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Math 244

Solutions to Midterm 3 Practice Problems

1. Let S : U → V and T : V → W be linear transformations.

(a) Prove that if S and T are injective, then T ◦ S is injective.

Solution. Let u ∈ Ker(T ◦ S). Then (T ◦ S)(u) = 0, so T (S(u)) = 0, and
therefore S(u) ∈ Ker(T ). But T is injective, so Ker(T ) = {0} and thus S(u) = 0.
This implies u ∈ Ker(S). Since S is injective, Ker(S) = {0}, so u = 0. Thus
Ker(T ◦ S) = {0}, so T ◦ S is injective.

(b) Suppose T ◦ S is injective.

(i) Prove S must be injective.
Solution. Suppose u ∈ Ker(S). Then S(u) = 0, which implies (T ◦S)(u) =
T (S(u)) = T (0) = 0. Thus u ∈ Ker(T ◦ S). But since T ◦ S is injective,
Ker(T ◦ S) = {0} and thus u = 0. Hence Ker(S) = {0}, so S is injective.

(ii) Show by example that T need not be injective.

Solution. Let S : R2 → R3 have matrix A =

1 0
0 1
0 0

 and let T : R3 → R2

have matrix B =

[
1 0 0
0 1 0

]
. Then T ◦ S : R2 → R2 has matrix BA =[

1 0
0 1

]
, so T ◦S is injective, but T is not injective since Ker(T ) = Span(e3).

2. Let A =

1 1 1
0 1 1
2 −1 3

.
(a) Find the inverse of A.

Solution. 1 1 1 1 0 0
0 1 1 0 1 0
2 −1 3 0 0 1

 →

 1 1 1 1 0 0
0 1 1 0 1 0
0 −3 1 −2 0 1

 →

 1 0 0 1 −1 0
0 1 1 0 1 0
0 0 4 −2 3 1


→

 1 0 0 1 −1 0
0 1 1 0 1 0
0 0 1 −1

2
3
4

1
4

 →

 1 0 0 1 −1 0
0 1 0 1

2
1
4

−1
4

0 0 1 −1
2

3
4

1
4


So A−1 =

 1 −1 0
1
2

1
4

−1
4

−1
2

3
4

1
4


(b) Find the solution of the system

x1 + x2 + x3 = 2
x2 + x3 = −1

2x1 − x2 + 3x3 = 4



Solution. The system can be written Ax = b, where b =

 2
−1
4

. The solution

is

x = A−1b =

 1 −1 0
1
2

1
4

−1
4

−1
2

3
4

1
4

 2
−1
4

 =

 3
−1

4

−3
4

 .

3. Suppose A and B are n× n invertible matrices.

(a) Prove that AB and BA are invertible.

Solution 1. Since det(A) ̸= 0 and det(B) ̸= 0, det(AB) = det(BA) = det(A) det(B) ̸=
0, so both AB and BA are invertible.

Solution 2. Since

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

and
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I,

the matrix B−1A−1 is the inverse of AB. Likewise A−1B−1 is the inverse of BA.

(b) Show by example that A+B is not necessarily invertible.

Solution. Let A = I and B = −I. Then A and B are both invertible, but
A+B = O (the zero matrix) is not invertible.

4. Let T : V → W be an isomorphism.

(a) Prove that {v1, . . . ,vk} is linearly independent if and only if {T (v1), . . . , T (vk)}
is linearly independent.

Solution. First suppose {v1, . . . ,vk} is linearly independent, and assume that

c1T (v1) + · · ·+ ckT (vk) = 0

for some scalars c1, . . . , ck. By linearity of T this implies

T (c1v1 + · · ·+ ckvk) = 0.

Since T is an isomorphism, it is invertible. Applying T−1 to both sides of this
equation gives

c1v1 + · · ·+ ckvk = T−1(0) = 0.

Thus, because {v1, . . . ,vk} is linearly independent, c1 = · · · = ck = 0, which
implies {T (v1), . . . , T (vk)} is linearly independent.

Now suppose {T (v1), . . . , T (vk)} is linearly independent, and assume

c1v1 + · · ·+ ckvk = 0

for some scalars c1, . . . , ck. Applying T to both sides of the equation and using
linearity implies

c1T (v1) + · · ·+ ckT (vk) = 0.

Thus, because {T (v1), . . . , T (vk)} is linearly independent, c1 = · · · = ck = 0,
which implies {v1, . . . ,vk} is linearly independent.



(b) Suppose U is a subspace of V with dim(U) = k. Prove that

T (U) = {w ∈ W | w = T (u) for some u ∈ U}

is a subspace of W with dim(T (U)) = k.

Solution. Let α = {v1, . . . ,vk} be a basis for U . Then α is linearly independent,
so by the previous result, β = {T (v1), . . . , T (vk)} is also linearly independent.

We claim that T (U) = Span(β). To see that Span(β) ⊆ T (U), let w ∈ Span(β).
Then w = c1T (v1) + · · · + ckT (vk) for some scalars c1, . . . , ck. By linearity, this
implies w = T (c1v1+ · · ·+ ckvk). But since α is a basis for U , c1v1+ · · ·+ ckvk ∈
U and thus w ∈ T (U). To prove the reverse inclusion, let w ∈ T (U). Then
w = T (u) for some u ∈ U . Since α is a basis for U , u = v1) + · · · + ckT (vk for
some scalars c1, . . . , ck. Thus, by linearity, w = c1T (v1) + · · · + ckT (vk), which
implies w ∈ Span(β). This proves T (U) = Span(β).

Thus β is a basis for T (U). Since β has k elements, dim(T (U)) = k.

5. Let A be an n× n invertible matrix. Prove that its inverse is unique.

Solution. Suppose B and C are both inverses of A. Then AB = BA = AC = CA = I.
Consider the matrix BAC. On the one hand, BAC = IC = C, while on the other
hand BAC = BI = B. Thus B = C.

6. (a) Suppose A is a matrix whose columns v1, . . . ,vn are nonzero and orthogonal to
each other. Prove that A is invertible and that A−1 is the matrix whose rows are
v1

∥v1∥2 , . . . ,
vn

∥vn∥2 .

Solution. Let B be the matrix whose rows are v1

∥v1∥2 , . . . ,
vn

∥vn∥2 . Then

BA =


v1·v1

∥v1∥2
v1·v2

∥v1∥2 · · · v1·vn

∥v1∥2
v2·v1

∥v2∥2
v2·v2

∥v2∥2 · · · v2·vn

∥v2∥2
...

...
. . .

...
vn·v1

∥vn∥2
vn·v2

∥vn∥2 · · · vn·vn

∥vn∥2

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I

so B = A−1.

(b) Use the result of part (a) to find the inverse of that matrix A =

1 1 1
1 −1 1
1 0 −2

.
Solution. The columns of A are orthogonal to one another, so

A−1 =

1
3

1
3

1
3

1
2

−1
2

0
1
6

1
6

−2
6


7. Suppose A and B are similar matrices. Prove An is similar to Bn for any positive

integer n.

Solution. Since A and B are similar, there exists an invertible matrix Q such that
B = Q−1AQ. We claim that Bn = Q−1AnQ for any positive integer n, from which the



similarity of An and Bn follows. Let’s prove this by induction. The case n = 1 holds
by assumption. Now suppose the claim holds for some n ≥ 1. Then Bn = Q−1AnQ so
using the fact that B = Q−1AQ we have

Bn+1 = BnB = (Q−1AnQ)(Q−1AQ) = (Q−1An)(QQ−1)(AQ) = (Q−1An)I(AQ)

= (Q−1An)(AQ) = Q−1An+1Q

so the claim holds with exponent n+1. By induction, the claim is true for all positive
integers.

8. Prove that similarity of matrices is an equivalence relation. That is, prove the following
three statements:

• Any matrix A is similar to itself

• If A is similar to B, then B is similar to A

• If A is similar to B and B is similar to C, then A is similar to C.

Solution. To prove A is similar to itself, let Q = I. Then Q−1 = I, so Q−1AQ =
IAI = IA = A.

Next suppose A is similar to B. Then B = Q−1AQ for some matrixQ. Left-multiplying
both sides by Q gives QB = AQ. Right-multiplying both sides by Q−1 gives QBQ−1 =
A. LetR = Q−1. ThenR−1 = Q, so we can write the previous equation asA = R−1BR,
so B is similar to A.

Finally, if A is similar to B and B is similar to C, there exist matrices Q and R such
that B = Q−1AQ and C = R−1BR. This implies C = R−1Q−1AQR. Define S = QR.
Then S−1 = R−1Q−1, so the previous equation becomes C = S−1AS, and therefore A
is similar to C.

9. Let T : R3 → R3 be the linear transformation that satisfies T (2,−1, 3) = (2, 0, 0)
T (7, 0, 7) = (0, 0,−7) and T (0,−3, 6) = (0, 3, 0). Find the matrix for T−1 with respect
to the standard basis.

Solution. The given relations can be rewritten as T−1(2, 0, 0) = (2,−1, 3), T−1(0, 0,−7) =
(7, 0, 7) and T−1(0, 3, 0) = (0,−3, 6). By linearity, T (1, 0, 0) = (1,−1

2
, 3
2
), T (0, 0, 1) =

(−1, 0,−1) and T (0, 1, 0) = (0,−1, 2), and thus the matrix for T with respect to the

standard basis is

 1 0 −1
−1

2
−1 0

3
2

2 −1

.
10. Let T : R2 → R2 be the linear transformation such that T (1, 2) = (4, 1) and T (3,−1) =

(2,−1). Find the matrix for T with respect to the standard basis.

Solution. Let A be the matrix for T with respect to the standard basis, and let

B =

[
1 3
2 −1

]
and C =

[
4 2
1 −1

]
.



The AB = C, so

A = CB−1 =

[
4 2
1 −1

]
1

7

[
1 3
2 −1

]
=

1

7

[
8 10
−1 4

]
.

11. Let α = {a,b, c}, where a =

22
1

, b =

 1
−2
2

, and c =

−2
1
2

. Recall that the

projection onto the plane spanned by a and b is the linear transformation T : R3 → R3

defined by

T (v) =
(v · a
a · a

)
a+

(
v · b
b · b

)
b.

(a) Verify that α is a basis for R3 and find [I]βα and [I]αβ where β is the standard basis
for R3.

Solution. The matrix A =

2 1 −2
2 −2 1
1 2 2

 whose columns are the vectors in α is

invertible by the result of problem 6 since its columns are nonzero and orthogonal
to one another. Thus α is linearly independent, and therefore a basis forR3. Since
the columns of A are simply the vectors in α written in standard coordinates,
A = [I]βα. Applying the result of problem 6 again, its inverse is

[I]αβ = A−1 =
1

9

 2 2 1
1 −2 2
−2 1 2

 .

(b) Find [T ]αα.

Solution. Since a · b = a · c = b · c = 0, it follows from the definition of T that

T (a) = a = 1a+ 0b+ 0c

T (b) = b = 0a+ 1b+ 0c

T (c) = 0 = 0a+ 0b+ 0c,

and thus the matrix for T with respect to α is

[T ]αα =

1 0 0
0 1 0
0 0 0

 .



(c) Find [T ]ββ.

[T ]ββ = [I]βα[T ]
α
α[I]

α
β

=

2 1 −2
2 −2 1
1 2 2

1 0 0
0 1 0
0 0 0

 1

9

 2 2 1
1 −2 2
−2 1 2


=

1

9

2 1 −2
2 −2 1
1 2 2

2 2 1
1 −2 2
0 0 0


=

1

9

5 2 4
2 8 −2
4 −2 5



12. (a) Find the determinant of


1 1 1 1
1 2 1 2
1 1 3 3
1 3 3 1


Solution.

det


1 1 1 1
1 2 1 2
1 1 3 3
1 3 3 1

 = det


1 1 1 1
0 1 0 1
0 0 2 2
0 2 2 0

 = det


1 1 1 1
0 1 0 1
0 0 2 2
0 0 2 −2

 = det


1 1 1 1
0 1 0 1
0 0 2 2
0 0 0 −4

 = −8

(b) For which x is the matrix

x 1 2
0 x 0
3 4 x

 invertible?

Solution. Expanding along the second row,

det

x 1 2
0 x 0
3 4 x

 = x det

[
x 2
3 x

]
= x(x2 − 6).

The matrix is invertible when its determinant is nonzero, which is the case for all
real x except x = 0, x =

√
6 and x = −

√
6.


