College of the Holy Cross, Spring Semester, 2019
 Math 134 Worksheet 14
 Due Thursday, April 4

1. Evaluate the following limits.
(a) $\lim _{n \rightarrow \infty} \sqrt{\frac{6 n+5}{3 n+7}}$
(d) $\lim _{n \rightarrow \infty}\left(\frac{6}{5}\right)^{n}$
(b) $\lim _{n \rightarrow \infty} \cos \left(\frac{n^{2}+1}{5 n^{3}+2 n+6}\right)$
(e) $\lim _{n \rightarrow \infty} \frac{4^{n}+7^{n+1}}{5^{n+2}+7^{n-1}}$
(c) $\lim _{n \rightarrow \infty}\left(\frac{2}{5}\right)^{n}$
(f) $\lim _{n \rightarrow \infty} \frac{\cos \left(n^{2}\right)}{n+3}$
2. Let $a_{1}=3$ and $a_{n}=\frac{2}{3} a_{n-1}+7$ for $n>1$. Compute the first 5 terms of this sequence. Is the sequence increasing or decreasing? Compute $\lim _{n \rightarrow \infty} a_{n}$.
3. For each infinite series, compute the first 6 terms and the first 6 partial sums. Put your results in a table, and round each number to 6 decimal places. Does the series appear to converge or diverge? (You may need to compute further partial sums.) If it converges, estimate the value of its sum.
(a) $\sum_{n=1}^{\infty} \frac{4}{n^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{4}{\sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$
(d) $\sum_{n=1}^{\infty} \frac{2^{n}}{n}$
4. For each infinite series, find a formula for its $N^{t h}$ partial sum and use it to determine whether the series converges or divers. If it converges, find its sum.
(a) $\sum_{n=1}^{\infty} 2 n+3$
(b) $\sum_{n=1}^{\infty} \frac{4}{\sqrt{n}}-\frac{4}{\sqrt{n+1}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$
