
NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONSBEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINAbstra
t. Let � be a 
uspidal automorphi
 representation of GL(2; AK ). Suppose there exists a singlenon-vanishing nth order twist of the L-series asso
iated to � at the 
enter of the 
riti
al strip. We use themethod of multiple Diri
hlet series to establish that there exist in�nitely many su
h non-vanishing nth ordertwists of the L-series of the representation at the 
enter.
1. Introdu
tion and Statement of the Main ResultLet E be an ellipti
 
urve de�ned over a number �eld K: The behavior of the rank of the L-rationalpoints E(L) as L varies over some family of algebrai
 extensions of K is a problem of fundamental interest.The 
onje
ture of Bir
h and Swinnerton-Dyer provides a means to investigate this problem via the theoryof automorphi
 L-fun
tions.Assume that the L-fun
tion of E 
oin
ides with the L-fun
tion L(s; �) of a 
uspidal automorphi
 repre-sentation of GL(2) of the adele ring A K : Let L=K be a �nite 
y
li
 extension and � a Galois 
hara
ter of thisextension. Then the 
onje
ture of Bir
h and Swinnerton-Dyer equates the rank of the �-isotypi
 
omponentE(L)� of E(L) with the order of vanishing of the twisted L-fun
tion L(s; � 
 �) at the 
entral point s = 12 :In parti
ular, the �-
omponent E(L)� is �nite (a

ording to the 
onje
ture) if and only if the 
entral valueL( 12 ; � 
 �) is non-zero.Thus it be
omes of arithmeti
 interest to establish non-vanishing results for 
entral values of twists ofautomorphi
 L-fun
tions by 
hara
ters of �nite order. For quadrati
 twists this problem has re
eived mu
hattention in re
ent years. In this paper we address this question for twists of higher order. Our main resultis 
ontained in the following theorem.Theorem 1.1. Fix a prime integer n > 2; a number �eld K 
ontaining the nth roots of unity, and a suÆ-
iently large �nite set of primes S of K: Let � be a self-
ontragredient 
uspidal automorphi
 representationDate: November 7, 2004.2000 Mathemati
s Subje
t Classi�
ation. Primary 11F11. 1



2 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINof GL(2; A K ) whi
h has trivial 
entral 
hara
ter and is unrami�ed outside S: Suppose there exists an id�ele
lass 
hara
ter �0 of K of order n unrami�ed outside S su
h thatL( 12 ; � 
 �0) 6= 0:Then there exist in�nitely many id�ele 
lass 
hara
ters � of K of order n unrami�ed outside S su
h thatL( 12 ; � 
 �) 6= 0:We refer the reader to Se
tion 2 for the de�nition of the �nite set S: Fearnley and Kisilevsky haveproven a related result for the L-fun
tion L(s; E) of an ellipti
 
urve de�ned over Q: In [5℄ they show thatif the algebrai
 part Lalg( 12 ; E) of the 
entral L-value is nonzero mod n; then there exist in�nitely manyDiri
hlet 
hara
ters � of order n su
h that L( 12 ; E; �) 6= 0: We note that if L( 12 ; E) 6= 0 then the hypothesisLalg( 12 ; E) 6� 0 mod n is satis�ed for all suÆ
iently large primes n: We �nd it interesting (and frustrating!)that, although the methods of [5℄ (based on the arithmeti
 of modular symbols) are 
ompletely di�erentfrom the methods of this paper, both our result and theirs require some nonvanishing assumption. Anun
onditional result in the 
ubi
 
ase (n = 3) has re
ently been established in [1℄. We 
omment more onthis below.The quadrati
 
ase (n = 2) is parti
ularly a

essible be
ause, by the results of Waldspurger [17℄, Kohnenand Zagier [13℄, and others, the existen
e of a quadrati
 
hara
ter � su
h that L( 12 ; � 
 �) 6= 0 impliesthe existen
e of a metaple
ti
 
uspidal automorphi
 representation e� on the double 
over of GL(2; A K )
orresponding to �. The 
orrespondent e� is related to � in the following way. If L(w; e� 
 e�) denotes theRankin-Selberg 
onvolution of e� with itself then(1.1) L(w; e� 
 e�) =Xd6=0 L( 12 ; � 
 �(2)d0 )Pd(�)Ndw ;up to 
orre
tions at a �nite number of pla
es. Here d = d0d22, with d0 square free, the �(2)d0 are quadrati

hara
ters with 
ondu
tor d0, and the Pd(�) are 
ertain non-zero 
orre
tion fa
tors whi
h are trivial whend2 = 1. We defer a pre
ise de�nition of su
h obje
ts until Se
tion 2. These 
orre
tion fa
tors are small inthe sense that, for any �xed d0,(1.2) the sum Xd2 6=0 Pd0d22(�)Nd2w2 
onverges absolutely for any w with Re(w) > 12 .
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onne
tion between � and e� 
auses the existen
e of one non-vanishing quadrati
 twist to imply theexisten
e of in�nitely many d0 su
h that L( 12 ; � 
 �(2)d0 ) 6= 0: This is be
ause if e� 6= 0 then L(w; e� 
 e�) hasa pole at w = 1. However the right hand side of (1.1) will 
onverge at w = 1 if there are only �nitely manynon-vanishing quadrati
 twists.For n > 2 there are no known results relating nth order twists of the L-series of � to Fourier 
oeÆ
ientsof other automorphi
 obje
ts. In fa
t even a 
onje
tural generalization of the results of Waldspurger tothe 
ase n > 2 remains mysterious. However, in this paper we des
ribe how a generalization of (1.1) 
anstill be found by asso
iating � to a 
ertain metaple
ti
 form. This generalization is at least suÆ
ient toanswer the question of whether one non-vanishing twist of a given order implies the existen
e of in�nitelymany non-vanishing twists of that order. It may ultimately shed some light on the question of the 
orre
tgeneralization of Waldspurger's results, but at the moment this aspe
t remains opaque.We will des
ribe in detail a Diri
hlet series that has the rough form(1.3) Z(n)(s; w) =Xd6=0 L(s; � 
 �(n)d0 )"(d0)Pd(s; �)Ndw ;where d = d0dnn with d0 nth power-free (see Se
tion 2). Here "(d0) denotes an nth order Gauss sum 
orre-sponding to the 
hara
ter �(n)d0 and Pd(s; �) again denotes 
ertain 
orre
tion fa
tors whi
h are trivial whendn = 1. These are also small, in the sense that for Re(s) � 12 ,(1.4) the sum Xdn 6=0 Pd0dnn(s; �)Ndnwn 
onverges absolutely for any w with Re(w) > 1n + 19 :The fra
tion 19 
omes from the bound of Kim and Shahidi [12℄.The series Z(n)(s; w) is \natural" for the following reasons. First, when n = 2 and e� exists, Z(n)( 12 ; w)agrees at almost all pla
es with the Rankin-Selberg 
onvolution L(w; e� 
 e�). Se
ond, after an inter
hangein the order of summation, it has an automorphi
 interpretation as a Rankin-Selberg 
onvolution of � withan Eisenstein series on the n-fold 
over of GL(2). In the 
ase n = 2 , this automorphi
 interpretation ofZ(n)(s; w) was exploited by Friedberg and Ho�stein [8℄. In the 
ase n = 3 the automorphi
 interpretationwas used by She [16℄ to establish a non-vanishing result for 
ubi
 twists of one parti
ular �.In this paper we do not use the automorphi
 interpretation of Z(n)(s; w). Instead we take the far easierapproa
h of the method of multiple Diri
hlet series (dis
ussed in brief at the 
on
lusion of this se
tion).



4 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINUsing this method we establish an analyti
 
ontinuation and exhibit a �nite group of fun
tional equationsfor Z(n)(s; w) in the two variables s and w. Spe
ializing to s = 12 , we obtain a Diri
hlet series Z(n)( 12 ; w)with a fun
tional equation in w. The 
ondition (1.4) implies that if L( 12 ; �
�(n)d0 ) 6= 0 for only �nitely manyd0 then Z(n)( 12 ; w) must 
onverge for Re(w) > 1n + 19 . We then show that for n � 3 (i.e. 1n + 19 < 12 ), thisis in
ompatible with the fun
tional equation. It immediately follows that the existen
e of one non-vanishingtwist implies the existen
e of in�nitely many.The method 
an easily be taken a bit further to establish a mean value result of the form, for Re(s) > 12 ,(1.5) XL(s; � 
 �(n)d0 ) "(d0)Pd( 12 ; �)W �NdX � � 
(s; �)X 12+ 1n ;whereW is any suitable smoothing fun
tion. The 
onstant 
(s; �) is a very interesting fun
tion; it is a simplemultiple of L(s + 12n ; � 
 �(n)); the Rankin-Selberg 
onvolution of � with the theta fun
tion on the n-fold
over of GL(2), evaluated at the point s+ 12n . When n = 2 and s = 12 , the series L( 34 ; �
 �(2)) is essentiallythe symmetri
 square L-series of � evaluated at 1, the edge of the 
riti
al strip. Thus in this 
ase the L-seriesdoes not vanish, and simple 
onditions on the sign of the fun
tional equation of � determine whether or not
( 12 ; �) equals zero. Be
ause of this, un
onditional mean value and non-vanishing results 
an be derived, aswas done in [8℄. For n > 2, however, the L-series L( 12 + 12n ; � 
 �(n)) does not have an Euler produ
t andis evaluated at a point inside the 
riti
al strip. Thus the question of vanishing be
omes quite subtle. Itis be
ause of this that we 
annot yet eliminate the possibility that the entire 
lass of twists L( 12 ; � 
 �(n)d0 )vanishes identi
ally. In [1℄ a di�erent multiple Diri
hlet series is 
onstru
ted, spe
i�
 to the 
ase n = 3. Inthis 
ase the (
ubi
) Gauss sum is removed from the numerator and the 
onstant 
(s; �) be
omes essentiallyL(3s; �; sym3). As a 
onsequen
e un
onditional non-vanishing and mean value results 
an be obtained inthe 
ase n = 3. The question of generalizing this method to n � 4 remains open and extremely interesting.We 
lose the introdu
tion with a brief overview of the method of multiple Diri
hlet series. MultipleDiri
hlet series are fun
tions of several 
omplex variables of the formXm1;:::;mr a(m1;m2; : : : ;mr)ms11 ms22 � � �msrr :These 
an be 
onsidered, a

ording to the order of summation, as a Diri
hlet series in any one of the variableswhose 
oeÆ
ients are again Diri
hlet series. For example, in (1.3) the multiple Diri
hlet series Z(n)(s; w) isa Diri
hlet series in the variable w with numerator L(s; �
�(n)d0 )"(d0)Pd(s; �), a family of Diri
hlet series in
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omponent Diri
hlet series possesses a fun
tional equation, then the multiple Diri
hletseries inherits a 
orresponding fun
tional equation. Inter
hanges in the order of summation may revealnew families of Diri
hlet series in the numerator with new fun
tional equations. Inter
hanging the order ofsummation in (1.3) produ
es a Diri
hlet series formed from nth order Gauss sums. Su
h series arise in thetheory of Eisenstein series on the n-fold 
over of GL2 as introdu
ed by Kubota in [14℄, and extended byPatterson [15℄ and Kazhdan-Patterson [11℄.Classi
al 
onvexity estimates on the 
onstituent Diri
hlet series give a region of absolute 
onvergen
e forthe multiple Diri
hlet series. On
e exa
t fun
tional equations are obtained, one 
an apply them to the domainof 
onvergen
e to obtain a new domain whi
h has a non-empty interse
tion with the original. This providesthe analyti
 
ontinuation to the union of the original domain and its translates. An analyti
 
ontinuation tothe 
onvex hull of this union follows from a 
onvexity theorem for several 
omplex variables. In the 
ase ofZ(n)(s; w), we will show that we obtain a region whose 
onvex hull is all of the 
omplex spa
e C 2 :This approa
h was �rst detailed by Bump, Friedberg, and Ho�stein in [2℄ and [3℄ where instan
es ofmultiple Diri
hlet series possessing these properties were 
atalogued. Fisher and Friedberg [6℄ generalizedthese arguments to quadrati
 twists of automorphi
 forms on GL(2) over arbitrary fun
tion �elds. Thismethod was also 
arried out by Friedberg, Ho�stein and Lieman [9℄ on a multiple Diri
hlet series whose
oeÆ
ients were weighted nth order Diri
hlet L-series in order to determine mean-value estimates for theseL-series. Finally, see [1℄ for a di�erent and 
onsiderably more 
ompli
ated 
onstru
tion in the 
ase n = 3and GL(2).The authors thank Sol Friedberg and Adrian Dia
onu for many helpful dis
ussions and the referee for avery 
areful reading of this work.2. Preliminaries and Outline of MethodFix n > 2 and let K be a number �eld 
ontaining the nth roots of unity. Let O denote the ring ofintegers of K. Let � be a 
uspidal automorphi
 representation of GL(2; A K ). Let Sf be a �nite set ofnon-ar
himedean pla
es su
h that Sf 
ontains all pla
es dividing n, the ring of Sf -integers OSf has 
lassnumber 1, and � is unrami�ed outside Sf . Let S1 denote the set of ar
himedean pla
es and let S = Sf [S1.



6 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINLet �a�� be the power residue symbol atta
hed to the extension K( npa) of K. We extend the nth powerresidue symbol as in Fisher and Friedberg [6℄. We review the de�nition.For ea
h pla
e v, let Kv denote the 
ompletion of K at v. For v non-ar
himedean, let Pv denote the
orresponding ideal of O, and let qv = NPv denote its norm. Let C = Qv2Sf Pnvv with nv � 1 suÆ
ientlylarge so that if a 2 Kv, and ordv(a � 1) � nv, then a 2 (K�v )n. Let HC be the ray 
lass group modulo Cand let RC = HC
Z=nZ. Write the �nite group RC as a dire
t produ
t of 
y
li
 groups, 
hoose a generatorfor ea
h, and let E0 be a set of ideals of O prime to S whi
h represent these generators. For ea
h E0 2 E0
hoose mE0 2 K� su
h that E0OSf = mE0OSf . Let E be a full set of representatives for RC of the formQE02E0 EnE00 , with nE0 2 Z. If E = QE02E0 EnE00 is su
h a representative, then let mE = QE02E0 mnE0E0 .Note that EOSf = mEOSf for all E 2 E . For 
onvenien
e we suppose that O 2 E and mO = 1.Let J (S) denote the group of fra
tional ideals of O 
oprime to Sf . Let I; J 2 J (S) be 
oprime. WriteI = (m)EGn with E 2 E , m 2 K�, m � 1 mod C, and G 2 J (S) su
h that (G; J) = 1. Then as in [6℄,the nth power residue symbol �mmEJ � is de�ned, and if I = (m0)E0G0n is another su
h de
omposition, thenE0 = E and �m0mEJ � = �mmEJ �.In view of this de�ne the nth power residue symbol � IJ � by � IJ � = �mmEJ � : If I is nth-power-free, we denoteby �I the 
hara
ter �I(J) = � IJ �. This 
hara
ter depends on the 
hoi
es above, but we suppress this fromthe notation. Let I(S) denote the integral ideals prime to Sf . Let � be as above and let LS(s; � 
 �J) bethe L-fun
tion for � twisted by the 
hara
ter �J , with the pla
es in S removed. (Note that the Euler fa
toris also 1 at the pla
es dividing J .) If � is any id�ele 
lass 
hara
ter then the twisted L-fun
tion L(s; � 
 �)satis�es a fun
tional equation(2.1) L(s; � 
 �) = "(s; � 
 �)L(1� s; ~� 
 ��1);where "(s; � 
 �) is the epsilon fa
tor of � 
 �.Proposition 2.1. Let E; J 2 I(S) be nth-power-free with asso
iated 
hara
ters �E ; �J of 
ondu
tors fE ; fJrespe
tively. Suppose that �J = �E�I with I 2 K�, I � 1 mod C: Then(2.2) "(s; � 
 �J ) = "(1=2; �I)2 ��(fJ=fE) (NfJ =NfE )2(1=2�s) "(s; � 
 �E):



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 7Here "(1=2; �I) is given by a (normalized) nth order Gauss sum, as in Tate's thesis. We hen
eforth assumethat � has trivial 
entral 
hara
ter (and is self-
ontragredient). LetLS(s; �) = Yv=2S(1� �vq�sv )�1 (1� �vq�sv )�1 = XI2I(S) a(I)(NI)s ;where �v and �v are the Satake parameters asso
iated to � at v. For J in I(S), write J = J0Jnn , with J0the nth power free part of J . For I in I(S), let eI represent the part of I 
oprime to J0.For ideals I and J , de�ne the fun
tion G(I; J) byG(I; J) = Yvordv(I)=�ordv(J)=�G(P�v ; P �v );where, for �; � � 0;(2.3) G(P�v ; P �v ) = 8>>>>>><>>>>>>:1 if � = 0q�=2�1v (qv � 1) if � � �; � � 0(n); � > 0�q�=2�1v if � = � � 1; � � 0(n); � > 0q(��1)=2v if � = � � 1; � 6� 0(n); � > 00 otherwise.To simplify notation, let � denote the Dedekind zeta fun
tion of K and �S the zeta fun
tion with the pla
esin S removed.De�ne the following pair of multiple Diri
hlet series:(2.4) Z1(s; w;�;  1;  2) = �S(nw � n=2 + 1) XI;J2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI )"(J0)(NI)s (NJ)w ;and(2.5) Z2(s; w;�;  1;  2) = �S(nw � n=2 + 1) XI;J2I(S) a(I) 1(I) 2(J)G(I; J)�J0 (eI)"(J0)(NI)s (NJ)w ;where  1;  2 are two id�ele 
lass 
hara
ters of RC (hen
e of order dividing n and 
ondu
tor dividing C).The notation "(J0) simply abbreviates "( 12 ; �J0). (Note that Z1 and Z2 are essentially dual obje
ts up to
onjugation of �J0 and "(J0).)By summing �rst over J , we have(2.6) Z1(s; w;�;  1;  2) = XI2I(S) a(I) 1(I)D(w; I;  2)(NI)s ;



8 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwhere(2.7) D(w; I;  2) = �S(nw � n=2 + 1) XJ2I(S)  2(J)G(I; J)�J0(eI)"(J0)(NJ)wis a Diri
hlet series obtained from the Fourier 
oeÆ
ient of an Eisenstein series de�ned on an appropriatelyrestri
ted 
ongruen
e subgroup � of the n-fold 
over of GL(2). (This motivates the de�nition (2.3).) Thesemetaple
ti
 Eisenstein series were �rst formulated by Kubota (
f. [14℄) and were studied in further detailby Kazhdan and Patterson in [11℄. In parti
ular, Kazhdan and Patterson exhibited a fun
tional equation asw 7! 1� w and determined the polar stru
ture: D(w; I;  2) has possible simple poles at w = 12 � 1n and isholomorphi
 elsewhere. (For a general introdu
tion to the subje
t, we refer the reader to [10℄.)Using the above theory together with one-variable 
onvexity results, one sees that for every � > 0(2.8) ��(w � 12 + 1n )(w � 12 � 1n )D(w; I;  2)�� <<� maxf1; (NI)(1�Re(w))=2+�; (NI)1=2�Re(w)+�g:The implied 
onstant also has a dependen
e on w, and the bound is uniform for w in 
ompa
ta. Hen
e,we 
an obtain a region of absolute 
onvergen
e for our multiple Diri
hlet series as a 
onvolution of a GL(2)automorphi
 L-series and the above series D(w; I;  2). That is, for i = 1; 2 we de�ne(2.9) eZi(s; w;�;  1;  2) = s(1� s)(w � 12 � 1n )(w � 12 + 1n )Zi(s; w;�;  1;  2);and it follows from (2.8) that eZi(s; w;�;  1;  2) for i = 1; 2 is holomorphi
 in the region(2.10) R0 = f(s; w)jRe(s) > maxf 109 ; 2918 � Re(w)2 ; 2918 �Re(w)g g:This is demonstrated 
arefully in Se
tion 5.Our multiple Diri
hlet series have another fruitful interpretation upon inter
hanging the order of sum-mation, so that the inner sum is over ideals I 2 I(S). To present this form, �rst de�ne the 
orre
tionpolynomials Q(s; J ;�; �J0 1), for ideals J =Qv P ordv(J)v , by(2.11) Q(s; J ;�; �J0 1) = Yvordv(J)=n
Q(s; Pn
v ; �J0 1;�) n�1Yk=1 Yvordv(J)=n
+k a(Pn
+k�1v ) 1(P k�1v )q(n
+k�1)s�n
+k�12v ! ;where(2.12) Q(s; Pn
v ; �;�) = a(Pn
v )q n
2 �n
sv � a(Pn
�1v )�(Pv)q n
2 �(n
+1)sv� a(Pn
�1v )�(Pv)q n
2 �1�(n
�1)sv + a(Pn
�2v )q n
2 �1�n
sv ;



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 9and where we make the 
onvention that a(x) = 0 for all non-integral x. Then we will show the followingresult in Se
tion 3.Proposition 2.2. In the region Re(s) > 10=9 and Re(w) > 1(2.13) Z1(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);and(2.14) Z2(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1):Given the results of Proposition 2.2, we 
an use upper bounds on the Fourier 
oeÆ
ients of our L-seriesand the �nite Diri
hlet polynomials Q, together with standard one-variable 
onvexity arguments, to showthat the fun
tions eZi(s; w; �; 1;  2) for i = 1; 2 are holomorphi
 in the regionR00 = f(s; w)jRe(w) > maxf1; 199 �Re(s); 2� 2Re(s)g g:Sin
e R0 and R00 have a non-empty interse
tion, we see that the fun
tions eZi(s; w; �; 1;  2) for i = 1; 2have an analyti
 
ontinuation to the union of these regions, given by(2.15) R = f(s; w)jRe(w) > maxf2� 2Re(s); 199 �Re(s); 299 � Re(s)2 ; 2918 �Re(s)g g:We use the two interpretations of the multiple Diri
hlet series to exhibit fun
tional equations as w 7! 1�wand s 7! 1 � s. Translating the region R under these equations will lead to an analyti
 
ontinuation. Byadding in the 
ontributions at the in�nite pla
es, we 
an state a pre
ise formulation of the fun
tional equationinherited by the multiple Diri
hlet series from the Eisenstein series. De�ne(2.16) �n(w) def= h(2�)�1=2nnw�n2+1ir2 n�1Yi=1 �(w � 12 + in ) jDK jnw�n2+1 ;where DK denotes the dis
riminant of the �eld K and r2 is the number of pairs of 
omplex embeddings. Thisset of gamma fa
tors 
omes dire
tly from the Fourier analysis and multipli
ation formula for the gammafun
tion. Then �n(w)D(w; I;  2) has a fun
tional equation as w 7! 1 � w, whi
h we exploit to obtain thefollowing proposition.Proposition 2.3. In the region R given by (2.15),�n(1�w)Z1(s+w� 1=2; 1�w;�;  1;  2) Yv2Sf(1� qn=2�1�nwv ) =X� �(w; 2; �)�n(w)Z1(s; w;�;  1 2�;  2);



10 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwhere ea
h �(w; 2; �) is a fun
tion of w whi
h is bounded in verti
al strips of bounded width. The sum istaken over all 
hara
ters � with 
ondu
tor dividing C and order dividing n.Now equipped with one fun
tional equation, we go in sear
h of a se
ond. By inter
hanging the orderof summation, de
omposing the sums in (2.4) and (2.5) a

ording to primes dividing J , we will view ourDiri
hlet series as weighted sums of L-series in s asso
iated to �. Thus our series inherit fun
tional equationsas s 7! 1 � s. To make this pre
ise, we must �rst in
lude the appropriate Gamma fa
tors whi
h 
ompletethe L-series. De�ne �K(s) by(2.17) �K(s) = � jDK j(2�)r2 �s �(s+ i�)r2�(s� i�)r2 ;where again DK is the dis
riminant of K, r2 denotes the number of pairs of 
omplex embeddings in ourtotally 
omplex �eld K, and 14 + �2 is the eigenvalue 
orresponding to the automorphi
 representation �.Proposition 2.4. In the region R,(2.18) Yv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv ��K(s)�S(nw + 2ns� 3n2 + 1)Z1(s; w; �;  1;  2)= X�2R̂C B(s; 1; �)�K(1� s)�S(nw � n2 + 1)Z2(1� s; w + 2s� 1;�;  1;  2 21�)where the fun
tions B(s; 1; �) are bounded in verti
al strips of bounded width.The proofs for these two propositions are 
ompleted in Se
tion 4. Be
ause we will apply both fun
tionalequations to our multiple Diri
hlet series in order to obtain an analyti
 
ontinuation, we would like tode�ne �-fa
tors at the in�nite pla
es whi
h are invariant under both fun
tional equations as s 7! 1� s andw 7! 1� w. Thus, a

ording to the previous propositions, we de�ne(2.19) �(s; w) = �K(s)�K(s+ w � 1=2)�n(w)�n(w + 2s� 1);and de�ne(2.20) Z�i (s; w;�;  1;  2) = �(s; w)�S(nw + 2ns� 3n2 + 1)Zi(s; w;�;  1;  2) for i = 1; 2:The pair of fun
tional equations from Propositions 2.3 and 2.4, repeatedly applied to the regionR, providean analyti
 
ontinuation to all of C 2 . This is demonstrated in Se
tion 5. We will show in Se
tion 6 that,when spe
ialized to s = 1=2, the resulting expression is absolutely 
onvergent for w in some right half-plane.



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 11The fun
tional equation together with this 
onvergen
e will allow us to show in Se
tion 7 that if there is asingle nonvanishing twist at s = 12 , there must in fa
t be in�nitely many nonvanishing twists at s = 12 .3. Inter
hanging the Order of Summation { A Proof of Proposition 2.2Proof of Proposition 2.2: We give the proof for (2.13), noting that the proof of (2.14) follows identi
ally.First, we 
onsider the expression for Z1(s; w;�;  1;  2) given in (2.4). Using the bound ja(I)j �� (NI)1=9+�for the Fourier 
oeÆ
ients, as well as the fa
t that jG(I; J)j � (NJ)1=2 , we see that eZ1(s; w;�;  1;  2)
onverges absolutely and uniformly in the region of C 2 satisfying Re(w) > 3=2 and Re(s) > 109 . Thus theinter
hange of summation is allowed in this smaller region. Then, using the bound given in (2.8), we seethat in fa
t the series de�ning eZ1(s; w;�;  1;  2) 
onverges to an analyti
 fun
tion in the region Re(s) > 109and Re(w) > 1:Fix an ideal J in I(S) and de
ompose it a

ording to J = J0Jnn where J0 = J1J22 : : : Jn�1n�1 again denotesthe nth power free part of J . Let v 62 S be a pla
e su
h that ordv(J) = n
, so that we may write J = Pn
v J 0with (J 0; Pv) = 1. We must analyze the resulting obje
t G(I; J).Writing I = P �v I 0 with (I 0; Pv) = 1, givesXI2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w = XI0ordv(I0)=0 a(I 0) 1(I 0) 2(J)G(I 0; J 0)�J0(eI 0)"(J0)(NI 0 )s(NJ 0 )w �X��0 a(P �v ) 1(P �v )G(P �v ; Pn
v )�J0(P �v )(NPv )�s+n
w :We �rst evaluate the sum over �. If 
 = 0, the sum be
omesX��0 a(P �v ) 1(P �v )�J0(P �v )(NPv )�s = L(v)(s; � 
 �J0 1);where L(v)(s; � 
 �J0 1) denotes the Euler fa
tor asso
iated to the pla
e v in the L-series.If 
 � 1, then using (2.3) we obtainX��0 a(P �v ) 1(P �v )G(P �v ; Pn
v )�J0(P �v )q�s+n
wv = �a(Pn
�1v ) 1(Pn
�1v )�J0(Pn
�1v )qn
w+(n
�1)s�n
2 +1v+ 1qn
w�n
2 +1v X��n
 (qv � 1)a(P �v ) 1(P �v )�J0(P �v )q�sv :(3.1)



12 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINWe wish to sum this geometri
 series, pulling out a fa
tor of L(v)(s; � 
 �J0 1). We must therefore writethe Fourier 
oeÆ
ients a(P �v ) in terms of the vth Satake parameters. (Re
all that for v 62 S, �v�v = 1 and�v + �v = a(Pv).) We have a(P �v ) = ��+1v � ��+1v�v � �v ;and L(v)(s; � 
 �J0 1) = �1� �v�J0(Pv) 1(Pv)qsv ��1�1� �v�J0(Pv) 1(Pv)qsv ��1= (1� a(Pv)�J0(Pv) 1(Pv)q�sv + �J0(Pv)2 1(Pv)2q�2sv )�1:Substituting these de�nitions into the latter sum of (3.1) and evaluating the geometri
 sums, we haveX��n
 a(P �v ) 1(P �v )�J0(P �v )q�sv = 1�v � �v 24X��n
 ��+1v �J0(P �v ) 1(P �v )q�sv � X��n
 ��+1v �J0(P �v ) 1(P �v )q�sv 35= 1�v � �v ��n
+1vqn
sv (1� �v�J0(Pv) 1(Pv)q�sv )�1 � �n
+1vqn
sv (1� �v�J0(Pv) 1(Pv)q�sv )�1�= L(v)(s; �; �J0 1)qn
sv �a(Pn
v )� a(Pn
�1v )�J0(Pv) 1(Pv)q�sv �:Therefore, we may rewrite the entire equation (3.1) asX��0 a(P �v ) 1(P �v )G(P �v ; Pn
v )�J0(P �v )q�s+n
wv = 1qn
w+n
s�n
2 +1v ��a(Pn
�1v ) 1(Pv)�J0(Pv) qsv+(qv � 1) �a(Pn
v )� a(Pn
�1v ) 1(Pv)�J0(Pv)q�sv �L(v)(s; � 
 �J0 1)i= L(v)(s; � 
 �J0 1)qn
w+n
s�n
2 +1v � ��a(Pn
�1v ) 1(Pv)�J0(Pv) qsv �1� a(Pv)�J0(Pv) 1(Pv)q�sv+�J0(Pv)2 1(Pv)2q�2sv �+ (qv � 1) �a(Pn
v )� a(Pn
�1v ) 1(Pv)�J0(Pv)q�sv )�� :Expanding in the se
ond bra
ket, and using the relationa(Pn
�1v )a(Pv) = (�v � �v)�1(�n
v � �n
v )(�v + �v) = a(Pn
v ) + a(Pn
�2v );we �nd that the above expression equalsL(v)(s; � 
 �J0 1)qn
w+n
s�n
2 +1v �qva(Pn
v )� a(Pn
�1v )�J0(Pv) 1(Pv)q1�sv �a(Pn
�1v )�J0(Pv) 1(Pv)qsv + a(Pn
�2v )� :



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 13Putting it all together, we haveX��0 a(P �v ) 1(P �v )G(P �v ; Pn
v )�J0(P �v )q�s+n
wv == L(v)(s; � 
 �J0 1)qn
wv ha(Pn
v )q n
2 �n
sv � a(Pn
�1v )�J0(Pv) 1(Pv)q n
2 �(n
+1)sv �a(Pn
�1v )�J0(Pv) 1(Pv)q n
2 �1�(n
�1)sv + a(Pn
�2v )q n
2 �1�n
sv i:Re
all the 
onvention that a(x) = 0 for all non-integral x. Then repeating the above pro
ess for all su
hpla
es v with Pv not dividing J0, for any �xed ideal J we have(3.2) XI a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w= Yvordv(J)=n
 L(v)(s; � 
 �J0 1)qn
wv Q(s; Pn
v ; �J0 1;�) XIIjJ10 a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ0 )w ;where Q(s; Pn
v ; �J0 1;�) is as de�ned in (2.12).We must now repeat this analysis for the remaining sum over I su
h that I jJ10 . Let v be a pla
e su
hthat PvjJ0. That is, ordv(J) = n
 + k, for some k 2 f1; 2; : : : n� 1g and denote ordv(I) = �. Then, writingI = P �v I 0 and J = Pn
+kv J 0, we haveG(I; J) = G(P �v I 0; Pn
+kv J 0) = (q n
+k�12v G(I 0; J 0); if � = n
 + k � 10; otherwise.Moreover, in this 
ase fPv = (1) sin
e Pv jJ0, so �J0(fPv) = 1 Thus we may write(3.3) XIIjJ10 a(I) 1(I) 2(J)G(I; J)"(J0)(NI)s (NJ)w = a(Pn
+k�1v ) 1(Pn
+k�1v )q(n
+k�1)s+(n
+k)w�n
+k�12v ! X(I0;Pv)=1I0jJ10 a(I 0) 1(I 0) 2(J)G(I 0; J 0)�J0(eI 0)"(J0)(NI 0 )s(NJ 0 )w :Repeating this for the remaining �nite list of pla
es v su
h that Pv jJ0, we have(3.4) XIIjJ10 a(I) 1(I) 2(J)G(I; J)"(J0)(NI)s (NJ)w = "(J0) 2(J) n�1Yk=1 Yvordv(J)=n
+k a(Pn
+k�1v ) 1(Pn
+k�1v )q(n
+k�1)s+(n
+k)w�n
+k�12v ! :



14 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINCombining this result with the information from (3.2) and (2.12) and noting that our 
hara
ters  i haveorder n, the original series for �xed J takes form(3.5) XI2I(S) a(I) 1(I) 2(J)G(I; J)�J0(eI)"(J0)(NI)s (NJ)w = "(J0) 2(J)LS(s; � 
 �J0 1) �Yvordv(J)=n
 Q(s; Pn
v ; �J0 1;�)qn
wv n�1Yk=1 Yvordv(J)=n
+k a(Pn
+k�1v ) 1(P k�1v )q(n
+k�1)s+(n
+k)w�n
+k�12v ! :Summing over ea
h ideal J 2 I(S), the result follows.We will also need the following lemma.Lemma 3.1. Let the notation be as above. The 
orre
tion fa
tor Q(s; J ;�; �J0 1) satis�es the followingfun
tional equation in s:(3.6) Q(s; J ;�; �J0 1) = (NJ2J23 � � � Jn�2n�1Jnn )1�2s 2(J2J23 � � � Jn�2n�1Jnn )Q(1� s; J ;�; �J0 1):Proof: From the de�nition made in (2.12), one readily sees that at ea
h prime ideal Pv with (Pv ; J0) = 1,Q(s; Pn
v ; �J0 1;�) = (qn
v )1�2sQ(1� s; Pn
v ; �J0 1;�):Moreover, for ea
h of the prime ideals Pv with Pv jJ0 for any 
hoi
e of k, we have the identity a(Pn
+k�1v ) 1(P k�1v )q(n
+k�1)s�n
+k�12v ! = (qn
+k�1v )1�2s 21(P k�1v ) a(Pn
+k�1v ) 1(P k�1v )q(n
+k�1)(1�s)�n
+k�12v ! :The lemma therefore follows by 
ombining the above identities.4. A Fun
tional Equations: A Proof of Propositions 2.3 and 2.4Proof of Proposition 2.3: This follows as an immediate 
orollary of the fun
tional equation as w 7! 1�w for�n(w)D(w; I;  2) given as Corollary II.2.4 of [11℄. Note the ne
essity of twisting by 
hara
ters  1 and  2so that as the fun
tional equation takes Eisenstein series to a linear 
ombination of Eisenstein series at ea
h
usp, the form of our basi
 Diri
hlet series remains the same. Our �(w; �) is then essentially a s
atteringmatrix for this fun
tional equation.Re
all from Proposition 2.2 that we haveZ1(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 15and Z2(s; w; �; 1;  2) = �S(nw � n=2 + 1) XJ2I(S) "(J0) 2(J)LS(s; � 
 �J0 1)(NJ)w Q(s; J ;�; �J0 1);where Q(s; J ;�; �J0 1) is the 
orre
tion polynomial de�ned in (2.11). To fa
ilitate the statement of theresults of this se
tion, we extend the de�nitions of Z1 and Z2 to in
lude arbitrary linear 
ombinations of
hara
ters in pla
e of  1 and  2: In parti
ular for E 2 E , let ÆE be the 
hara
teristi
 fun
tion of the 
lassE; and 
onsider(4.1) Z1(s; w;�;  1; ÆE 2) = �S(nw � n=2 + 1) XJ2I(S)J�E "(1=2; J0) 2(J)LS(s; � 
 �J 1)(NJ)w ;where for notational 
onvenien
e, we put(4.2) L(s; � 
 �J 1) = L(s; � 
 �J0 1)Q(s; J ;�; �J0 1):We determine the fun
tional equation for this 
ompleted L-fun
tion in the following lemma.Fix an ideal J in I(S). Let J0 = J1J22 : : : Jn�1n�1 denote its nth power free part, and write J0 = I0E,where E represents the 
lass of J0 in RC , and where I0 � 1 mod C. The 
ondu
tor of �J0 is given byfJ0 = J1J2 � � � Jn�1CE , where CE is a 
onstant depending only on the 
lass E.Lemma 4.1. With the notation as above,(4.3) L(s; � 
 �J 1) = "( 12 ; �I0)2 "(s; � 
 �E 1) 21 �JCEfE ��NJCENfE �1�2s L(1� s; � 
 �J 1):Proof: From (2.1), we have L(s; �
�J0 1) = "(s; �
�J0 1)L(1� s; �
�J0 1): We will evaluate the fa
tor"(s; � 
 �J0 1) = "(s; (� 
  1)
 �J0) using Proposition 2.1. The 
entral 
hara
ter of � is trivial, thereforethe 
entral 
hara
ter of � 
  1 is  21 . Thus we have(4.4) "(s; � 
 �J0 1) = "( 12 ; �I0)2  21 �J1 � � � Jn�1CEfE ��NJ1 � � �Jn�1CENfE �1�2s "(s; � 
  1�E)The lemma then follows by 
ombining the above with the fun
tional equation for Q(s; J ;�; �J0 1) given inLemma 3.1.We are now ready to demonstrate the fun
tional equation for Z1 as s 7! 1� s. The fun
tional equationin Z2 
an be shown 
ompletely analogously.



16 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINProof of Proposition 2.4: Using Lemma 4.1, together with the fa
t that"(12 ; �I0)2 "(12 ; �J0) = "(12 ; �J0) "(12 ; �E)2;we see that(4.5) Z1(s; w;�;  1; ÆE 2)= A(E; s) XJ2I(S)J�E "(1=2; J0) 2 21(J)LS(1� s; � 
 �J0 1)(NJ)w+2s�1 Yv2S L(v)(1� s; � 
 �J0 1)L(v)(s; � 
 �J0 1) ;where A(E; s) = �NCENfE �1�2s  21 �CEfE � "(1=2; �E)2"(s; � 
  1�E):Re
all that the L-series in the numerator is the 
ompleted L-series (see (4.2)).To pro
eed further, multiply both sides of (4.5) by Yv2Sf 1L(v)(n� ns; � 
  n1 ) : ThenL(v)(1� s; � 
 �J0 1)L(v)(n� ns; � 
  n1 ) = "1 + �v�J0 1(Pv)q1�sv + � � �+ �n�1v �J0 1(Pn�1v )q(n�1)(1�s)v #� "1 + �v�J0 1(Pv)q1�sv + � � �+ �n�1v �J0 1(Pn�1v )q(n�1)(1�s)v # :Hen
e for ea
h J and ea
h v 2 Sf the termL(v)(1� s; � 
 �J0 1)L(v)(n� ns; � 
  n1 ) 1L(v)(s; � 
 �J0 1)be
omes a �nite Laurent polynomial in qsv whose dependen
e on J is through terms of the form �J0(Pv):Sin
e v 2 Sf and J is in a �xed 
lass E of RC ; we have �J0(Pv) = �v(E) for some 
hara
ter �v of RC :Similarly, the quotient(4.6) Yv2S1 L(v)(1� s; � 
 �J0 1)L(v)(s; � 
 �J0 1) = �K(1� s)�K(s) ;where �K(s) is de�ned as in (2.17), is independent of J:Sin
e Z�1 (s; w;�;  1;  2) = �(s; w)�S(nw + 2ns� 3n2 + 1)Z1(s; w;�;  1;  2);



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 17where we re
all that �(s; w) is the 
omplete set of Gamma fa
tors de�ned in (2.19), we 
on
lude thatYv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv �Z�1 (s; w; �;  1;  2ÆE) =A(s; 1; E)Z�2 (1� s; w + 2s� 1;�;  1;  2 21ÆE):Moreover, the fun
tions A(s; 1; E) are �nite Laurent polynomials in NJs . Summing over E ;Z�1 (s; w; �;  1;  2) = XE2E Z�1 (s; w; �;  1;  2ÆE)so that(4.7) Yv2Sf �1� �v 1(Pnv )qn�nsv ��1� �v 1(Pnv )qn�nsv �Z�1 (s; w; �;  1;  2)= X�2R̂C B(s; 1; �)Z�2 (1� s; w + 2s� 1;�;  1;  2 21�);where B(s; 1; �) is a linear 
ombination of the A(s; 1; E). This is pre
isely Proposition 2.4.5. Analyti
 ContinuationWe wish to analyti
ally 
ontinue the fun
tions eZi(s; w;�;  1;  2) for i = 1; 2 to C 2 , for ea
h 
hoi
e of  1and  2. This will be a
hieved using the fun
tional equations for the Z�i , along with properties of the seriesD(w; I;  2) and the Diri
hlet series L(s; � 
 �d 1). As above, we will restri
t our attention to eZ1, as thearguments for eZ2 will be almost identi
al.First, we 
onsider the expression for Z1(s; w;�;  1;  2) given in (2.4). Re
all that the bound ja(I)j ��(NI)1=9+� for the Fourier 
oeÆ
ients, as well as the fa
t that jG(I; J)j � (NJ)1=2 , implies that eZ1(s; w;�;  1;  2)
onverges absolutely and uniformly in the region of C 2 satisfying Re(w) > 3=2 and Re(s) > 109 . Then, asmentioned earlier, by the bound given in (2.8), the series de�ning eZ1(s; w;�;  1;  2) 
onverges to an analyti
fun
tion in the region Re(s) > 109 and Re(w) > 1:Next, we examine the behavior of eZ1(s; w;�;  1;  2) when Re(s) � �1=9, utilizing the expression forZ1(s; w;�;  1;  2) given in (2.13). It will be 
onvenient to work with this series asZ1(s; w;�;  1;  2) = XE2RC Z1(s; w;�;  1; ÆE 2);



18 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINwith Z1(s; w;�;  1; ÆE 2) as given in (4.1). The full Diri
hlet series L(s; � 
 �J 1) satis�es the fun
tionalequation given in (4.3). This fun
tional equation involves gamma fa
tors, as we have(5.1) L(s; � 
 �J0 1) =Yv L(v)(s; � 
 �J0 1) = �K(s)A(s)LS(s; � 
 �J0 1);where A(s) =Qv2Sf L(v)(s; � 
 �J0 1). Combining (5.1) with (4.3), we obtain(5.2) LS(s; � 
 �J 1) = �K(1� s)�K(s) A(1� s)A(s) B(s; E)(NJ)1�2sLS(1� s; � 
 �J 1);where we put B(s; E) = "( 12 ; �I0)2"(s; � 
 �E 1) 21 �JCEfE ��NCENfE �1�2s :We set s = �1=9+�+ it in (5.2) and examine the fa
tors on the right, as jtj ! 1. For the Gamma fa
tors,using a simpli�ed version of Stirling's formula given byj�(� + it)j � jtj��1=2exp(��jtj) as jtj ! 1;we see that, as jtj ! 1, ���� �K(10=9� � � it)�K(�1=9 + � + it) ���� �M jtj(22=9�4�)r2for some positive 
onstant M . The fa
tor ��� A( 109 ���it)A(�19 +�+it) ��� is a �nite polynomial in powers of q�v , hen
e it isindependent of t. Finally, the fa
tor LS( 109 � � � it; � 
 �J 1) is bounded as a fun
tion of t, sin
e, byRankin-Selberg theory, the full L-series is absolutely 
onvergent when s = 109 . Thus we see that LS(�1=9+� + it; � 
 �J 1) has polynomial growth as a fun
tion of t, for �xed � < 0.For Re(s) � �1=9, we therefore have(5.3) jZ1(s; w;�;  1;  2)j �� 
(�)jtj(22=9�4�)r2 XE2RC XJ2I(S)J�E 1(NJ)Re(w)+2��11=9�� ;where 
(�) is a 
onstant independent of t, given by 
(�) = maxE2RCf
(�;E)g; with
(�;E) = ���� A( 109 � � � it)A(�19 + � + it) ���� � ��B(�19 + � + it)�� �M:Now, the series on the right-hand side of (5.3) 
onverges absolutely and uniformly on 
ompa
ta in the regionsatisfying Re(s) < �1=9 and Re(w) > 2� 2 Re(s). Now by applying a generalized version of the Phragm�en-Lindel�of Theorem, we see that for s with real part between �1=9 and 10=9, eZ1 extends to a 
omplex analyti
fun
tion, provided Re(w) > 19=9� Re(s). Therefore, our region of analyti
ity for eZ1(s; w;�;  1;  2) is theregion R00 = f(s; w)jRe(w) > maxf1; 199 �Re(s); 2� 2Re(s)g g:



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 19To obtain a se
ond region of analyti
ity for eZ1, we again 
onsider the expression for Z1 in terms ofD(w; I;  2), as given in (2.6). If Re(w) < 0, then (2.8) givesj(w � 12 + 1n )(w � 12 � 1n )D(w; I;  2)j �� (NI)1=2�Re(w)+�;hen
e we see thatj eZ1(s; w;�;  1;  2)j �� XI2I(S) (NI)1=9+� (NI)1=2�Re(w)(NI)s = XI2I(S) 1(NI)s+Re(w)�11=18�� :The implied 
onstant has a dependen
e on w with the bound uniform for w in 
ompa
ta. Consequently,the initial region of 
onvergen
e of eZ1(s; w;�;  1;  2), i.e. Re(w) > 1 and Re(s) > 109 , is extended toin
lude the region of C 2 satisfying Re(w) < 0 and Re(s) > 29=18�Re(w). Then by a se
ond appli
ationof the Phragm�en-Lindel�of theorem, we see that analyti
ity of eZ1(s; w;�;  1;  2) extends to the region R0 =f(s; w)jRe(s) > maxf 109 ; 2918 � Re(w)2 ; 2918 �Re(w)g g:These regions overlap, whi
h means that eZ1(s; w;�;  1;  2) 
an be analyti
ally 
ontinued on their union,R = R0 [R00. By an almost identi
al argument, eZ2(s; w;�;  1;  2) also is analyti
 on the region R. Now wemay apply the fun
tional equations for the Zi, represented for 
onvenien
e as � : (s; w)! (1� s; w+2s� 1)and � : (s; w) ! (s + w � 1=2; 1� w), to extend this region of analyti
ity. Applying the transformation �to the region R, we obtain a region whi
h overlaps R, and when we take the 
onvex hull of their union, weobtain the half-plane f(s; w)jRe(s) > 2918 �Re(w)g:Finally, applying the transformation � to this half-plane, we obtain another half-plane whi
h overlaps it.Therefore when we take the 
onvex hull of their union, we obtain all of C 2 , as desired.6. Absolute Convergen
e of Sums in a Right Half-PlaneWe �rst analyze the individual expressions Zi( 12 ; w;�;  1;  2) for i = 1; 2. Again, we will restri
t ourattention to Z1 in what follows, as the 
onvergen
e of Z2 will evidently follow in the same fashion. To begin,we separate the sum over J in terms of two pie
es { the �rst 
orresponding to nth power free J0, and these
ond 
orresponding to Jn. From (2.13), we haveZ1�12 ; w;�;  1;  2� = XJ02I(S)nth-power free "(J0) 2(J0)LS( 12 ; �; �J0 1)(NJ0 )w XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw :



20 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINIn the expression for Q( 12 ; J ;�; �J0 1) obtained from (2.11), we abbreviate the notation by de�ning(6.1) CJ0; 1(Pv) = �J0(Pv) 1(Pv) + �J0(Pv) 1(Pv);and writing Q�12 ; Pn
v ; �J0 1;�� = a(Pn
v )� a(Pn
�1v )q� 12v CJ0; 1(Pv) + a(Pn
�2v )q�1v :For �xed J0, we show that the sum over Jn is absolutely 
onvergent in a 
ertain right half-plane in w. Wemay writeXJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw= n�1Yk=1 Yvordv(J)=n
+k0�X
�0 a(Pn
+k�1v ) 1(P k�1v )(NPv )n
w 1A Yvordv(J)=n
0�X
�0 Q( 12 ; Pn
v ; J ;�)(NPv )n
w 1Aand then analyze ea
h of the geometri
 sums individually, using the Satake parameters. First, we haveX
�0 a(Pn
+k�1v ) 1(P k�1v )(NPv )n
w =  1(P k�1v )�v � �v X
�0 �n
+kv � �n
+kvqn
wv=  1(P k�1v )�v � �v h�kv(1� �nv q�nwv )�1 � �kv (1� �nv q�nwv )�1i=  1(P k�1v )(1� �nv q�nwv )�1(1� �nv q�nwv )�1 �a(P k�1v ) + a(Pn�k�1v )q�nwv � :Noti
e that we have two of the fa
tors in the Euler fa
tor 
orresponding to the non-ar
himedean pla
es v inthe symmetri
 nth power L-fun
tion. Namely, for ea
h su
h pla
e v, we have the j = 0 and j = n fa
tors inthe expression(6.2) L(v)(nw; �; symn) = Y0�j�n(1� �n�jv �jvq�nwv )�1:Next, we haveX
�0 Q( 12 ; Pn
v ; �J0 1;�)(NPv )n
w = 1 +X
�1 a(Pn
v )� a(Pn
�1v )q� 12v CJ0; 1(Pv) + a(Pn
�2v )q�1vqn
wv= 1 + 1�v � �v "��v � q� 12v CJ0; 1(Pv) + (�vqv)�1� �nvqnwv (1� �nv q�nwv )�1� ��v � q� 12v CJ0; 1(Pv) + (�vqv)�1� �nvqnwv (1� �nv q�nwv )�1#:



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 21After fa
toring out (1� �nv q�nwv )�1(1� �nv q�nwv )�1 from the entire expression and simplifying, we obtainX
�0 Q( 12 ; Pn
v ; �J0 1;�)(NPv )n
w= (1� �nv q�nwv )�1(1� �nv q�nwv )�1 "1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:Therefore the sum over Jn 2 I(S) be
omes(6.3) XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw =Yv (1� �nv q�nwv )�1(1� �nv q�nwv )�1 n�1Yk=1 Yvordv(J)�k (n) 1(P k�1v ) �a(P k�1v ) + a(Pn�k�1v )q�nwv �� Yvordv(J)�0 (n)"1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:In order to express this sum in terms of L(nw; �; symn), we multiply through by the remaining fa
tors in(6.2) and their re
ipro
als. If we putRv(n;w;�) = Y1�j�n�1(1� �n�jv �jvq�nwv )= ((1� �n�2v q�nwv ) � � � (1� �vq�nwv )(1� �vq�nwv ) � � � (1� �n�2v q�nwv ) if n is odd;(1� �n�2v q�nwv ) � � � (1� �vq�nwv )(1� q�nwv )(1� �vq�nwv ) � � � (1� �n�2v q�nwv ) if n is even;then we have XJn2I(S) Q( 12 ; J ;�; �J0 1)(NJn )nw = LS(nw; �; symn)RJ0(w;�);whereRJ0(w;�) = n�1Yk=1 Yvordv(J0)=kRv(n;w;�) 1(P k�1v ) �a(P k�1v ) + a(Pn�k�1v )q�nwv �� Yvordv(J0)=0Rv(n;w;�)"1 + a(Pn�2v )qnwv � a(Pn�1v )CJ0; 1(Pv)qnw+1=2v + a(Pn�2v )qnw+1v + 1q2nw+1v #:The fa
tor L(nw; �; symn) 
onverges absolutely for Re(w) > 1n + 19 . In the fa
tor RJ0(w;�); the produ
tover pla
es v with Pv j J0 is a �nite produ
t, and therefore it does not a�e
t 
onvergen
e. In the in�niteprodu
t over pla
es v with Pv - J0, for a given pla
e v, it is 
lear that the termsa(Pn�2v )qnwv and a(Pn�1v )CJ0; 1(Pv)qnw+1=2v



22 BEN BRUBAKER, ALINA BUCUR, GAUTAM CHINTA, SHARON FRECHETTE, AND JEFFREY HOFFSTEINdetermine the region of 
onvergen
e. Using the fa
t thata(Pv)�� q1=9+�v ;([12℄) we see that the �rst of these two terms is in fa
t more restri
tive. We �nd that this in�nite produ
t,and hen
e RJ0(w;�); 
onverges absolutely for Re(w) > 79n + 19 . Now suppose there are only �nitely manytwists for whi
h LS( 12 ; �; �J0 1) is nonzero. ThenLS(nw; �; symn) XJ02I(S)nth-power free "(J0) 2(J0)LS( 12 ; �; �J0 1)(NJ0 )w RJ0(w;�);will 
onverge absolutely for Re(w) > 1n+ 19 . (Note that sin
e we are restri
ting our attention to the 
ase n � 3,this would mean that there exists some Æ > 0 su
h that the sum 
onverges absolutely for Re(w) > 12 � Æ.)7. Nonvanishing twists (Proof of Theorem 1.1)We now use the results of the previous se
tions to prove Theorem 1.1. We require the following lemma.Lemma 7.1. Suppose the Diri
hlet series L(w) =X b(d)dwis absolutely 
onvergent for Re(w) > 1=2�Æ; for some positive Æ: Suppose further that there exist Diri
hlet se-ries M1(w);M2(w); : : : ;Mr(w) and fun
tions 
1(w); 
2(w); : : : ; 
r(w) whi
h satisfy the following 
onditions:(1) Ea
h Mj(w) is absolutely 
onvergent for Re(w) > 1=2� Æ:(2) Ea
h 
j(w) is holomorphi
 for Re(w) > 0; and for all k > 0; � > 1=2 we have the estimate
j(� + it) <<k;� jtj�k; as jtj ! 1:(3) There is the fun
tional equationL(w) =Xj 
j(w)Mj(1� w):Then L(w) is identi
ally zero.To apply the Lemma, we set s = 12 and view the fun
tions Zi(s; w;�;  1;  2) for i = 1; 2 as Diri
hletseries in w: In parti
ular, after repeated appli
ations of the fun
tional equations, the Diri
hlet series L(w) =
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tional equationL(w) = X�1;�22bR
 
�1;�2(w)Z2(1=2; 1� w;�; �1; �2)for some 
olle
tion of fun
tions 
�1;�2 satisfying 
ondition 2 of Lemma 7.1. (To see this, apply the w-fun
tionalequation, followed by the s-fun
tional equation, followed by the w-fun
tional equation to Z1(s; w;�; 1; 1) ats = 12 :) If there are only �nitely many id�ele 
lass 
hara
ters �J0 of order n su
h that L(1=2; � 
 �J0) isnonzero, then as established in the previous se
tion, there exists a positive Æ su
h that the Diri
hlet serieson both sides of the above equation are absolutely 
onvergent for Re(w) > 1=2� Æ: It follows that L(w) isidenti
ally zero and the proof of Theorem 1 is 
omplete.Proof of Lemma 7.1: Suppose L(w) is not identi
ally zero. Choose Æ0 with 0 < Æ0 < Æ su
h that L(1=2+Æ0) =A 6= 0: Then L(1=2 + Æ0 + it)�Xj j
j(1=2 + Æ0 + it)j � jMj(1=2� Æ0)j �! 0 as jtj ! 1:Choose X so large that �����L(1=2+ Æ0)�Xd<X b(d)d1=2+Æ0 ����� < A=3: Choose t0 so that ��d�it0 � 1�� < 1=3 for alld < X: ThenjL(1=2 + Æ0 + it0)� L(1=2+ Æ0)j � �����Xd<X b(d)d1=2+Æ0 �1� 1dit0 ������+ ������Xd�X b(d)d1=2+Æ0 ������ < 2A=3:Hen
e jL(1=2 + Æ0 + it0)j > A=3: However, we 
an �nd arbitrarily large su
h t0: This 
ontradi
ts the fa
tthat L(1=2 + Æ0 + it)! 0 as t!1: Referen
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