Math 134, Spring 2019
 Professor Levandosky Practice Final Exam Questions

1. Suppose f is a continuous function on the interval $[1,4]$ with values given in the table below.

x	1	1.5	2	2.5	3	3.5	4
$f(x)$	3	6	10	16	21	27	30

(a) Compute the Simpson's Rule approximation of $\int_{1}^{4} f(x) d x$ that uses 6 subintervals.
(b) Suppose $\left|f^{\prime \prime \prime \prime}(x)\right| \leq 10$ for all x in $[1,4]$. Find a bound on the error in the approximation in part (b).
2. Evaluate the following integrals.
(a) $\int_{2}^{\infty} x e^{-x^{2}} d x$
(b) $\int_{0}^{\pi / 2} x \cos (3 x) d x$
(c) $\int \frac{2 x}{(x-2)^{2}(x+4)} d x$
(d) $\int \frac{\left(x^{2}-4\right)^{3 / 2}}{x} d x$
3. Let $P(t)$ denote the quantity (in gallons) of a chemical in a lake at time t (in weeks), and suppose that $P(0)=350$ and $P^{\prime}(t)=200 e^{-0.5 t}$. Find $P(4)$.
4. Find the solution of $\frac{d y}{d x}=\frac{y^{2}}{x^{2}}$ that satisfies the condition $y(1)=2$.
5. Let R be the region bounded by the curve $y=1+2 x$ and $y=(x-1)^{2}$.
(a) Sketch R.
(b) Find the area of R.
(c) Find the volume of the solid obtained by revolving R about the x-axis.
6. Find the exact value of the sum of each series below.
(a) $\sum_{n=2}^{\infty} \frac{(-3)^{n}}{4^{n+1}}$
(b) $\sum_{n=1}^{\infty}\left(a_{n}+3 b_{n}\right)$, given that $\sum_{n=1}^{\infty} a_{n}=100$ and $\sum_{n=1}^{\infty} b_{n}=12$
(c) $\sum_{n=1}^{\infty} c_{n}$, assuming $\sum_{n=1}^{N} c_{n}=\frac{50 N}{2 N+7}$ for all $N \geq 1$.
7. In each part below, consider the given information and decide whether the series $\sum_{n=1}^{\infty} a_{n}$
(A) must converge. Specify which convergence test applies.
(B) must diverge. Specify which convergence test applies.
(C) could converge or diverge. Provide two examples of series that satisfy the given conditions, one which converges and one which diverges.

Explain your reasoning.
(a) $\lim _{n \rightarrow \infty} a_{n}=0$
(b) $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{4}$
(c) $0<a_{n}<\frac{7}{n}$ for all n
(d) $a_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{\sqrt{n}}}=\frac{2}{3}$
8. Let $f(x)=(1+x)^{1 / 3}$.
(a) Find the degree 3 Taylor polynomial $T_{3}(x)$ for f centered at $x=0$.
(b) Use the answer to part (a) to approximate $f(1)=\sqrt[3]{2}$. Round your answer to 3 decimal places.
(c) Find a bound on the error in the approximation in part (b).
9. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-5)^{n}}{n^{2} 3^{n}}$. Be sure to test for convergence at the endpoints.
10. Let $P(t)$ denote the balance of an annuity that earns 3% interest compounded continuously and pays out $\$ 24,000$ per year continuously. As shown in class, this is modeled by the differential equation

$$
\frac{d P}{d t}=0.03 P-24000
$$

(a) Find the equilibrium solution of the differential equation.
(b) Find the solution that satisfies $P(0)=500000$.
(c) Find the time when the annuity runs out of money if $P(0)=500000$.
11. Use the power series for $e^{x}, \sin (x)$ and $\cos (x)$ to do the following.
(a) Compute $\lim _{x \rightarrow 0} \frac{x \sin (x)-x^{2}}{\cos \left(x^{2}\right)-1}$
(b) Express $\int_{0}^{2} x e^{-x^{3}} d x$ as an infinite series.

