College of the Holy Cross, Spring Semester, 2019
 Math 134 Worksheet 8
 Due Tuesday, February 26

1. Let R be the region enclosed by the parabolas $y=x^{2}+1$ and $y=3-x^{2}$.
(a) Find the area of R.
(b) Find the volume of the solid obtained by revolving R around the x-axis.
(c) Find the volume of the solid obtained by revolving R around the line $y=-2$.
2. Use integration by parts to evaluate the following integrals.
(a) $\int x^{2} e^{7 x} d x$
(c) $\int x^{2} \sin ^{-1}(x) d x$
(e) $\int e^{\sqrt{x}} d x$
(b) $\int \sqrt{x} \ln (x) d x$
(d) $\int e^{x} \cos (2 x) d x$
(f) $\int(\ln (x))^{2} d x$
3. Use integration by parts to derive the following reduction formula:

$$
\int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x
$$

4. Use the reduction formula above to evaluate $\int \cos ^{n}(x) d x$ for $n=2,3,4$, and 5 .
5. Use the formula

$$
\int \sec ^{n} u d u=\frac{1}{n-1} \tan u \sec ^{n-2} u+\frac{n-2}{n-1} \int \sec ^{n-2} u d u
$$

to evaluate $\int \sec ^{n}(x)$ for $n=4$ and $n=6$.
6. Use the formula

$$
\int \tan ^{n} u d u=\frac{1}{n-1} \tan ^{n-1} u-\int \tan ^{n-2} u d u
$$

to evaluate $\int \tan ^{n}(x)$ for $n=3$ and $n=4$.

