Math 134, Spring 2019
 Professor Levandosky
 Practice Midterm Exam 3

1. Evaluate each of the following improper integrals.
(a) $\int_{0}^{\infty} x e^{-7 x} d x$
(b) $\int_{1}^{5} \frac{1}{(x-1)^{3 / 2}} d x$
2. Let $p(x)=\frac{c}{x^{3}}$ for $x \geq 1$ and $p(x)=0$ otherwise, and suppose p is the probability density function for a random variable X.
(a) Find c.
(b) Compute $P(2 \leq X \leq 3)$.
(c) Find the mean of X.
(d) Find the median of X.
3. In 2004 the mean math SAT score was 518 with a standard deviation of 114 .
(a) Find the probability that a randomly selected student scored between 600 and 700 .
(b) What score would be required to place in the top 10% of all math SAT scores that year?
4. (a) Use Simpson's Rule with $N=6$ subintervals to approximate $\int_{2}^{5} \ln (x) d x$. Write your answer in decimal form, to three decimal places.
(b) Find a bound on the error in the approximation in part (a).
5. For each series, find its sum, or explain why it diverges.
(a) $\sum_{n=1}^{\infty} \cos \left(1 / n^{2}\right)$
(b) $\sum_{n=1}^{\infty} \frac{2^{2 n-1}}{5^{n}}$
(c) $\sum_{n=1}^{\infty} 5^{1 / n}-5^{1 /(n+1)}$
6. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$.
(a) Find the first 4 partial sums of the series.
(b) Show that the series converges.
(c) How large must N be in order to ensure that the $N^{\text {th }}$ partial sum to be within 10^{-6} of the sum of the series? (You don't need to compute this partial sum.)
7. (a) Use the integral test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n(\ln (n)+4)^{1 / 2}}$ converges or diverges.
(b) Determine whether the series $\sum_{n=1}^{\infty} \frac{3 n^{2}}{2 n^{5}+7}$ converges or diverges.
(c) For which values of k does the series $\sum_{n=1}^{\infty} \frac{\left(k^{2}+1\right)^{n}}{n^{3} 2^{n}}$ converge?
