Math 136: Calculus 2 Spring 2017 Professor Levandosky Written Homework 9

1. Use the limit comparison test to determine whether each series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3n^3 + 1}{n^4 + 7n^2 + 6}$$

(b) $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{2^n + 5^n}$

2. Determine whether each alternating series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}2n}{3n+5}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}$

- 3. Use the alternating series error bound to determine how large N must be in order for S_N to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n)!}$ to within 0.000001. Compute S_N for this N.
- 4. Use the ratio test to determine whether each series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^4}$$

(b) $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{2^n + 5^n}$
(c) $\sum_{n=1}^{\infty} \frac{(n!)^3 5^{2n}}{(3n)!}$