Math 134, Spring 2019 Professor Levandosky Practice Final Exam Questions

1. Suppose f is a continuous function on the interval [1, 4] with values given in the table below.

- (a) Compute the Simpson's Rule approximation of $\int_{1}^{4} f(x) dx$ that uses 6 subintervals.
- (b) Suppose $|f'''(x)| \le 10$ for all x in [1,4]. Find a bound on the error in the approximation in part (b).
- 2. Evaluate the following integrals.

(a)
$$\int_{2}^{\infty} x e^{-x^{2}} dx$$

(b) $\int_{0}^{\pi/2} x \cos(3x) dx$
(c) $\int \frac{2x}{(x-2)^{2}(x+4)} dx$
(d) $\int \frac{(x^{2}-4)^{3/2}}{x} dx$

- 3. Let P(t) denote the quantity (in gallons) of a chemical in a lake at time t (in weeks), and suppose that P(0) = 350 and $P'(t) = 200e^{-0.5t}$. Find P(4).
- 4. Find the solution of $\frac{dy}{dx} = \frac{y^2}{x^2}$ that satisfies the condition y(1) = 2.
- 5. Let R be the region bounded by the curve y = 1 + 2x and $y = (x 1)^2$.
 - (a) Sketch R.
 - (b) Find the area of R.
 - (c) Find the volume of the solid obtained by revolving R about the x-axis.
- 6. Find the exact value of the sum of each series below.

(a)
$$\sum_{n=2}^{\infty} \frac{(-3)^n}{4^{n+1}}$$

(b) $\sum_{n=1}^{\infty} (a_n + 3b_n)$, given that $\sum_{n=1}^{\infty} a_n = 100$ and $\sum_{n=1}^{\infty} b_n = 12$
(c) $\sum_{n=1}^{\infty} c_n$, assuming $\sum_{n=1}^{N} c_n = \frac{50N}{2N+7}$ for all $N \ge 1$.

- 7. In each part below, consider the given information and decide whether the series $\sum a_n$
 - (A) must converge. Specify which convergence test applies.
 - (B) must diverge. Specify which convergence test applies.
 - (C) could converge or diverge. Provide <u>two</u> examples of series that satisfy the given conditions, one which converges and one which diverges.

Explain your reasoning.

(a)
$$\lim_{n \to \infty} a_n = 0$$

(b)
$$\lim_{n \to \infty} a_n = \frac{1}{4}$$

(c)
$$0 < a_n < -n$$
 for all n

(d)
$$a_n > 0$$
 for all n and $\lim_{n \to \infty} \frac{a_n}{\frac{1}{\sqrt{n}}} = \frac{2}{3}$

8. Let $f(x) = (1+x)^{1/3}$.

(a) Find the degree 3 Taylor polynomial $T_3(x)$ for f centered at x = 0.

0

- (b) Use the answer to part (a) to approximate $f(1) = \sqrt[3]{2}$. Round your answer to 3 decimal places.
- (c) Find a bound on the error in the approximation in part (b).
- 9. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-5)^n}{n^2 3^n}$. Be sure to test for convergence at the endpoints.
- 10. Let P(t) denote the balance of an annuity that earns 3% interest compounded continuously and pays out \$24,000 per year continuously. As shown in class, this is modeled by the differential equation

$$\frac{dP}{dt} = 0.03P - 24000$$

- (a) Find the equilibrium solution of the differential equation.
- (b) Find the solution that satisfies P(0) = 500000.
- (c) Find the time when the annuity runs out of money if P(0) = 500000.
- 11. Use the power series for e^x , $\sin(x)$ and $\cos(x)$ to do the following.

(a) Compute
$$\lim_{x \to 0} \frac{x \sin(x) - x^2}{\cos(x^2) - 1}$$

(b) Express $\int_0^2 x e^{-x^3} dx$ as an infinite series.