Math 134, Spring 2019 Professor Levandosky Practice Midterm Exam 3

1. Evaluate each of the following improper integrals.

(a)
$$\int_0^\infty x e^{-7x} dx$$
 (b) $\int_1^5 \frac{1}{(x-1)^{3/2}} dx$

- 2. Let $p(x) = \frac{c}{x^3}$ for $x \ge 1$ and p(x) = 0 otherwise, and suppose p is the probability density function for a random variable X.
 - (a) Find c.

6.

- (b) Compute $P(2 \le X \le 3)$.
- (c) Find the mean of X.
- (d) Find the median of X.
- 3. In 2004 the mean math SAT score was 518 with a standard deviation of 114.
 - (a) Find the probability that a randomly selected student scored between 600 and 700.
 - (b) What score would be required to place in the top 10% of all math SAT scores that year?
- 4. (a) Use Simpson's Rule with N = 6 subintervals to approximate $\int_2^{5} \ln(x) dx$. Write your answer in decimal form, to three decimal places.
 - (b) Find a bound on the error in the approximation in part (a).
- 5. For each series, find its sum, or explain why it diverges.

(a)
$$\sum_{n=1}^{\infty} \cos(1/n^2)$$
 (b) $\sum_{n=1}^{\infty} \frac{2^{2n-1}}{5^n}$ (c) $\sum_{n=1}^{\infty} 5^{1/n} - 5^{1/(n+1)}$
Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$.

- (a) Find the first 4 partial sums of the series.
- (b) Show that the series converges.
- (c) How large must N be in order to ensure that the N^{th} partial sum to be within 10^{-6} of the sum of the series? (You don't need to compute this partial sum.)
- 7. (a) Use the integral test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n(\ln(n)+4)^{1/2}}$ converges or diverges.
 - (b) Determine whether the series $\sum_{n=1}^{\infty} \frac{3n^2}{2n^5+7}$ converges or diverges.

(c) For which values of k does the series
$$\sum_{n=1}^{\infty} \frac{(k^2+1)^n}{n^3 2^n}$$
 converge?