College of the Holy Cross, Fall 2018 Math 244, Homework 7

1. Define

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 6 \\ 5 & -1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 7 & 2 \\ 1 & 1 \\ -2 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 5 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

There are 16 possible matrix products that can be formed by multiplying these matrices by one another (AA, AB, AC, AD, \ldots) . Determine which of these are defined and compute them.

- 2. Let $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v}) = \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$ denote the projection onto the line spanned by \mathbf{a} .
 - (a) Prove that $\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}} = \operatorname{Proj}_{\mathbf{a}}$
 - (b) Prove that Proj_a is not invertible.
- 3. Find the inverse of each matrix, or show that it is not invertible.

(a)
$$A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$$
 (c) $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}$ (e) $E = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
(b) $B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ (d) $D = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ (f) $F = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$

4. Let $\operatorname{Rot}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote counter-clockwise rotation through angle θ . Recall that its matrix with respect to the standard basis for \mathbf{R}^2 is $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

- (a) Prove $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi} = \operatorname{Rot}_{\theta+\phi}$.
- (b) Prove $(\operatorname{Rot}_{\theta})^{-1} = \operatorname{Rot}_{-\theta}$.

5. Let $\operatorname{Ref}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote reflection across the line that makes angle θ with the positive *x*-axis. In the notation of the text this is $R_{\mathbf{a}}$, where $\mathbf{a} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$.

- (a) Prove that the matrix for $\operatorname{Ref}_{\theta}$ is $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.
- (b) Prove that $(\operatorname{Ref}_{\theta})^{-1} = \operatorname{Ref}_{\theta}$.
- (c) Prove that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a *rotation* through some angle. What angle?
- (d) Let $\operatorname{Rot}_{\theta} : \mathbf{R}^2 \to \mathbf{R}^2$ denote rotation through angle θ . Prove that $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a reflection across some line. What line?

- (e) Prove that $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is a reflection across some line. What line?
- 6. Let $S: U \to V$ and $T: V \to W$ be linear transformations
 - (a) Prove that $\operatorname{Im}(T \circ S) \subseteq \operatorname{Im}(T)$. Give an example for which $\operatorname{Im}(T \circ S) \neq \operatorname{Im}(T)$.
 - (b) Suppose S and T are invertible. Prove that $T \circ S$ is invertible and $(T \circ S)^{-1} = S^{-1} \circ T^{-1}$.
- 7. Let $V = P_3(\mathbf{R})$ and $W = P_4(\mathbf{R})$, and define $S: V \to W$ by $S(p(x)) = \int_0^x p(t) dt$ and $T: W \to V$ by T(p(x)) = p'(x). Let $\alpha = \{1, x, x^2, x^3\}$ and $\beta = \{1, x, x^2, x^3, x^4\}$. Find $[S]^{\beta}_{\alpha}, [T]^{\alpha}_{\beta}, [S \circ T]^{\beta}_{\beta}$ and $[T \circ S]^{\alpha}_{\alpha}$.
- 8. Let $\alpha = {\mathbf{u}_1, \mathbf{u}_2}$ and $\alpha' = {\mathbf{u}'_1, \mathbf{u}'_2}$ be bases for \mathbf{R}^2 , where $\mathbf{u}_1 = \begin{bmatrix} 3\\2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2\\1 \end{bmatrix}$, $\mathbf{u}'_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$, and $\mathbf{u}'_2 = \begin{bmatrix} 2\\1 \end{bmatrix}$.
 - (a) Find the change of basis matrices $[I]^{\alpha'}_{\alpha}$ and $[I]^{\alpha}_{\alpha'}$.
 - (b) Let β be the standard basis. Find $[I]^{\beta}_{\alpha}$ and $[I]^{\alpha}_{\beta}$.
 - (c) Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation such that $[T]^{\alpha}_{\alpha} = \begin{bmatrix} 5 & 0 \\ 0 & -3 \end{bmatrix}$. Find $[T]^{\alpha'}_{\alpha'}$.
 - (d) Find $[T]^{\beta}_{\beta}$ where T is the transformation in part (c).