College of the Holy Cross, Spring Semester, 2019 Math 134 Worksheet 13 Due Friday, March 29

- 1. (a) Write the formulas for the trapezoid rule and Simpson's rule approximations of $\int_{a}^{b} f(x) dx$.
 - $T_N =$
 - $S_N =$
 - (b) Explain how each term in these formulas is computed.
- 2. Consider the integral $\int_{1}^{4} \sqrt{x} \, dx$.
 - (a) Compute the approximations T_6 and S_6 of this integral.
 - (b) Compute the exact value of the integral and use it to find the error in each approximation. Which approximation is better?
- 3. (a) Write the formulas for the error bounds for the trapezoid rule and Simpson's rule approximations of $\int_{a}^{b} f(x) dx$. $E(T_N) \leq E(S_N) \leq$
 - (b) Explain how the terms K_2 and K_4 are determined.
 - (c) Explain what these formulas tell us.
 - (d) Give an example of a non-constant function f(x) for which $K_2 = 0$. (In this case the trapezoid rule approximation would have zero error.)
 - (e) Give an example of a function f(x) for which $K_2 \neq 0$ but $K_4 = 0$. (In this case the Simpson's rule approximation would have zero error.)
 - (f) In the Simpson's rule error bound, what is the effect of multiplying N by 10?

4. Consider the definite integral
$$\int_0^2 \sin(x^2) dx$$

- (a) Compute T_4 and S_4 .
- (b) Find the second derivative of $f(x) = \sin(x^2)$ and use a calculator or computer to determine an upper bound K_2 for |f''(x)| on the interval [0, 2].
- (c) Find an upper bound for $E(T_4)$.
- (d) How large must N be in order for T_N to approximate the integral to within 10^{-6} ?
- (e) The fourth derivative of $f(x) = \sin(x^2)$ is $f'''(x) = 4(4x^4 3)\sin(x^2) 48x^2\cos(x^2)$. Use a calculator or computer to determine an upper bound K_4 for |f'''(x)| on the interval [0, 2].
- (f) Find an upper bound for $E(S_4)$.
- (g) How large must N be in order for S_N to approximate the integral to within 10^{-6} ?
- (h) Use a calculator or computer to calculate S_N for the value of N found in part (d).