GAUSSIAN HYPERGEOMETRIC FUNCTIONS AND
TRACES OF HECKE OPERATORS

SHARON FRECHETTE, KEN ONO, AND MATTHEW PAPANIKOLAS

ABSTRACT. We establish a simple inductive formula for the trace Tr}*" (I'o(8), p) of the p-th
Hecke operator on the space S;°"(I'(8)) of newforms of level 8 and weight k in terms of
the values of 3 F»-hypergeometric functions over the finite field F,. Using this formula when
k = 6, we prove a conjecture of Koike relating Trg®" (o (8),p) to the values ¢F;5(1), and

new

4F3(1),. Furthermore, we find new congruences between Try®"(T'o(8),p) and generalized
Apéry numbers.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let p be an odd prime, and let I, denote the finite field with p elements. For any
multiplicative character x on FF, extend x to a character on F, by defining x(0) := 0. For
two characters A and B on F,, we define the normalized Jacobi sum (4) by

(1.1) (g) =B ;4B = % S A B - ),

p €,

where B is the complex conjugate of the character B.
Let n be a positive integer. For characters Ay, Ay,..., A, and By, Bs, ..., B, on F,, Greene
[8] defined the Gaussian hypergeometric series over F, by

Ay, o, A, D Aox) (Aix) [ Anx
m);)'pl x ( X ) (le B X

A[]a
where the sum is taken over all characters x on IF,,. Let ¢ denote the trivial character, and let
¢ denote the quadratic character modulo p (the prime p will always be clear from context).

Specializing to our purposes, define
n+1
p
p p X '

To emphasize the dependence on p, we will occasionally write ,,11F, (), := ny1Fn(2).
One important role of Gaussian hypergeometric functions is that they provide formulas
for the Fourier coefficients of certain modular forms. For example, if A € Q \ {0,1} and p is

(1.3) w1 Fn(x) == n+1Fn<¢’ f, )

y ey E
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a prime of good reduction for the Legendre normal form elliptic curve
EN): vy =az(x—1)(z —N),

then —¢(—1)p 9F1(A), is the p-th Fourier coefficient of the weight 2 newform associated to
E(A) by the Shimura-Taniyama correspondence [11], [16]. Similarly, if

re{-1,4,1,-8 1,64, -},
then, for all but finitely many primes p, it turns out that 3 F5(\), is essentially the p-th Fourier
coefficient of an explicit weight 3 newform with complex multiplication that is associated to
a certain singular K3 surface X, (see Corollary 11.20 of [17]).

In view of these examples, it is natural to seek further formulas for coefficients of modular
forms in terms of Gaussian hypergeometric functions. Here we address the problem of
obtaining a “Gaussian hypergeometric trace formula” for the action of Hecke operators. For
positive integers N and k, let Si(I'o(NN)) denote the space of cusp forms of weight £ on the
congruence subgroup I'o(NV). Let Sp(I'o(/V)) denote the subspace generated by its level
N newforms. Furthermore, let Trg(I'g(/V),p) denote the trace of the Hecke operator T, on
Sk(To(N)), and similarly let Tr;*(T'o(NN), p) denote the trace of T, on S (T'o(NV)).

The Eichler-Selberg trace formula [9] gives a precise description of Trg(T'o(N),p); how-
ever, the formula is quite complicated (for example, see Theorem 2.2). Here we give a simple
formula, inductive in k, for Trp®"(I'y(8), p) in terms of the values 3F5(\). Moreover, Theo-
rem 1.1 below provides a complete description of the traces of Hecke operators T}, for cusp
forms on I'y(8).

To state this result, we first fix notation. Let £ > 2 be even. If p = 1 (mod 4), then we
can uniquely write p = a® +b%, where a and b are positive integers, and where a is odd. Then
we define

l42— gfl 142_ gfl ifp=1 4
(1.4) er(p) = {2( a® —p) + 5(40° — p) if p (mod 4),

] —(-p) if p=3 (mod 4).
Remark. Using Theorem 4.3 (2), it is straightforward to verify that

k k ko
(1.5) ck(p) = o(-DF S+ s B(0))F 1+ 2o - p2 s F(1) 1]

Also, for odd primes p and k > 4, define the function Hy(p) by

p—1
(1.6) Hy(p) =" 230 0(=N)o(1 = N B
A=2
and set Ho(p) := —¢(—1). Let [j] denote the trinomial coefficient defined by the expansion
1.7 l+az+a )" = n}xj
(17) ( r=3% K

Theorem 1.1. If p is an odd prime and k > 2 is even, then

Tri®™ (To(8),p) = — Hi(p) — x(p)
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Remark. As pointed out by the referee, we can repackage Theorem 1.1 in terms of generating
functions. Moreover, if we let ¢;(d) denote the coefficient of 27 in (1 — z)(1 4+ z + 2?)%, then
Theorem 1.1 becomes the more compact

(1.8) en(p) + Hi(p) + Y plej(5 — 1) Trj%,(To(8), p) = 0.

—1

It is also interesting to consider the generating function ), Trpe (Co(8), p)a We can

multiply (1.8) by z51

S @+ Bt Y S - ) T (). plat =0

k>2 even k>2 even j=0

and sum over k; after reindexing the sum of traces we obtain

The first sum is a geometric series. Using properties of the numbers ¢;(d) (see [13, p. 316]),
we then find tha’r

¢(=A) .
Ei(x) + Tebe™ (T ,p)(zB(px))? "' =0,
; b ¢(1 a )\)p 3F2()\ k>2§e':ven
where
SEEAEEE T R e TR T
237(1 + {E) 92
and / /
1/2 1/2 e
By(z) = { 100 pe T @ e ?fp =1 (mod 4),
T ifp=3 (mod 4)
By setting
T
R(z) = ————
(@) = T
we then observe
(1.9) Z Trl (I p)z ko _
k>2 even
-1
14+ px P S(—N\)
— s | Bk(B() + —

Pty o | ¢(1 — A\)p? 35 (N R()

Thus >, Trpy™(I'o(8), p)z2~" is a rational function. By computing the values of 5F,(\)
explicity, we can compute this rational function for specific values of p. For example, we find

k 437
1.10 Trpe™ ( ),3) w2 = — .
(1.10) kg;m T ) 1+ 52 + 1522 + 2727

For larger primes the rational functions become more and more complicated.

Remark. 1t is reasonable to expect that there are generalizations of Theorem 1.1 for other
['o(N), which will be the subject of further study. However, there does not appear to be a
simple way of obtaining a general result in which the choice of parameters in the relevant
Gaussian hypergeometric functions are given a priori as a function of N. With the proper
hypergeometric functions in hand, it seems likely that proofs of such generalizations would
follow from arguments similar to the ones presented here.
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Theorem 1.1 has some immediate consequences. Here we describe several applications. As
usual, let 7)(z) denote Dedekind’s eta-function

o

(1.11) n(z) == ¢ []01—q"),

n=1
where ¢ := €?™*. Let n(2z)'n(42)* = >.°7, a(n)g" be the unique newform in Sy (Ty(8)). If
p is an odd prime, then Theorem 1.1 implies that

T (To(8), p) = a(p) = —Hy(p) — 4(p) = —p — p* i¢(*)‘)¢(1 —A) 3Fy(A).

By Theorem 3.13 of [8] (see also Proposition 4.1 (2)), we have p? Y2520 ¢(—A)p(1—N)3Fa()\) =
p* 4F3(1), and so

(1.12) Ty (To(8),p) = a(p) = —p* +F3(1) — p.

This formula is the conclusion of Theorem 6 of [3], and is equivalent to the assertion that
the Calabi-Yau threefold given by

1 1 1 1
r+—-—+y+—-—+z+-+w+—=0
x Y z w

is modular.

As another application, we recall the following conjecture of Koike [12].
Conjecture (Koike). Let n(z)%n(4z)* + 8n(42)"? = 3277 b(n)q™ be the unique newform in
SEev(To(8)). If p is an odd prime, then

b(p) = —p° 6F5(1) +p' 1 F3(1) + (1 - ¢(*1))p2-

By combining Theorem 1.1 with transformation laws for Gaussian hypergeometric functions,
we obtain the following.
Corollary 1.2. Koike’s Conjecture is true.

In addition to their relationship with coefficients of modular forms, Gaussian hypergeomet-
ric functions have also played important roles in the proofs of “supercongruence” conjectures

of Beukers [5], [6] and Rodriguez-Villegas [19] (see [3], [14], [15]). For primes p > 5, the fol-
lowing congruence due to Mortenson [15] is typical

p—1

- (6n)! —4no—3 2
-2737" = ¢(—1)  (mod p?).
— (n!)(2n)!(3n)!
Other works by Ahlgren [1], Koike [11], and the second author [16] provide further examples
of p-adic results for combinatorial expressions whose proofs require these functions.
As an additional application, we consider congruences of the type originally considered by
Beukers [5], [6]. If n is a positive integer, then define the Apéry number A(n) by

(1.13) An) = z”% (leg)Q (7]7)2

These numbers played an important role in Apéry’s celebrated proof of the irrationality of
((3). In 1987, Beukers related these numbers to modular forms [6]; he proved that if p is an
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odd prime, then

(1.14) TYe (T (8), p) = A (%) (mod p).

He went on to conjecture that
new _ p— 1 2
Try*™ (To(8),p) = A 5 (mod p?).

Using (1.12), the Gross-Koblitz formula for the p-adic Gamma-function, some p-adic analysis,
and the WZ method, Ahlgren and the second author [3] successfully proved this conjecture.

Using Theorem 1.1, it is now possible to obtain generalizations of such congruences. For
brevity, we shall be content with congruences modulo primes p. To state these results, for
integers m, ¢, A, and n, define the generalized Apéry number A(m, ¢, \;n) by

n A\ m l
n—+7 n ;
1.15 A(m, 0, \;n) = . N
(1.15) it = 3 (") (1)
J=0
Of course, we have that A(n) = A(2,2,1;n).

Theorem 1.3. Suppose that k > 4 is even, and that p is an odd prime.

(1) If £ =2 (mod p — 1), then

T (s = 4 (250)  (nod )

(2) If £ =3 (mod p— 1), then
-1
Tr™(To(8),p) = A <2,4, 1; pT) (mod p).

In general, we have the following.

Theorem 1.4. If k > 4 is even and p is an odd prime, then

[MES]

Trp™(Ty(8),p) = m A (1’2’ . E) E_q

2 2
_Zqﬁ(—)\)qﬁ(l—)\)%*lfl (1,2,)\;p21>2 (mod p).
A=2

Remark. Mortenson has kindly pointed out that, as an immediate corollary to Theorem 1.3,
one has the following. As in the statement of Koike’s conjecture, we let > b(n)g" be the
Fourier expansion of the unique newform in Sg(I'¢(8)). Then for all odd primes p,

o) =3 (2 (mod )

n=0

where as usual, (a), :==a(a+1)---(a+n—1) for n > 0 and (a); = 1. In fact, Mortenson
points out that this congruence appears to hold modulo p®.
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In Section 2 we recall a formulation of the Eichler-Selberg trace formula for the groups
I'p(4) and T'¢(8), and we state a formula, which will be proved in Section 7, for the group
I'o(2) (see Theorem 2.3). In Section 3 we then interpret these trace formulas in terms of
the numbers of F,-points on certain classes of varieties, and in Section 4 we recall essential
facts regarding Gaussian hypergeometric functions. Assuming the truth of Theorem 2.3, in
Section 5 we combine all of these results to prove Theorem 1.1 and Corollary 1.2. In Section
6 we prove Theorems 1.3 and 1.4. In Section 7, we conclude with a proof of Theorem 2.3.

2. TRACE FORMULAS

Fix a prime p > 3, and let £ > 2 be even. Using the version of the Eichler-Selberg
trace formula due to Hijikata [9, Thm. 2.2], we will prove formulas for Try(I'y(N), p) when
N = 2, 4, and 8. In the end, we consider simplifications of Hijikata’s formula that relate
Trk(Fg(N) p) to the number of points on certain varieties over F,.

We begin by fixing notation. We will make special use of two families of elliptic curves:

(2.1) 2B sy =a(z — 1) (x — N),
(2.2) 3By (A) sy = (x — 1) (2 + ).
For a prime p > 3 and A € F,, the traces of Frobenius 9 A, (p, A) and 3A4,(p, A) are
(2.3) 2 A1(p,A) =p+1—|LE(N)(F,)|, A#0,1,
(2.4) 3Ao(p,A) =p+1 = E(A)(F,)[, A#0,-1.
We will rewrite the relevant trace formulas using these quantities.
Let
g1 gkl
(2.5) Fi(z,y) == E——

The relations © + y = s and xy = p uniquely define a polynomial Gi(s,p) = Fi(x,y).
Moreover, a straightforward induction gives

(2.6) Gkgdnzzijc—nj(k2j>;ﬂﬁ%?

Jj=0 J

The polynomial Gy (s, p), evaluated at certain values of s, is a key part of Hijikata’s formula
for Tr,(Co(NV), p) (e.g. see Theorem 2.2). An important observation is that among the various
pieces of Hijikata’s formula, for fixed level N, the only part that varies with k is G(s, p).
Moreover, even the points s at which we evaluate G(s,p) depend only on N and not on k.
The following proposition appears in [2, Thms. 1-2], in the case of level 4, weight 6, and
n [4, Thms. 1 2], in the case of level 8 weight 4. In fact, the formulas below hold for all
even k > 4 with exactly the same proofs.
Proposition 2.1 ((1) Ahlgren [2]; (2) Ahlgren-Ono [4]). If p is an odd prime, and k > 4 is
even, then the following are true

(2) Tr(To(8) :—4—§:Gk A%, p).
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We set more notation. For d < 0 and d = 0, 1 (mod 4), let O(d) be the order of
discriminant d in the imaginary quadratic field (Q)( d). Let h(O(d)) = h(d) be the class
number of O(d), and w(O(d)) = w(d) = 1|O(d)*|. Finally, let h*(d) = h(d)/w(d). Also,
recall the definition of the Kronecker symbol for d,

0 ifd=0 (mod4),

d
(2.7) <§> =41 ifd=1 (mod 8),
~1 ifd=5 (mod8).

Theorem 2.2 below is Hijikata’s version of the Eichler-Selberg trace formula at level 2, whose
derivation from the general formula is a straightforward calculation which we omit.

Theorem 2.2 (Hijikata [9, Thm. 2.2]). Let p be an odd prime, and let k > 2 be even.

Try(To(2).p) = —2 = E@)(—p)2 ' = Y Gils,p) Y1 <82 ';24]9) c(s, f),

0<s<2y/p flt

S even

where

sh*(—4p) ifp=1 (mod4),
£(p) = q3h*(=p) ifp=3 (mod8),
W) fuer (meds)

and where if s> — 4p = t*D, with D the discriminant of Q(v/D), and if f | t,

c(s, f) = 1+ (%) if ordy (f) = orda (1),
R ¢ if ordy(f) < ordy(t).

As before, whenever p =1 (mod 4), we let a, b > 0, a odd, be defined by the expression
p = a® + b>. We then define

(2.8) 5.(0) _{(Gk@ p) +1Gu(2b,p) ifp=1 (mod 4).

! if p=3 (mod 4).
The following theorem provides the level 2 version of Proposition 2.1.
Theorem 2.3. For a prime p > 3 and k > 4 even,
p—2
Try(To(2),p) = =2 = 6k(p) — > Gr(342(p, \). p).

A=1

We postpone the proof of Theorem 2.3, which is self-contained, until Section 7.
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3. COUNTING POINTS ON VARIETIES OVER F,

For k > 4 even, define three sequences of varieties Uy, V}, and W}, which are hypersurfaces
in affine k-space, by
k-2
(3.1) Up: y* =[] — V(@i +N),
i=1
k—2

(3.2) Vi: y? = Hmi(mi —1)(x; — ),

(3.3) Wiy —Hx7 L4 _)‘2)

One sees readily that Uy, Vi, and Wy, are Constructed from families of elliptic curves with sub-
groups of the form Z /27, Z/2Z. & Z/2Z, and Z /AZ & 7] 27 respectively. Geometrically, these
varieties are essentially of Kuga-Sato type: for example, there is an easily defined surjective
map onto Vi from the (k — 2)-th power of the Legendre family, fibered over the A-line. Thus
as in Birch [7] and Thara [10], for a prime p > 3 it is reasonable to expect that the numbers of
points in Ug(F, ), Vk(F,), and Wy (F,) are directly related to Tr,(Io(2), p), Trx(To(4),p), and
Tr(Co(8), p) respectively. We make these assertions exact in Propositions 3.1, 3.2, and 3.3.

We now consider formulas for |Ug(F, )|, |Vi(F,)|, and |[Wj(F,)| for primes p > 3. An exact
formula for |W,(F,)| was established by Ahlgren and the second author [4, Thm. 1], and
one for |V5(F,)| was determined by Ahlgren [2, Thm. 1]. Propositions 3.1 3.3 extend these
results to each of Uy(F,), Vi(F,), Wi (F,) for arbitrary even k > 4.

Let C(n) = 25 (%) be the nth Catalan number, and let dx(p) be as in (2.8).

Proposition 3.1. For a prime p > 3 and k > 4 even,

U(F,)| = p" ' +24C (5 —1)p> '(p+1)
k_
2 k—2 k-2 -
Z (( ) — (j B 1)) P (Trg—25(To(2), p) + dk—2j(p) + 2).
=0
Remark. It is worth pointing out that the coefficients (’“ 2) — (';:f) are precisely the ones

k—2

needed to express 2"~ in terms of Chebyshev polynomials of the second kind.

Proof. First of all, we have

UE)l = Y {1+¢<H(ﬂci—1)($?+A)>}

ATy T —2€ERp i=1
p—1 (p-1 k=2
(3.4) =p" {Zqﬁ((m 1)(m2+)\))}
A=0 \z=0
p—2
=P 24 ) s A(p, )
A=1
We will rewrite this expression in terms of the polynomials Gy_2;(342(p, A),p) for 0 < j <
E _1 using a combinatorial argument involving inverse relations (see Riordan [18, Chs. 2 3]).
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One such inverse pair [18, Table 2.3] is the following:

69 e (() () e (7 Yo

=0

We may rearrange (2.6) to give

Setting n = k — 2, and using a,, = (ﬁ)" and b, = G";z_%(s”’) in (3.5), we obtain

571
k—2 k—2 ;
B () (D)oo
=0 ' '

Substituting s = 3A45(p, A), the formula in (3.4) therefore becomes
ko
vy =2 S ((750) - (51)) ZGk 3 Aa(p ). )
k—2 k—2
s () (E2) e

2 2

L

\ k—2 k—2 :

j=

where for the second equality we apply Theorem 2.3, when j < £ — 2, and use that Gy = 1,
when j = 5 — 1. Using standard facts about binomial coefﬁments, we see that

()G )-u

Finally, we adjust the sum to incorporate a j = g — 1 term, which equals —3C' (% — 1) pg”,
since Try(I'g(2), p) = 0 and dy(p) = 1, and obtain the desired equality. O

The derivations of the formulas for |V (F,)| and |Wy(F,)| in the following propositions are
essentially the same as the proof of Proposition 3.1. The primary differences are that for
|Vi(F,)| we use Proposition 2.1 (1) instead of Theorem 2.3, and that for |W(F,)| we use
Proposition 2.1 (2). We omit the remaining details.

Proposition 3.2. For a prime p > 3 and k > 4 even,

Vi) =p* ' +24+C (5 1) p> ' (p+1)

kg

;;((k]2> (??))pWTuwﬂhM%p)+3%
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Proposition 3.3. For a prime p > 3 and k > 4 even,

Wi(F,)| =p" " +3+C (L - 1)p§”(p+ 1)

= ((k j 2) N (l; - ?)) P (Try—5i(To(8).p) +4).

Combining the numbers of [F,-points on the varieties U, Vj, and W}, yields an amusing
and useful relationship among the traces Trp®" (I'9(8), p). Specifically, we put

(3.6) Ni(p) = —|U ()| + 2|Vi(Fy )| — [Wi ()],

MW

and obtain the following theorem as an immediate consequence of Propositions 3.1-3.3.

Theorem 3.4. For a prime p > 3 and k > 4 even,
k— 2 k—2 o new
=1+ Z (( ) - (] _ 1)) P’ (Trk—Qj(FO(g)ap) + (skaj(p)) :

4. (GAUSSIAN HYPERGEOMETRIC FUNCTIONS

Gaussian hypergeometric functions over finite fields were defined by Greene [8] as character
sum analogues of the classical hypergeometric functions. The classical functions satisfy many
interesting properties, such as transformation and summation formulas, and Greene showed
that their finite field analogues enjoyed many similar properties. Koike [11] and the second
author [16] further explored the arithmetic properties of Gaussian hypergeometric functions,
including the number-theoretic significance of certain special values of these functions. We
continue this study below in Section 5, proving Theorem 1.1 and Koike’s conjecture.

In this section, we give several properties of Gaussian hypergeometric functions which
we shall require. Using properties of characters and of Jacobi sums, Greene proved an
alternate formula for the o F} function. Also, Greene [8, Thm. 3.13] showed that a Gaussian
hypergeometric function can be expressed as a sum of Gaussian hypergeometric functions
of lower degree. Specializing these results to the case of ,.1F,()\) as defined above, we have
the following proposition.

Proposition 4.1 (Greene [8]). If n > 1 and X\ € F,, then the following hold.

) 2 () = LS 01600 - ot - o).
@ werFa) = 2T S 60061 1) Fi(2h).

One of the transformation formulas proved by Greene [8 Thm. 4.2] involves the relation-
ship between a Gaussian hypergeometric series evaluated at A and at 1/\. We will have need
of two special cases of this theorem, as given in the following proposition.

Proposition 4.2 (Greene [8]). If A € F, is nonzero, then

(1) 2F1(X) = 6(N) 2F1(5)-
(2) 3F2(N) = ¢(—A) sFa(5).
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We will also have need of the special values o F; (—1) and 3F5(1). Both parts of the following
theorem appear in [16]; part (1) is a special case of Theorem 2, and it is noted that part (2)
is a special case of a theorem of Evans.

Theorem 4.3 (Ono [16]). Let p be an odd prime, and if p =1 (mod 4), then write p = a*+b?
where a and b are positive integers, and where a is odd. The following hold.

0 ifp=3 (mod 4),
(1) oF1(—1) = % ifp=1 (mod 4).
0 if p=3 (mod 4),
(2) 3F5(1) = M

5 if p=1 (mod 4).
p

The following theorem relates the values of 5 F (\) and 3F5(A) to the elliptic curves o E ()
and 3FE5(\) as defined in Section 2. We note that part (2) is given in [3], as a slight refor-
mulation of [16, Thm. 5].

Theorem 4.4 ((1) Koike [11]; (2) Ono [16]). Let p be an odd prime, and let 2 A;(p, A) and
3Aa(p, A) be as given in (2.3) and (2.4) respectively. Then the following are true.

(1) >R () = 2@ Gy

D
1 =) (342(p, \)? —
A P?

As a consequence, with certain restrictions on A, the values o F (A) and 3F5 () are explicitly

related to each other.

Corollary 4.5. If p is an odd prime, then the following hold.
—4)\
(1) p2 2F1()\)2 = p2 3F (W) +p if A#0,1,-1
(2) p*oF1(=1)? = p* 3 Fo(1) + (1 + ¢(—1))p.
Proof. By Theorem 4.4 (1), if A # 0, 1, then p23F1()\)2 = 9A;(p,\)% If A # —1, then by the
change of coordinates z = fz' —  and y = [2y', oF;(\) is isomorphic to the f-quadratic

twist of 35 (t), where 5 = — 2 and ¢ = —8;3; (See also Lemma 7.1.) It follows that

LEV(A) ()| =p+ 1= ¢(8) 34a(p, 1),
hence 3A;(p,\)? = 3A45(p,t)* when X\ # 0,1,—1. Now applying Theorem 4.4 (2) gives
p?oF (M) = p? ﬂ*}(ﬁ) +p, if A#£0,1, -1, since ¢(—t) =1 and 1 + % = ﬁ.
In the case A = —1, if p =1 (mod 4) we write p = a® + b with a@ odd. By Theorem 4.3
(1), we have

0 if p=3 (mod 4),
p2 QFI(_I)Q — ) ‘ p_ ( )
40 ifp=1 (mod 4).

Define g(A) := p? 3F5(5—2%) + p. By Theorem 4.3 (2), we have

(A1)
o(—1) = D if p=3 (mod 4),
' 40> —p ifp=1 (mod 4),

and thus p? 2 F1(—1)% = g(=1) + ¢(=1)p = p* 3F5(1) + (1 + ¢(—1))p. O
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5. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2

Here we give the proofs of Theorem 1.1 and Corollary 1.2, the latter of which establishes
the truth of Koike’s conjecture. We require the formula for |Ug(F,)| given in (3.4), and the
analogous facts about |Vi(F,)|, and |Wy(F,)| as given below. Their derivations are similar
to that of (3.4).

p—1

(5.1) Ve(B) =" " +24+) 2 Ai(p, N2

p—1
We(E,)| = p " 43+ 354y (p, A2

A=2

=p" 34D (14 (V) 241 (p, V)

A=2

Proof of Theorem 1.1. We first note that the case k = 2 is trivial, since Try*"(I';(8),p) = 0
and Hs(p) = —e9(p). Now fix k£ > 4. We require the following expression for Ni(p) in terms
of the functions H(p), as defined in (3.6) and (1.6) respectively.

Proposition 5.1. Let p be an odd prime, and let k > 4 be even. Then

(53) M)+ 1= (57 1) s

Proof. By combining (3.4) (with A — /\—i]), (5.1), and (5.2), and then applying Theorem 4.4,
we see that

Ne(p)+1=— Zs’AQ <p, ﬁ) : + Z(l — o(N) 2441 (p, )\)]%2

A=2

[MES]

-1

N——
L
+

:—Z<p¢ (1—=X)sEy(\) +p (1= 0(\) (p* 2F1(N)?)°

Using Corollary 4.5 on the second sum, we express Ni(p) + 1 completely in terms of 3F,-
k_
functions. Then since (1 — ¢(—1))(p* 3F(1) + (1 + ¢(—1))p)® =0, we have

Nilp) +1= =" (P61 = ) 3F2(\) +p)

2

=
—
[MES]
|
—

>
U
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To simplify, note that ﬁ = X if and only if y = % VI_A " Thus in the second sum, a

term containing 3F,(\) appears with multiplicity 1 + ¢(1 — \). Therefore,

p—1

Nip)+1= =3 (161 = 2) sB() +p)

A=2

[NES

—1

[ME

—1

+Zlf “N)(+ (1 =) (P sFa() + p)

Expanding the (5 — 1) th powers using the binomial formula, we then see that (5.3) holds
by applying the following lemma. |

Lemma 5.2. If p is an odd prime, then for any integer n > 0 the following are true.
p—1

(1= 6(=2) sF (V) =0.

—~
—_
~—

(2) o1 = N)(1—d(-A)) sF(N)" = 0.

Proof. We prove only part (1). (The proof of part (2) is analogous.) We have

p—1 —1

p—1
2n+1 } : 2n+1 2 : 1 2n+1
¢ 3F2 X )

A=2

A=2 A=

by splitting the sum and taking A — % in the second piece. Then using Proposition 4.2 (2)
on the second piece, we obtain

=
—
S
|
—
—

(1= d(=X) sF(A)" =) sF(N)™ ! — 3 (=N B (V) = 0.

2 2

>
Il

2

>
U
>
U

]

Next we invert the equation from Proposition 5.1, obtaining an expression for Hg(p) in
terms of Ni(p) (hence in terms of the trace on spaces of newforms). Recall the definition of

5e(p) in (2.8), and let v4(p) := —(—p)2 " (d(—1) — 1).
Proposition 5.3. Let p be an odd prime, and let k > 2 be even. Then

k
L

s mw=we X ([ 270 | [ 1) ]) o (O +aat).

=0

Proof. Defining Ny(p) := ¢(—1) — 1 means that (5.3) holds for all £ > 2. We make use of
another inverse pair [18, Table 2.1] given by

(5.5) a, = Z_; (C‘) boj, and b, = zn:(—nﬂ' (7) ;.

J=0
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Dividing through by p?, (5.3) becomes

[NES

—1

L(p)%“ -3 (%—1> Hi24(p)

ok = 7 p%fj .
Setting n = £ — 1, and using a,, = —% and b, = HQp";fl(p) in (5.5), we obtain
pi (k1 4
o) ==X (7)) () 1),
Jj=0

Therefore by Theorem 3.4 and our definition of Ny(p), we obtain

oo ()5 (2 ()

x P (Trp%% 45 (To(8), p) + Ok2(j+1) () }’

[MES]

oo o =so0 S ()((7) (70)
. Xp”(TrE‘i“ée(Fo(S),p)+5k,u(p)),

We may adjust the sum on ¢ to range over 0 < /7 < % — 1, since the binomial coefficients
dependent on ¢ will all be zero if £ < j. We then obtain (5.4) by applying the fact that

(5.7) [ " ] - jio(l)j <]> (n% . 2‘7j>

The proof of Theorem 1.1 is then complete by applying the following lemma. O

Lemma 5.4. Let p be an odd prime, and k a positive even integer. Then

= S ([ [

Proof. If p=3 (mod 4), the proof reduces to showing that

k

(PP R

This follows from the easily proven fact that for any n > 0,

S (L] Lo =Sl

£=0 =0
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If p=1 (mod 4), then we must show that

—_

59 S (o2 ] |14 )0 Gouton) + Guutnm)

=0

[MES]

o~

= (4a® —p)* 7+ (462 — p)* L.
Using the definition of Gy _94(s,p), we see that the left-hand side of (5.8) equals

[MES]
=
[MES]

5—f—1

x k—2—1-20
1) ite
> (P

0
g —1 % —1 k—2-2(0+i) p)F—2-2(¢+0)
“NlEZe—1] | E—vy ((2a) +(20) ).
0

Setting 7 = ¢ 4 ¢, and noting that (1%?:54) = 0 if £ > j, this expression becomes

o~

=0

semfgon( 1) (] ()

% ((2a)k7272j + (Qb)k7272j) ]

Expanding the right-hand-side of (5.8) using the binomial theorem, and comparing it with
the above expression, we see that the proof of (5.8) reduces to showing the following equality
for every j with 0 < 5 < % — 1.

k_

(5.9 (%jl)—:z_ém(’f?_z‘)({f_u}[%—H)'

We prove (5.9) using a third inverse relation. In [18, Table 2.2] (modulo notation), we have

the pair
J
o p+ql — 71 p+ql — 71
‘Z(< ) ()
(5.10) -
(p+qi—1
=S (U e

where p and ¢ are integer parameters. Using (5.7), we may write

L e (OG- ()

Choosing p = 2n and ¢ = —1, and noting that (2?:,?1) =0= (fﬁﬁf) whenever ¢ > j, we

see that this agrees with the first equation in the pair (5.10), with a; = [»,";] — [»-j+1] and

b; = (—=1) (). Inverting the pair then gives

(-1 (7;) ) ;(WH <2njj€ g) ([ 0 } : [ i D |
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Setting n = £ — 1 and simplifying then gives (5.9). O
We now establish the truth of Koike’s Conjecture, using the £ = 6 case of Theorem 1.1.

Proof of Corollary 1.2. Setting k = 6 in Theorem 1.1 gives
Trg™(T'o(8),p) = —Hs(p )*56( ) — p Ty (To(8), p)

=D Z¢ ) 3F2(A)? +p" 4 F3(1) + (1 — ¢(—1))p?,

where in the second equality, we apply (1.5) and (1.12). The proof therefore reduces to
establishing the following formula:

p—1

(5-11) p5 GF") P4 ¢ “%FQ
1

A=
Applying Proposition 4.1 (2) twice to ¢F5(1) gives

p—1 p—1

P eF5(1) = 5" S0 3 6()6(1 — 2)6(No(1 - A) 1 F(aN).

=1 A=1

Applying the change of variables A r—) , followed by x —— 2\ then yields

P’ 6F5(1) =p Z¢ ) 4 F3(A Z¢ o1 —x)p(1 —xA)

=p Z¢ 4F3 QF]()\)a

where the second equality follows by Proposition 4.1 (1). Now applying Proposition 4.1 (2)
to 4F3(A), we see that

p—1 p—1

D GF‘S( Z Z ¢ )\ )\2 1 - )\2) 3F2()\1)\2) 2F1()\1)-

A1=1 Aa=1

Making the change of variables A\;A\s — A and using the inversion for QFl(/\ll) given in
Proposition 4.2 (1), we obtain

p—1
P’ 6F5(1) = ¢(—=1)p Z 1210\ Z P(A - ) 2F1( )
A=1 Ar=1
Now putting A\ — /\ , we see that
p—1 p—1
P’ 6F5(1) = ¢(—1)p3 Z 3Fa (M) Z P(AM)D(1 — A1) 2 F1 (A1)
A=1 A1=1

By Proposition 4.1, the inner sum equals ¢(—1)p 3F2(]X)' Finally, using the inversion for
3F2( ) given in Proposition 4.2, we obtain (5.11), thus completing the proof. 0
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new

6. CONGRUENCES FOR Tr;"(T'y(8), p) MODULO p

Here we prove Theorems 1.3 and 1.4 using Theorem 1.1, as well as known facts concerning
the values of Gaussian hypergeometric functions modulo p. We state some facts that we
require (for example, see [11] or [16, Sect. 5]).

Proposition 6.1. Suppose that p is an odd prime.
(1) F1<A<p—1, then

-1
p’ sFh(A) = A (L 2, A pT> (mod p).
(2) We have

—1
p5 GE‘S(I) =—-A (2,4, 1, pT) (mOd p)

Proof of Theorem 1.3. By Theorem 1.1 and the definition of Hy(p) and e4(p), if & = 2
(mod p — 1), then
Trp™(Lo(8),p) = —Hi(p) — ex(p) (mod p)

= —Hy(p) —c4(p) (mod p)

= Try;*"(T'0(8), p).
Theorem 1.3 (1) follows from (1.14).

Similarly, if g =3 (mod p — 1), then
Ty (To(8), p) = —Hi(p) = ex(p) = —Hs(p) — e6(p) (mod p)
= Trg®™([(8),p) (mod p).
By Corollary 1.2, it then follows that
Try®™ (0o (8),p) = —p° 6F5(1)  (mod p).

Theorem 1.3 (2) now follows immediately from Proposition 6.1 (2). O

Proof of Theorem 1.4. By Theorem 1.1, it follows that

Try™(Co(8),p) = —Hi(p) —ek(p)  (mod p).

In view of Proposition 6.1 (1), it suffices to show that

(6.1) er(p) = % - (p? 3F2(1))§71 (mod p).
Using (1.5), it follows that
21(p) = 360 DF (14 (DI (P RW) T (mod p).

If p=1 (mod 4), this proves (6.1). If p = 3 (mod 4), then p? 3F5(1) = 0 by Theorem 4.3
(2). Therefore, (6.1) is also true in these cases. This completes the proof. O



14 QAARUVUIN PNl 15, ALIN UINU, AIND MAL1L 10OV FPAPAINIRKNULADS

7. THE FAMILY 3FE5(\) AND THE LEVEL 2 TRACE FORMULA

We devote this section to the proof of Theorem 2.3. The proof follows similar lines to
the ones in [2], [4], of the formulas in Proposition 2.1. However, there are several differences
which require explanation. Before working out the proof, we go over some facts and lemmas
about the family of elliptic curves 3Eo(\) : y? = (x — 1)(2? + A).

Let K be any field of characteristic # 2, and consider the family 3E5(\) to be defined over
K. Tts j-invariant is
, 64(3) — 1)3
.7(3E2()‘)) - )\(}\ + 1)2 :

Thus if j # 0 or 1728, then there are precisely three values of A € K so that j(3F3(\)) = j.
Moreover, only j(3F(3)) = 0, and only j(3Fa(—3)) = j(3F2(c0)) = 1728 (so if char(K) = 3,
7(3E3(N)) is never 0 (= 1728) for A € K).

If £/K is an elliptic curve, a K-quadratic twist of F is a quadratic twist of F by some
DeK.

Lemma 7.1. Let E/K be an elliptic curve with a K -rational point of order 2 in Weierstrass
form E : y? = a® + 282 + vy, with 3, v € K and 8 # 0. Then there is a A € K so that E
is isomorphic over K to a K-quadratic twist of 3FE5(\).

Proof. The change of coordinates z = ' — 3, y = B3y gives the curve 3F5()), where

A= 7;52. Thus E is isomorphic over K to the f-quadratic twist of 3FE5(A). O

Remark. Lemma 7.1 covers all isomorphism classes of elliptic curves E/K, except when
§(E) = 1728,

Lemma 7.2. Suppose that char(K) # 3. Let \y € K\ {0, 1,1} and A\, € K\ {0, -1}. If
3E2()\]) = 3E2()\2) over F, then )\2 S K(\/ *)\])

Proof. Any isomorphism 3E5(A\y) = 3F5()\;) over K is given by a change of Weierstrass

—14£3v/ -\t

o Then brute force computation

coordinates, z; = u?zy + 7, y1 = uly,. Let 6T =
yields the following possibilities:

)\2:)\], UZZIZ]_, T:O,

—5 43\ — 85T + 24\, 67
Ay = — oM + : u=+V20*, r:%—

5i
3(1+9\) ’ '

Wl

In the second line, there are four possibilities: two choices of 6 and two possible signs on w.
In any case, the lemma follows immediately. ]

We also appeal to the following theorem of Schoof, specialized to our purposes. For a
prime p, let Z, denote the set of all isomorphism classes of elliptic curves over F,,, and define

(7.1) I(s,p):={C €T, |VE€C,|EF,)| =p+1+s},
(7.2) L(s,p):={C € I(s,p) |YE €C,E(F,)[2] =2 Z/2Z& Z/2Z}.

If E/F, is an elliptic curve with |E(F,)| = p+1+s, then we write [E] for its class in (s, p).
Also, if C € Z,,, we let C'™ € T, be the class of quadratic twists of curves in C by non-squares
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in F,. If the j-invariant of curves in a class C is not 1728, then C # C™. Also, for d the
discriminant of an order O in an imaginary quadratic field, define the sum of class numbers

(7.3) H(d)= > ho).

Theorem 7.3 (Schoof [20, (4.5) (4.9)]). If p is an odd prime, and s is an even integer with
0<s<2,p, then

_[2H( —ap) if s #0,
I(s,p)| = {H(_4p) o

If additionally s =p+ 1 (mod 4), then
2H (212)  if s 40,
L(s.p) = 20T a7
h(—p) if s =0.

We will need the following lemma on relations between class numbers.

Lemma 7.4 ([9, Lem. 2.3]). Let O be an order of discriminant d in an imaginary quadratic
field, and let O" C O be an order with [O : O'] = f. Then

oo 1 (- (4)})

£ prime

Finally, in the proof of Theorem 2.3 we will make frequent use of the following easily
proven lemma.

Lemma 7.5. Let D be a fundamental discriminant of an imaginary quadratic field. If p is
an odd prime and s*> — 4p = t>D, then the following hold.

(1) If s=p+1 (mod 4), then t is even.
(2) If s=p—1 (mod 4), then t is odd and D =0 (mod 4).

Proof of Theorem 2.5. Fix s even with 0 < s < 2,/p, and write s> — 4p = t*D as in the
statement of Theorem 2.2. Define

(7.4) L(s,p) :={A |1 < A<p—2, 345(p,\) = £s}.

We handle the case p = 3 first. The only values of s to consider are 0 and 2, and one simply
checks that

L(0,3)] =0 and |L(2,3)|=1.

It is then a routine matter to check that the p = 3 case follows directly from Theorem 2.2.
For the remainder of the proof, we will assume that p > 5.
The elements of I(s,p) can be paired up by quadratic twists so that

I(s,p) ={Ci,...,Cph,C}",....C;"}.
We define
(7.5) I(s,p) == {C,UuCk™, ... .Cc,uCM™},
(7.6) L(s,p) :={CUC™|C € L(s,p)}.
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Ultimately we want to relate |L(s, p)|, |I(s,p), and |I5(s,p)|. To do this we define

F:L(Sap) — I(Sap)a

(7.7) A — [3E2(A\)] U [3Ea(N)]™

and follow with some analysis of its properties.
The case to consider now is when s # 0. Under this assumption we will show that

(7.8) (s.0) = 4 ( ) (s, f) — {% if —5 € L(s.p),

0 otherwise.
flt

When s # 0, we have —¢ € L(s,p) if and only if p =1 (mod 4) with s = 2a or s = 2b. We
can therefore use (7.8) to match up terms in Theorem 2.2 with those in the statement of

Theorem 2.3:
Y o)

> Gils,p Zh(
— 1 1 e
_G 2 , + _G 2b7 ) lf = 1 Od 4 7
=D GilsA:(p, ,p)+{8 k(2a,p) + 5Gi(2b,p), i p (mod 4)

§ even

0<s<2,/p flt
if p=3 (mod 4).
The main argument behind (7.8) is contained in the case where s # 0 and also l, —3
L(s,p). We will work out this case first and then consider the remaining details. For s even
with 0 < s < 2,/p, we will show that

(7.9) |L(s,p)| = [1(s,p)| + 2/ Ls(s,p)].

Now by Lemma 7.1, the function F is surjective. Since %, —l ¢ L(s,p), it follows from

Lemma 7.2 that F'is 3-to-1 at A € L(s,p) if and only if /—\ € IF , which holds if and only
if 3E5(N)(F,)[2] = Z/2Z & Z/2Z. For all other values of A\, F is 1-to-1. Thus (7.9) holds.

Moreover, if s = p — 1 (mod 4), then |E(s,p)\ = 0 and also, by Lemma 7.5, t is odd and
D =0 (mod 4). Thus

Where the second equality follows from Theorem 7.3 and the third from the assumption that
5, —s ¢ L(s,p) (so h( S2) = h* (g 74”) for all f in consideration). The result then agrees

Wl’rh (7.8). On the o’rher hand, if s = p+ 1 (mod 4), then ¢ is even by Lemma 7.5, and so
by Theorem 7.3,

(7.10) L) = [TCs.p)| = A= 4p) = S0 (22

flt

(711) |L(s.p)| = [1(s.p)| + 2 (s, p)| = H(s* — 4p) + 2H ( i 4p>

“Sn (R e ().

flt
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where the last equality follows because 3, —¢ ¢ L(s,p). From Lemma 7.4 it follows that

(712) |L(s.p) = 3 ( f24p> LY (52 f24p> + (lg) % D onw (82 f24p> .

flt flg

Now applying Lemma 7.4 again, we find

(113)  |L(s,p)| = ( ( )) S <s ;2473) 2y <‘°’;—24p>

flt flL
fth ’

which verifies (7.8).

The next case to consider is 3 € L(s,p), where still s # 0. Then p = 1 (mod 3) and
D = —3, from which it follows that ¢ is even. Again by Lemma 7.1, F' is surjective. Also
—3 € lF‘XQ, and so [3F(35)] U [3Fa(3)]™ € Ix(s,p). Since F is only 1-to-1 at A = 5 and not
3- to 1, we find

(7.14) L(s,p)| = [I(s,p)| + 2|T5(5,p)| - 2.
The argument then follows the same lines as in (7.11)—(7.13), except that when f = t, we

have h(SQJZfP) = h(—3) = 1 = 3h*(—3). Thus from this fact and from (7.14) we modify
(7.11) slightly:

s =2 [ () B ()

flt

Then (7.8) follows precisely as in (7.12) and (7.13).

Now suppose —é € L(s,p), where still s # 0. Then p =1 (mod 4) and D = —4. There
are 4 isomorphism classes of curves over F, with j-invariant 1728 [21, Prop. X.5.4], each
quartic twists of each other. As elsewhere, write p = a? + b%, with a, b > 0 and a odd, and
then it follows that s = 2a or s = 2b. We have

(7.15) BB~ D UBE(- D™ € 1(20.p).

so if s = 2a the map F : L(2a,p) — ]~(2a,p) is surjective but fails to be 3-to-1 at —%.
Therefore,

L(2a,p)| = [1(2a,p)| + 2| 15(2a, p)| — 2.
Since 2b #Z p+1 (mod 4), we have |I5(2b,p)| = 0. Furthermore by (7.15), F' misses the class
pair of j-invariant 1728 in 1(2b, p), and so

Since h(—4) =1 = 2h*(—4), we find the present versions of (7.10) and (7.11) to be

IL(2a,p)| = —2 + [Zh (S 4p>] +1q [2%}1* (824f24p>] +1,

(27

IL(2b,p)| = —1 + [Z h* <
The rest of (7.8) follows exactly as in (7.12) and (7.13), which concludes the case s # 0.

fle
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Finally we suppose s = 0. We observe that G(0,p) = (—p)g’l, so to conclude the proof
of the theorem, we need to verify that

0 ifp=1 (mod4),

(7.16) IL(O»P)|—f(p){1 ifp=3 (mod 4).

The main reason for the discrepancy modulo 4 is that —% € L(0,p) if and only if p = 3
(mod 4). As before we consider the various cases.
If p=1 (mod 4), then —F ¢ L(0,p), so by Lemma 7.1, F' is surjective. Since 41 (p + 1),

it follows from Lemma 7.2 that F'is 1-to-1,

|1(0,p)| = [1(0,p)| = $H(—4p) = $h*(—4p) = &(p),
where the second equality follows from Theorem 7.3.

If p = 3 (mod 4), we note that —5 € L(0,p). Also

(mod 3), in which case —3 ¢ Fy?, and so regardless [3E(5)] ¢ 12(0,p). Thus the function
F is surjective (Lemma 7.1) but fails to be 3-to-1 at —%, so as in previous cases,
|L(0,p)] = |1(0,p)| + 2|1(0, p) | — 2.
However, now there is a slight difference from the other cases. We note that in fact
[3E2(—3)] = [3E2(—3)]™ since p = 3 (mod 4) [21, Prop. X.5.4]. Otherwise, for C € 1(0,p)
with C # [3E,(—3)], we have C # C"™. For this reason,
|1(0.p) = 51120, p)| + 5.

Then combining these equations with Theorem 7.3 and Lemma 7.4,

|L(0,p)| = |1(0, p)| + 2| L>(0, p)| — 2

5 € L(0,p) if and only if p = 2

= 3H(~4p) +h(-p) — 1
= $h*(—4p) + 30" (—p) + h*(-p) — 1
3 : _
T 2 ifp=3 (mod 8) e
Qh‘(p)*{% ifp=7 (modsg) [ (P
which agrees with (7.16). O
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