College of the Holy Cross, Spring Semester, 2019
 Math 134 Worksheet 17
 Due Wednesday, April 24

1. Suppose we want to express the function $f(x)=\sin (x)+\cos (x)$ as a power series

$$
\sin (x)+\cos (x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\cdots
$$

(a) Plug in $x=0$ to this formula. What must a_{0} be?
(b) Now take the derivative of both sides and plug in $x=0$. What must a_{1} be?
(c) Take the derivative of both sides again and plug in $x=0$. What must a_{2} be?
(d) What must a_{3} be?
(e) Compute a_{4} through a_{8}.
(f) Use Desmos to plot the partial sums s_{n} for $n=1$ through $n=8$, together with the function $f(x)$ on the domain $[-\pi, \pi]$.
2. Suppose we want to express $g(x)=\sqrt{1+x}$ as a power series

$$
\sqrt{1+x}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+\cdots
$$

(a) Use the same method as in question 1 to find b_{0} through b_{5}.
(b) Plot the partial sums s_{n} for $n=1$ through $n=5$, together with the function $g(x)$ on the domain $[-1,1]$.

