi) & -\sin (\phi) \\
\sin (\phi) & \cos (\phi)
\end{array}\right] } & =\left[\begin{array}{cc}
\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) & -\cos (\theta) \sin (\phi)-\sin (\theta) \cos (\phi) \\
\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi) & -\sin (\theta) \sin (\phi)+\cos (\theta) \cos (\phi)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\theta+\phi) & -\sin (\theta+\phi) \\
\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right],
\end{aligned}
$$

which is the matrix for $\operatorname{Rot}_{\theta+\phi}$.
(b) Prove $\left(\operatorname{Rot}_{\theta}\right)^{-1}=\operatorname{Rot}_{-\theta}$.

Solution. By the result in part (a), $\operatorname{Rot}_{-\theta} \circ \operatorname{Rot}_{\theta}=\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{-\theta}=\operatorname{Rot}_{0}$, but $\operatorname{Rot}_{0}=I$, the identity transformation. Therefore $\left(\operatorname{Rot}_{\theta}\right)^{-1}=\operatorname{Rot}{ }_{-\theta}$.
5. Let $\operatorname{Ref}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote reflection across the line that makes angle θ with the positive x-axis. In the notation of the text this is $R_{\mathbf{a}}$, where $\mathbf{a}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]$.
(a) Prove that the matrix for $\operatorname{Ref}_{\theta}$ is $\left[\begin{array}{cc}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right]$.

Solution. As derived in a previous homework assignment, the matrix for reflection across the line spanned by $\mathbf{a}=\left(a_{1}, a_{2}\right)$ is

$$
\frac{1}{a_{1}^{2}+a_{2}^{2}}\left[\begin{array}{cc}
a_{1}^{2}-a_{2}^{2} & 2 a_{1} a_{2} \\
2 a_{1} a_{2} & a_{2}^{2}-a_{1}^{2}
\end{array}\right]
$$

Substituting $a_{1}=\cos (\theta)$ and $a_{2}=\sin (\theta)$ and using the identities $\sin (2 \theta)=$ $2 \sin (\theta) \cos (\theta)$ and $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$, this becomes

$$
\frac{1}{\cos ^{2}(\theta)+\sin ^{2}(\theta)}\left[\begin{array}{cc}
\cos ^{2}(\theta)-\sin ^{2}(\theta) & 2 \sin (\theta) \cos (\theta) \\
2 \sin (\theta) \cos (\theta) & \sin ^{2}(\theta)-\cos ^{2}(\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]
$$

(b) Prove that $\left(\operatorname{Ref}_{\theta}\right)^{-1}=\operatorname{Ref}_{\theta}$.

Solution. The matrix for $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\theta}$ is

$$
\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2}(\theta)+\sin ^{2}(\theta) & 0 \\
0 & \sin ^{2}(\theta)+\cos ^{2}(\theta)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

which is the matrix for the identity transformation on \mathbf{R}^{2}, so it follows that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\theta}=I$, so $\operatorname{Ref}_{\theta}$ is its own inverse.
(c) Prove that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a rotation through some angle. What angle?

Solution. The matrix for $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{cc}
\cos (2 \phi) & \sin (2 \phi) \\
\sin (2 \phi) & -\cos (2 \phi)
\end{array}\right] } & =\left[\begin{array}{cc}
\cos (2 \theta) \cos (2 \phi)+\sin (2 \theta) \sin (2 \phi) & \cos (2 \theta) \sin (2 \phi)-\sin (2 \theta) \sin (2 \phi) \\
\sin (2 \theta) \cos (2 \phi)-\cos (2 \theta) \sin (2 \phi) & \sin (2 \theta) \sin (2 \phi)+\cos (2 \theta) \cos (2 \phi)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (2 \theta-2 \phi) & -\sin (2 \theta-2 \phi) \\
\sin (2 \theta-2 \phi) & \cos (2 \theta-2 \phi)
\end{array}\right]
\end{aligned}
$$

This is the matrix for $\operatorname{Rot}_{\alpha}$ where $\alpha=2 \theta-2 \phi$.
(d) Let $\operatorname{Rot}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote rotation through angle θ. Prove that $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a reflection across some line. What line?
Solution. The matrix for $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{cc}
\cos (2 \phi) & \sin (2 \phi) \\
\sin (2 \phi) & -\cos (2 \phi)
\end{array}\right] } & =\left[\begin{array}{cc}
\cos (\theta) \cos (2 \phi)-\sin (\theta) \sin (2 \phi) & \cos (\theta) \sin (2 \phi)+\sin (\theta) \cos (2 \phi) \\
\sin (\theta) \cos (2 \phi)+\cos (\theta) \sin (2 \phi) & \sin (\theta) \sin (2 \phi)-\cos (\theta) \cos (2 \phi)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\theta+2 \phi) & \sin (\theta+2 \phi) \\
\sin (\theta+2 \phi) & -\cos (\theta+2 \phi)
\end{array}\right]
\end{aligned}
$$

This is the matrix for $\operatorname{Ref}_{\alpha}$, were $\alpha=\phi+\frac{1}{2} \theta$.
(e) Prove that $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is a reflection across some line. What line?

Solution. The matrix for $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is

$$
\begin{aligned}
{\left[\begin{array}{cc}
\cos (2 \phi) & \sin (2 \phi) \\
\sin (2 \phi) & -\cos (2 \phi)
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] } & =\left[\begin{array}{cc}
\cos (2 \phi) \cos (\theta)+\sin (2 \phi) \sin (\theta) & -\cos (2 \phi) \sin (\theta)+\sin (2 \phi) \cos (\theta) \\
\sin (2 \phi) \cos (\theta)-\cos (2 \phi) \sin (\theta) & -\sin (2 \phi) \sin (\theta)-\cos (2 \phi) \cos (\theta)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (2 \phi-\theta) & \sin (2 \phi-\theta) \\
\sin (2 \phi-\theta) & -\cos (2 \phi-\theta)
\end{array}\right]
\end{aligned}
$$

This is the matrix for $\operatorname{Ref}_{\alpha}$, were $\alpha=\phi-\frac{1}{2} \theta$.
6. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations
(a) Prove that $\operatorname{Im}(T \circ S) \subseteq \operatorname{Im}(T)$. Give an example for which $\operatorname{Im}(T \circ S) \neq \operatorname{Im}(T)$.

Solution. Let $\mathbf{w} \in \operatorname{Im}(T \circ S)$. Then there exists $\mathbf{u} \in U$ such that $(T \circ S)(\mathbf{u})=\mathbf{w}$. But $(T \circ S)(\mathbf{u})=T(S(\mathbf{u}))$, so setting $\mathbf{v}=S(\mathbf{u})$ it follows that $\mathbf{v} \in V$ and $T(\mathbf{v})=\mathbf{w}$ so $\mathbf{w} \in \operatorname{Im}(T)$.
As an example where the two images are not the same, let $S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the zero transformation, and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the identity transformation. Then $T(\mathbf{v})=\mathbf{v}$ for all $\mathbf{v} \in \mathbf{R}^{2}$, so $\operatorname{Im}(T)=\mathbf{R}^{2}$, but $(T \circ S)(\mathbf{u})=T(S(\mathbf{u}))=T(\mathbf{0})=\mathbf{0}$ for all $\mathbf{u} \in U$, so $\operatorname{Im}(T \circ S)=\{\mathbf{0}\}$.
(b) Suppose S and T are invertible. Prove that $T \circ S$ is invertible and $(T \circ S)^{-1}=$ $S^{-1} \circ T^{-1}$.
Solution. Let $\mathbf{u} \in U$. Then

$$
\left(S^{-1} \circ T^{-1}\right)((T \circ S)(\mathbf{u}))=S^{-1}\left(T^{-1}(T(S(\mathbf{u})))\right)=S^{-1}(S(\mathbf{u}))=\mathbf{u}
$$

Likewise, for any $\mathbf{w} \in W$,

$$
(T \circ S)\left(\left(S^{-1} \circ T^{-1}\right)(\mathbf{w})\right)=T\left(S\left(S^{-1}\left(T^{-1}(\mathbf{w})\right)\right)\right)=T\left(T^{-1}(\mathbf{w})\right)=\mathbf{w} .
$$

Thus, by definition of inverses, $S^{-1} \circ T^{-1}$ is the inverse of $T \circ S$.
7. Let $V=P_{3}(\mathbf{R})$ and $W=P_{4}(\mathbf{R})$, and define $S: V \rightarrow W$ by $S(p(x))=\int_{0_{3}}^{x} p(t) d t$ and $T: W \rightarrow V$ by $T(p(x))=p^{\prime}(x)$. Let $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ and $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$. Find $[S]_{\alpha}^{\beta},[T]_{\beta}^{\alpha},[S \circ T]_{\beta}^{\beta}$ and $[T \circ S]_{\alpha}^{\alpha}$.
Solution. Since

$$
\begin{gathered}
S(1)=x=0 \cdot 1+1 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
S(x)=\frac{1}{2} x^{2}=0 \cdot 1+0 \cdot x+\frac{1}{2} \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4} \\
S\left(x^{2}\right)=\frac{1}{3} x^{3}=0 \cdot 1+0 \cdot x+0 \cdot x^{2}+\frac{1}{3} \cdot x^{3}+0 \cdot x^{4} \\
S\left(x^{3}\right)=\frac{1}{4} x^{4}=0 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}+\frac{1}{4} \cdot x^{4}
\end{gathered}
$$

we have

$$
[S]_{\alpha}^{\beta}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
$$

Since

$$
\begin{aligned}
T(1)=0 & =0 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
T(x)=1 & =1 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
T\left(x^{2}\right)=2 x & =0 \cdot 1+2 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
T\left(x^{3}\right)=3 x^{2} & =0 \cdot 1+0 \cdot x+3 \cdot x^{2}+0 \cdot x^{3} \\
T\left(x^{4}\right)=4 x^{3} & =0 \cdot 1+0 \cdot x+0 \cdot x^{2}+4 \cdot x^{3}
\end{aligned}
$$

we have

$$
[T]_{\beta}^{\alpha}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

Thus

$$
[S \circ T]_{\beta}^{\beta}=[S]_{\alpha}^{\beta}[T]_{\beta}^{\alpha}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and }[T \circ S]_{\alpha}^{\alpha}=[T]_{\beta}^{\alpha}[S]_{\alpha}^{\beta}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

8. Let $\alpha=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\alpha^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ be bases for \mathbf{R}^{2}, where $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, $\mathbf{u}_{1}^{\prime}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\mathbf{u}_{2}^{\prime}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(a) Find the change of basis matrices $[I]_{\alpha}^{\alpha^{\prime}}$ and $[I]_{\alpha^{\prime}}^{\alpha}$.

Solution. Since

$$
\operatorname{rref}\left[\begin{array}{rr|rr}
1 & 2 & 3 & -2 \\
1 & 1 & 2 & 1
\end{array}\right]=\left[\begin{array}{rr|rr}
1 & 0 & 1 & 4 \\
0 & 1 & 1 & -3
\end{array}\right]
$$

it follows that

$$
[I]_{\alpha^{\prime}}^{\alpha}=\left[\begin{array}{cc}
1 & 4 \\
1 & -3
\end{array}\right] \quad \text { and } \quad[I]_{\alpha}^{\alpha^{\prime}}=\left([I]_{\alpha^{\prime}}^{\alpha}\right)^{-1}=\frac{1}{7}\left[\begin{array}{cc}
3 & 4 \\
1 & -1
\end{array}\right]
$$

(b) Let β be the standard basis. Find $[I]_{\alpha}^{\beta}$ and $[I]_{\beta}^{\alpha}$.

Solution.

$$
[I]_{\alpha}^{\beta}=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right] \quad \text { and } \quad[I]_{\beta}^{\alpha}=\left([I]_{\alpha}^{\beta}\right)^{-1}=\frac{1}{7}\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right] .
$$

(c) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation such that $[T]_{\alpha}^{\alpha}=\left[\begin{array}{cc}5 & 0 \\ 0 & -3\end{array}\right]$. Find $[T]_{\alpha^{\prime}}^{\alpha^{\prime}}$.

Solution.

$$
[T]_{\alpha^{\prime}}^{\alpha^{\prime}}=[I]_{\alpha}^{\alpha^{\prime}}[T]_{\alpha}^{\alpha}[I]_{\alpha^{\prime}}^{\alpha}=\frac{1}{7}\left[\begin{array}{cc}
3 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{cc}
1 & 4 \\
1 & -3
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
3 & 96 \\
8 & 11
\end{array}\right]
$$

(d) Find $[T]_{\beta}^{\beta}$ where T is the transformation in part (c).

Solution.

$$
[T]_{\beta}^{\beta}=[I]_{\alpha}^{\beta}[T]_{\alpha}^{\alpha}[I]_{\beta}^{\alpha}=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & -3
\end{array}\right] \frac{1}{7}\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
3 & 48 \\
16 & 11
\end{array}\right]
$$

