College of the Holy Cross, Fall 2018
 Math 244, Homework 7

1. Define

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 0 & 6 \\
5 & -1 & 2
\end{array}\right] \quad C=\left[\begin{array}{cc}
7 & 2 \\
1 & 1 \\
-2 & 4
\end{array}\right] \quad D=\left[\begin{array}{lll}
5 & 1 & 3 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

There are 16 possible matrix products that can be formed by multiplying these matrices by one another $(A A, A B, A C, A D, \ldots)$. Determine which of these are defined and compute them.
2. Let $\operatorname{Proj}_{\mathbf{a}}(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right)$ a denote the projection onto the line spanned by \mathbf{a}.
(a) Prove that $\operatorname{Proj}_{\mathbf{a}} \circ \operatorname{Proj}_{\mathbf{a}}=\operatorname{Proj}_{\mathbf{a}}$
(b) Prove that $\operatorname{Proj}_{\mathbf{a}}$ is not invertible.
3. Find the inverse of each matrix, or show that it is not invertible.
(a) $A=\left[\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right]$
(c) $C=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27\end{array}\right]$
(e) $E=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(b) $B=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$
(d) $D=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$
(f) $F=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4\end{array}\right]$
4. Let $\operatorname{Rot}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote counter-clockwise rotation through angle θ. Recall that its matrix with respect to the standard basis for \mathbf{R}^{2} is $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$.
(a) Prove $\operatorname{Rot}_{\theta} \circ \operatorname{Rot}_{\phi}=\operatorname{Rot}_{\theta+\phi}$.
(b) Prove $\left(\operatorname{Rot}_{\theta}\right)^{-1}=\operatorname{Rot}_{-\theta}$.
5. Let $\operatorname{Ref}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote reflection across the line that makes angle θ with the positive x-axis. In the notation of the text this is $R_{\mathbf{a}}$, where $\mathbf{a}=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta)\end{array}\right]$.
(a) Prove that the matrix for $\operatorname{Ref}_{\theta}$ is $\left[\begin{array}{cc}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right]$.
(b) Prove that $\left(\operatorname{Ref}_{\theta}\right)^{-1}=\operatorname{Ref}_{\theta}$.
(c) Prove that $\operatorname{Ref}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a rotation through some angle. What angle?
(d) Let $\operatorname{Rot}_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ denote rotation through angle θ. Prove that $\operatorname{Rot}_{\theta} \circ \operatorname{Ref}_{\phi}$ is a reflection across some line. What line?
(e) Prove that $\operatorname{Ref}_{\phi} \circ \operatorname{Rot}_{\theta}$ is a reflection across some line. What line?
6. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations
(a) Prove that $\operatorname{Im}(T \circ S) \subseteq \operatorname{Im}(T)$. Give an example for which $\operatorname{Im}(T \circ S) \neq \operatorname{Im}(T)$.
(b) Suppose S and T are invertible. Prove that $T \circ S$ is invertible and $(T \circ S)^{-1}=$ $S^{-1} \circ T^{-1}$.
7. Let $V=P_{3}(\mathbf{R})$ and $W=P_{4}(\mathbf{R})$, and define $S: V \rightarrow W$ by $S(p(x))=\int_{0}^{x} p(t) d t$ and $T: W \rightarrow V$ by $T(p(x))=p^{\prime}(x)$. Let $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ and $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$. Find $[S]_{\alpha}^{\beta},[T]_{\beta}^{\alpha},[S \circ T]_{\beta}^{\beta}$ and $[T \circ S]_{\alpha}^{\alpha}$.
8. Let $\alpha=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\alpha^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}\right\}$ be bases for \mathbf{R}^{2}, where $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, $\mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, $\mathbf{u}_{1}^{\prime}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\mathbf{u}_{2}^{\prime}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(a) Find the change of basis matrices $[I]_{\alpha}^{\alpha^{\prime}}$ and $[I]_{\alpha^{\prime}}^{\alpha}$.
(b) Let β be the standard basis. Find $[I]_{\alpha}^{\beta}$ and $[I]_{\beta}^{\alpha}$.
(c) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation such that $[T]_{\alpha}^{\alpha}=\left[\begin{array}{cc}5 & 0 \\ 0 & -3\end{array}\right]$. Find $[T]_{\alpha^{\prime}}^{\alpha^{\prime}}$.
(d) Find $[T]_{\beta}^{\beta}$ where T is the transformation in part (c).

