College of the Holy Cross, Fall 2018
 Math 244
 Solutions to Midterm 3 Practice Problems

1. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations.
(a) Prove that if S and T are injective, then $T \circ S$ is injective.

Solution. Let $\mathbf{u} \in \operatorname{Ker}(T \circ S)$. Then $(T \circ S)(\mathbf{u})=\mathbf{0}$, so $T(S(\mathbf{u}))=\mathbf{0}$, and therefore $S(\mathbf{u}) \in \operatorname{Ker}(T)$. But T is injective, so $\operatorname{Ker}(T)=\{\mathbf{0}\}$ and thus $S(\mathbf{u})=\mathbf{0}$. This implies $\mathbf{u} \in \operatorname{Ker}(S)$. Since S is injective, $\operatorname{Ker}(S)=\{\mathbf{0}\}$, so $\mathbf{u}=\mathbf{0}$. Thus $\operatorname{Ker}(T \circ S)=\{\mathbf{0}\}$, so $T \circ S$ is injective.
(b) Suppose $T \circ S$ is injective.
(i) Prove S must be injective.

Solution. Suppose $\mathbf{u} \in \operatorname{Ker}(S)$. Then $S(\mathbf{u})=\mathbf{0}$, which implies $(T \circ S)(\mathbf{u})=$ $T(S(\mathbf{u}))=T(\mathbf{0})=\mathbf{0}$. Thus $\mathbf{u} \in \operatorname{Ker}(T \circ S)$. But since $T \circ S$ is injective, $\operatorname{Ker}(T \circ S)=\{\mathbf{0}\}$ and thus $\mathbf{u}=\mathbf{0}$. Hence $\operatorname{Ker}(S)=\{\mathbf{0}\}$, so S is injective.
(ii) Show by example that T need not be injective. Solution. Let $S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ have matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ have matrix $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. Then $T \circ S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ has matrix $B A=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so $T \circ S$ is injective, but T is not injective since $\operatorname{Ker}(T)=\operatorname{Span}\left(\mathbf{e}_{3}\right)$.
2. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & -1 & 3\end{array}\right]$.
(a) Find the inverse of A.

Solution.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
2 & -1 & 3 & 0 & 0 & 1
\end{array}\right]} & \rightarrow\left[\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & -3 & 1 & -2 & 0 & 1
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 4 & -2 & 3 & 1
\end{array}\right]\right)
$$

So $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 0 \\ \frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{3}{4} & \frac{1}{4}\end{array}\right]$
(b) Find the solution of the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}+x_{3} & =-1 \\
2 x_{1}-x_{2}+3 x_{3} & =4
\end{aligned}
$$

Solution. The system can be written $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$. The solution is

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
\frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{2} & \frac{3}{4} & \frac{1}{4}
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \\
-\frac{1}{4} \\
-\frac{3}{4}
\end{array}\right] .
$$

3. Suppose A and B are $n \times n$ invertible matrices.
(a) Prove that $A B$ and $B A$ are invertible.

Solution 1. Since $\operatorname{det}(A) \neq 0$ and $\operatorname{det}(B) \neq 0, \operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det}(A) \operatorname{det}(B) \neq$ 0 , so both $A B$ and $B A$ are invertible.
Solution 2. Since

$$
\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
$$

and

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I,
$$

the matrix $B^{-1} A^{-1}$ is the inverse of $A B$. Likewise $A^{-1} B^{-1}$ is the inverse of $B A$.
(b) Show by example that $A+B$ is not necessarily invertible.

Solution. Let $A=I$ and $B=-I$. Then A and B are both invertible, but $A+B=O$ (the zero matrix) is not invertible.
4. Let $T: V \rightarrow W$ be an isomorphism.
(a) Prove that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent if and only if $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent.
Solution. First suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, and assume that

$$
c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right)=\mathbf{0}
$$

for some scalars c_{1}, \ldots, c_{k}. By linearity of T this implies

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}\right)=\mathbf{0}
$$

Since T is an isomorphism, it is invertible. Applying T^{-1} to both sides of this equation gives

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=T^{-1}(\mathbf{0})=\mathbf{0}
$$

Thus, because $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, $c_{1}=\cdots=c_{k}=0$, which implies $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent.
Now suppose $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent, and assume

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

for some scalars c_{1}, \ldots, c_{k}. Applying T to both sides of the equation and using linearity implies

$$
c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right)=\mathbf{0}
$$

Thus, because $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent, $c_{1}=\cdots=c_{k}=0$, which implies $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent.
(b) Suppose U is a subspace of V with $\operatorname{dim}(U)=k$. Prove that

$$
T(U)=\{\mathbf{w} \in W \mid \mathbf{w}=T(\mathbf{u}) \text { for some } \mathbf{u} \in U\}
$$

is a subspace of W with $\operatorname{dim}(T(U))=k$.
Solution. Let $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be a basis for U. Then α is linearly independent, so by the previous result, $\beta=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is also linearly independent.
We claim that $T(U)=\operatorname{Span}(\beta)$. To see that $\operatorname{Span}(\beta) \subseteq T(U)$, let $\mathbf{w} \in \operatorname{Span}(\beta)$. Then $\mathbf{w}=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right)$ for some scalars c_{1}, \ldots, c_{k}. By linearity, this implies $\mathbf{w}=T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}\right)$. But since α is a basis for $U, c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k} \in$ U and thus $\mathbf{w} \in T(U)$. To prove the reverse inclusion, let $\mathbf{w} \in T(U)$. Then $\mathbf{w}=T(\mathbf{u})$ for some $\mathbf{u} \in U$. Since α is a basis for $\left.U, \mathbf{u}=\mathbf{v}_{1}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right.$ for some scalars c_{1}, \ldots, c_{k}. Thus, by linearity, $\mathbf{w}=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right)$, which implies $\mathbf{w} \in \operatorname{Span}(\beta)$. This proves $T(U)=\operatorname{Span}(\beta)$.
Thus β is a basis for $T(U)$. Since β has k elements, $\operatorname{dim}(T(U))=k$.
5. Let A be an $n \times n$ invertible matrix. Prove that its inverse is unique.

Solution. Suppose B and C are both inverses of A. Then $A B=B A=A C=C A=I$. Consider the matrix $B A C$. On the one hand, $B A C=I C=C$, while on the other hand $B A C=B I=B$. Thus $B=C$.
6. (a) Suppose A is a matrix whose columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are nonzero and orthogonal to each other. Prove that A is invertible and that A^{-1} is the matrix whose rows are $\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}}, \ldots, \frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|^{2}}$.
Solution. Let B be the matrix whose rows are $\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}}, \ldots, \frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|^{2}}$. Then
so $B=A^{-1}$.
(b) Use the result of part (a) to find the inverse of that matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2\end{array}\right]$.

Solution. The columns of A are orthogonal to one another, so

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{6} & \frac{1}{6} & -\frac{2}{6}
\end{array}\right]
$$

7. Suppose A and B are similar matrices. Prove A^{n} is similar to B^{n} for any positive integer n.
Solution. Since A and B are similar, there exists an invertible matrix Q such that $B=Q^{-1} A Q$. We claim that $B^{n}=Q^{-1} A^{n} Q$ for any positive integer n, from which the
similarity of A^{n} and B^{n} follows. Let's prove this by induction. The case $n=1$ holds by assumption. Now suppose the claim holds for some $n \geq 1$. Then $B^{n}=Q^{-1} A^{n} Q$ so using the fact that $B=Q^{-1} A Q$ we have

$$
\begin{aligned}
B^{n+1} & =B^{n} B=\left(Q^{-1} A^{n} Q\right)\left(Q^{-1} A Q\right)=\left(Q^{-1} A^{n}\right)\left(Q Q^{-1}\right)(A Q)=\left(Q^{-1} A^{n}\right) I(A Q) \\
& =\left(Q^{-1} A^{n}\right)(A Q)=Q^{-1} A^{n+1} Q
\end{aligned}
$$

so the claim holds with exponent $n+1$. By induction, the claim is true for all positive integers.
8. Prove that similarity of matrices is an equivalence relation. That is, prove the following three statements:

- Any matrix A is similar to itself
- If A is similar to B, then B is similar to A
- If A is similar to B and B is similar to C, then A is similar to C.

Solution. To prove A is similar to itself, let $Q=I$. Then $Q^{-1}=I$, so $Q^{-1} A Q=$ $I A I=I A=A$.
Next suppose A is similar to B. Then $B=Q^{-1} A Q$ for some matrix Q. Left-multiplying both sides by Q gives $Q B=A Q$. Right-multiplying both sides by Q^{-1} gives $Q B Q^{-1}=$ A. Let $R=Q^{-1}$. Then $R^{-1}=Q$, so we can write the previous equation as $A=R^{-1} B R$, so B is similar to A.
Finally, if A is similar to B and B is similar to C, there exist matrices Q and R such that $B=Q^{-1} A Q$ and $C=R^{-1} B R$. This implies $C=R^{-1} Q^{-1} A Q R$. Define $S=Q R$. Then $S^{-1}=R^{-1} Q^{-1}$, so the previous equation becomes $C=S^{-1} A S$, and therefore A is similar to C.
9. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation that satisfies $T(2,-1,3)=(2,0,0)$ $T(7,0,7)=(0,0,-7)$ and $T(0,-3,6)=(0,3,0)$. Find the matrix for T^{-1} with respect to the standard basis.
Solution. The given relations can be rewritten as $T^{-1}(2,0,0)=(2,-1,3), T^{-1}(0,0,-7)=$ $(7,0,7)$ and $T^{-1}(0,3,0)=(0,-3,6)$. By linearity, $T(1,0,0)=\left(1,-\frac{1}{2}, \frac{3}{2}\right), T(0,0,1)=$ $(-1,0,-1)$ and $T(0,1,0)=(0,-1,2)$, and thus the matrix for T with respect to the standard basis is $\left[\begin{array}{ccc}1 & 0 & -1 \\ -\frac{1}{2} & -1 & 0 \\ \frac{3}{2} & 2 & -1\end{array}\right]$.
10. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation such that $T(1,2)=(4,1)$ and $T(3,-1)=$ $(2,-1)$. Find the matrix for T with respect to the standard basis.

Solution. Let A be the matrix for T with respect to the standard basis, and let

$$
B=\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{cc}
4 & 2 \\
1 & -1
\end{array}\right] .
$$

The $A B=C$, so

$$
A=C B^{-1}=\left[\begin{array}{cc}
4 & 2 \\
1 & -1
\end{array}\right] \frac{1}{7}\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
8 & 10 \\
-1 & 4
\end{array}\right] .
$$

11. Let $\alpha=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where $\mathbf{a}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$. Recall that the projection onto the plane spanned by \mathbf{a} and \mathbf{b} is the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ defined by

$$
T(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}
$$

(a) Verify that α is a basis for \mathbf{R}^{3} and find $[I]_{\alpha}^{\beta}$ and $[I]_{\beta}^{\alpha}$ where β is the standard basis for \mathbf{R}^{3}.
Solution. The matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2\end{array}\right]$ whose columns are the vectors in α is invertible by the result of problem 6 since its columns are nonzero and orthogonal to one another. Thus α is linearly independent, and therefore a basis for \mathbf{R}^{3}. Since the columns of A are simply the vectors in α written in standard coordinates, $A=[I]_{\alpha}^{\beta}$. Applying the result of problem 6 again, its inverse is

$$
[I]_{\beta}^{\alpha}=A^{-1}=\frac{1}{9}\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2 \\
-2 & 1 & 2
\end{array}\right]
$$

(b) Find $[T]_{\alpha}^{\alpha}$.

Solution. Since $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=\mathbf{b} \cdot \mathbf{c}=0$, it follows from the definition of T that

$$
\begin{aligned}
& \quad T(\mathbf{a})=\mathbf{a}=1 \mathbf{a}+0 \mathbf{b}+0 \mathbf{c} \\
& T(\mathbf{b})=\mathbf{b}=0 \mathbf{a}+1 \mathbf{b}+0 \mathbf{c} \\
& T(\mathbf{c})=\mathbf{0}=0 \mathbf{a}+0 \mathbf{b}+0 \mathbf{c}
\end{aligned}
$$

and thus the matrix for T with respect to α is

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

(c) Find $[T]_{\beta}^{\beta}$.

$$
\begin{aligned}
{[T]_{\beta}^{\beta} } & =[I]_{\alpha}^{\beta}[T]_{\alpha}^{\alpha}[I]_{\beta}^{\alpha} \\
& =\left[\begin{array}{ccc}
2 & 1 & -2 \\
2 & -2 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \frac{1}{9}\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2 \\
-2 & 1 & 2
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{ccc}
2 & 1 & -2 \\
2 & -2 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& =\frac{1}{9}\left[\begin{array}{ccc}
5 & 2 & 4 \\
2 & 8 & -2 \\
4 & -2 & 5
\end{array}\right]
\end{aligned}
$$

12. (a) Find the determinant of $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 3 & 3 \\ 1 & 3 & 3 & 1\end{array}\right]$

Solution.

$\operatorname{det}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 3 & 3 \\ 1 & 3 & 3 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 2 & 2 & 0\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & -2\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & -4\end{array}\right]=-8$
(b) For which x is the matrix $\left[\begin{array}{lll}x & 1 & 2 \\ 0 & x & 0 \\ 3 & 4 & x\end{array}\right]$ invertible?

Solution. Expanding along the second row,

$$
\operatorname{det}\left[\begin{array}{lll}
x & 1 & 2 \\
0 & x & 0 \\
3 & 4 & x
\end{array}\right]=x \operatorname{det}\left[\begin{array}{ll}
x & 2 \\
3 & x
\end{array}\right]=x\left(x^{2}-6\right)
$$

The matrix is invertible when its determinant is nonzero, which is the case for all real x except $x=0, x=\sqrt{6}$ and $x=-\sqrt{6}$.

