NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS
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ABSTRACT. Let 7 be a cuspidal automorphic representation of GI.(2, Ax ). Suppose there exists a single
non-vanishing nt" order twist of the L-series associated to m at the center of the critical strip. We use the
method of multiple Dirichlet series to establish that there exist infinitely many such non-vanishing n*" order
twists of the L-series of the representation at the center.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let E be an elliptic curve defined over a number field K. The behavior of the rank of the L-rational
points E(L) as L varies over some family of algebraic extensions of K is a problem of fundamental interest.
The conjecture of Birch and Swinnerton-Dyer provides a means to investigate this problem via the theory
of automorphic L-functions.

Assume that the L-function of E coincides with the L-function L(s, ) of a cuspidal automorphic repre-
sentation of GL(2) of the adele ring Ax . Let L/K be a finite cyclic extension and x a Galois character of this
extension. Then the conjecture of Birch and Swinnerton-Dyer equates the rank of the y-isotypic component
E(L)X of E(L) with the order of vanishing of the twisted L-function L(s,7 ® x) at the central point s = %
In particular, the x-component E(L)X is finite (according to the conjecture) if and only if the central value
L(3,m® x) is non-zero.

Thus it becomes of arithmetic interest to establish non-vanishing results for central values of twists of
automorphic L-functions by characters of finite order. For quadratic twists this problem has received much
attention in recent years. In this paper we address this question for twists of higher order. Our main result

is contained in the following theorem.

Theorem 1.1. Fiz a prime integer n > 2, a number field K containing the nt™ roots of unity, and a suffi-

ciently large finite set of primes S of K. Let w be a self-contragredient cuspidal automorphic representation
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of GL(2, Ak ) which has trivial central character and is unramified outside S. Suppose there exists an idéle

class character xo of K of order n unramified outside S such that

L(},7® xo) # 0.

Then there exist infinitely many idéle class characters x of K of order n unramified outside S such that

L3, m®x) #£0.

We refer the reader to Section 2 for the definition of the finite set S. Fearnley and Kisilevsky have
proven a related result for the L-function L(s, E) of an elliptic curve defined over Q. In [5] they show that
if the algebraic part Lalg(%,E) of the central L-value is nonzero mod n, then there exist infinitely many

Dirichlet characters x of order n such that L(%, E, x) # 0. We note that if L(5, E) # 0 then the hypothesis

L™8(4, E) # 0 mod n is satisfied for all sufficiently large primes n. We find it interesting (and frustrating!)
that, although the methods of [5] (based on the arithmetic of modular symbols) are completely different
from the methods of this paper, both our result and theirs require some nonvanishing assumption. An
unconditional result in the cubic case (n = 3) has recently been established in [1]. We comment more on
this below.

The quadratic case (n = 2) is particularly accessible because, by the results of Waldspurger [17], Kohnen
and Zagier [13], and others, the existence of a quadratic character y such that L(%,ﬂ' ® x) # 0 implies
the existence of a metaplectic cuspidal automorphic representation 7 on the double cover of GL(2, Ak )
corresponding to w. The correspondent 7 is related to « in the following way. If L(w,7 ® 7) denotes the

Rankin-Selberg convolution of 7 with itself then

L(}, 7@ X)) Pa(m)

(1.1) Lw,7o7) =) T ,

d#0

up to corrections at a finite number of places. Here d = dyd3, with dy square free, the X((ii) are quadratic

characters with conductor dy, and the P;(7) are certain non-zero correction factors which are trivial when
ds = 1. We defer a precise definition of such objects until Section 2. These correction factors are small in
the sense that, for any fixed dp,

Pdgd2 )

(1.2) the sum Z Nde converges absolutely for any w with Re(w) > %
270
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This connection between m and 7 causes the existence of one non-vanishing quadratic twist to imply the
existence of infinitely many dy such that L(%, T® XE;)) # 0. This is because if T # 0 then L(w, 7 ® 7) has
a pole at w = 1. However the right hand side of (1.1) will converge at w = 1 if there are only finitely many
non-vanishing quadratic twists.

For n > 2 there are no known results relating n'" order twists of the L-series of 7 to Fourier coefficients
of other automorphic objects. In fact even a conjectural generalization of the results of Waldspurger to
the case n > 2 remains mysterious. However, in this paper we describe how a generalization of (1.1) can
still be found by associating 7 to a certain metaplectic form. This generalization is at least sufficient to
answer the question of whether one non-vanishing twist of a given order implies the existence of infinitely
many non-vanishing twists of that order. It may ultimately shed some light on the question of the correct
generalization of Waldspurger’s results, but at the moment this aspect remains opaque.

We will describe in detail a Dirichlet series that has the rough form
5 L(s, 7 @ Xy )e(do) Pa(s, )

1.3 70 (s, w) = .
(1.3) (s, w) Ng© ,

d=£0

where d = dyd? with dy n'" power-free (see Section 2). Here £(dy) denotes an n'" order Gauss sum corre-

(n)

sponding to the character x, * and Py(s, ) again denotes certain correction factors which are trivial when

d, = 1. These are also small, in the sense that for Re(s) > ]5,
P n|S, T 1 1
(1.4) the sum E % converges absolutely for any w with Re(w) > — + 9
nw n
d,#0 n

The fraction § comes from the bound of Kim and Shahidi [12].

The series Z(") (s, w) is “natural” for the following reasons. First, when n = 2 and 7 exists, Z(”)(%,w)
agrees at almost all places with the Rankin-Selberg convolution L(w,7 ® 7). Second, after an interchange
in the order of summation, it has an automorphic interpretation as a Rankin-Selberg convolution of 7 with
an Eisenstein series on the n-fold cover of GL(2). In the case n = 2 | this automorphic interpretation of
Z™)(s,w) was exploited by Friedberg and Hoffstein [8]. In the case n = 3 the automorphic interpretation
was used by She [16] to establish a non-vanishing result for cubic twists of one particular 7.

In this paper we do not use the automorphic interpretation of Z(”)(s7 w). Instead we take the far easier

approach of the method of multiple Dirichlet series (discussed in brief at the conclusion of this section).
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Using this method we establish an analytic continuation and exhibit a finite group of functional equations
for Z(") (s,w) in the two variables s and w. Specializing to s = 1, we obtain a Dirichlet series Z(™ (1, w)
with a functional equation in w. The condition (1.4) implies that if L(, 7 ®X§:)) # 0 for only finitely many
dp then Z(”)(%,w) must converge for Re(w) > L 4+ 1. We then show that for n > 3 (i.e. L+ § < 1), this
is incompatible with the functional equation. It immediately follows that the existence of one non-vanishing

twist implies the existence of infinitely many.

The method can easily be taken a bit further to establish a mean value result of the form, for Re(s) > %,

S|=

(1.5) S L(s,m @ xy) e(do) Pa(%,m) W <%> ~ o(s, )X T+,
where W is any suitable smoothing function. The constant ¢(s, ) is a very interesting function; it is a simple
multiple of L(s + 2]—”,71' ® 6(™), the Rankin-Selberg convolution of 7 with the theta function on the n-fold
cover of GL(2), evaluated at the point s + ;—n When n =2 and s = %, the series L(%, 7 ®6) is essentially
the symmetric square L-series of m evaluated at 1, the edge of the critical strip. Thus in this case the L-series
does not vanish, and simple conditions on the sign of the functional equation of 7« determine whether or not
c(5,m) equals zero. Because of this, unconditional mean value and non-vanishing results can be derived, as
was done in [8]. For n > 2, however, the L-series L(% + %ﬂT ® 0(”)) does not have an Euler product and
is evaluated at a point inside the critical strip. Thus the question of vanishing becomes quite subtle. It
is because of this that we cannot yet eliminate the possibility that the entire class of twists L(%,ﬂ' ® YE;;))
vanishes identically. In [1] a different multiple Dirichlet series is constructed, specific to the case n = 3. In
this case the (cubic) Gauss sum is removed from the numerator and the constant ¢(s, ) becomes essentially
L(3s,m,sym?). As a consequence unconditional non-vanishing and mean value results can be obtained in
the case n = 3. The question of generalizing this method to » > 4 remains open and extremely interesting.

We close the introduction with a brief overview of the method of multiple Dirichlet series. Multiple

Dirichlet series are functions of several complex variables of the form

These can be considered, according to the order of summation, as a Dirichlet series in any one of the variables

whose coefficients are again Dirichlet series. For example, in (1.3) the multiple Dirichlet series Z(™) (s, w) is

(n)

a Dirichlet series in the variable w with numerator L(s, 7 ® Xy,")e(do) Pa(s, ), a family of Dirichlet series in
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the variable s. If a component Dirichlet series possesses a functional equation, then the multiple Dirichlet
series inherits a corresponding functional equation. Interchanges in the order of summation may reveal
new families of Dirichlet series in the numerator with new functional equations. Interchanging the order of
summation in (1.3) produces a Dirichlet series formed from n!* order Gauss sums. Such series arise in the
theory of Eisenstein series on the n-fold cover of GLy as introduced by Kubota in [14], and extended by
Patterson [15] and Kazhdan-Patterson [11].

Classical convexity estimates on the constituent Dirichlet series give a region of absolute convergence for
the multiple Dirichlet series. Once exact functional equations are obtained, one can apply them to the domain
of convergence to obtain a new domain which has a non-empty intersection with the original. This provides
the analytic continuation to the union of the original domain and its translates. An analytic continuation to
the convex hull of this union follows from a convexity theorem for several complex variables. In the case of
Z(”)(s, w), we will show that we obtain a region whose convex hull is all of the complex space C2.

This approach was first detailed by Bump, Friedberg, and Hoffstein in [2] and [3] where instances of
multiple Dirichlet series possessing these properties were catalogued. Fisher and Friedberg [6] generalized
these arguments to quadratic twists of automorphic forms on GL(2) over arbitrary function fields. This
method was also carried out by Friedberg, Hoffstein and Lieman [9] on a multiple Dirichlet series whose
coefficients were weighted n'" order Dirichlet L-series in order to determine mean-value estimates for these
L-series. Finally, see [1] for a different and considerably more complicated construction in the case n = 3
and GL(2).

The authors thank Sol Friedberg and Adrian Diaconu for many helpful discussions and the referee for a

very careful reading of this work.

2. PRELIMINARIES AND OUTLINE OF METHOD

Fix n > 2 and let K be a number field containing the n'®

roots of unity. Let O denote the ring of
integers of K. Let m be a cuspidal automorphic representation of GL(2,Ax ). Let Sy be a finite set of
non-archimedean places such that S; contains all places dividing n, the ring of Sy-integers Og, has class

number 1, and 7 is unramified outside S¢. Let So, denote the set of archimedean places and let S = Sy US.
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Let (%) be the power residue symbol attached to the extension K({/a) of K. We extend the n'" power
residue symbol as in Fisher and Friedberg [6]. We review the definition.
For each place v, let K, denote the completion of K at v. For v non-archimedean, let P, denote the

corresponding ideal of O, and let ¢, = NP, denote its norm. Let C = [] P with n, > 1 sufficiently

veS;y
large so that if a € K,, and ord,(a — 1) > n,, then a € (K;*)". Let H¢ be the ray class group modulo C
and let R = He ® Z /nZ. Write the finite group R¢ as a direct product of cyclic groups, choose a generator
for each, and let & be a set of ideals of O prime to S which represent these generators. For each FEy € &
choose mg, € K* such that EqOs, = mg,0s,. Let & be a full set of representatives for Rc of the form
[z, ce, E)"™, with ng, € Z. If E = [g,ce, E," is such a representative, then let my = [z, ce, m%’jo.
Note that EOgs, = mgOs, for all E € £. For convenience we suppose that O € £ and mep = 1.

Let J(S) denote the group of fractional ideals of O coprime to S¢. Let I,.J € J(S) be coprime. Write

I =(m)EG" with E € £, m € K*, m = 1mod C, and G € J(S) such that (G,J) = 1. Then as in [6],

mmeg

7 ) is defined, and if I = (m')E'G"'" is another such decomposition, then

the n'" power residue symbol (

E'=Fand (232) = (22z),

mmeg

e ) I is n'M-power-free, we denote

In view of this define the nt" power residue symbol (%) by (%) = (
by xr the character x,;(J) = (%) This character depends on the choices above, but we suppress this from
the notation. Let Z(S) denote the integral ideals prime to Sy. Let m be as above and let Lg(s, 7 ® x.s) be
the L-function for 7 twisted by the character xj, with the places in S removed. (Note that the Euler factor
is also 1 at the places dividing J.) If £ is any idele class character then the twisted L-function L(s,7 ® &)

satisfies a functional equation
(2.1) L(s,m@€) =e(s,m@EL(1-s,70E ),

where (s, 7 ® &) is the epsilon factor of 7 ® &.

Proposition 2.1. Let F,.J € T(S) be n'"-power-free with associated characters x, Xy of conductors g, f;

respectively. Suppose that x5 = xgxr with I € K*, I =1 mod C. Then

(2.2) e(s,m @ x7) = £(1/2,x1)* X (51 /iE) (Nis /NjE )2 e(s,m @ xE).
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Here £(1/2, x1) is given by a (normalized) n'" order Gauss sum, as in Tate’s thesis. We henceforth assume

that 7 has trivial central character (and is self-contragredient). Let

LS(S77T) = H(]- - O‘vq;s)71 (1 - Bvq;s)71

v¢S I€7(S)

I
—
AN
S~
\-;\/

where a,, and 3, are the Satake parameters associated to = at v. For J in Z(S), write J = JoJ?, with Jy
the n'™ power free part of .J. For I in Z(S), let I represent the part of I coprime to Jg.

For ideals I and J, define the function G(I,J) by

Gu.n= T[] awe, P,

ord,,(vl):oz
ord, (J)=p
where, for a, 5 > 0,
1 if =0
¢ Mg, —1) ifa>B, B=0m), B>0
(2.3) G(P2, Py =¢ )" ifa=4-1, B=0(mn), B>0
g’ " ifa=8-1, B#0(m), B>0
0 otherwise.

To simplify notation, let ( denote the Dedekind zeta function of K and (s the zeta function with the places
in S removed.

Define the following pair of multiple Dirichlet series:

a(1)y1 (D2 (J)G(L, J)X g, (T )e(Jo)
(NI)* (NJ)»

(2.4) Zh (s, w;m, 1, 9¥2) = (s(nw —n/2 + 1) Z

I,JEL(S)

and

a(1)y1 (1) ())G(I, J)x 1, (1)E(Jo)
(NI)s (NJ)w ’

(2.5) Zy(s,w;m,h1,%92) = (s(nw —n/2+ 1) Z

1,J€Z(S)
where 11,12 are two idele class characters of R (hence of order dividing n and conductor dividing C).
The notation (.Jy) simply abbreviates (%, x.,). (Note that Z; and Z, are essentially dual objects up to
conjugation of xz, and e(.Jp).)

By summing first over .J, we have

(26) Zl(sﬂv;ﬂ-:dJl:w?) = Z
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where

P2 ()G (L, T)X 4, (1)e(Jo)
(NJ)®

(2.7 D(w,I,v3) = (s(nw —n/2+1) Z

JEI(S)

is a Dirichlet series obtained from the Fourier coefficient of an Eisenstein series defined on an appropriately
restricted congruence subgroup I' of the n-fold cover of GL(2). (This motivates the definition (2.3).) These
metaplectic Eisenstein series were first formulated by Kubota (cf. [14]) and were studied in further detail
by Kazhdan and Patterson in [11]. In particular, Kazhdan and Patterson exhibited a functional equation as
w — 1 — w and determined the polar structure: D(w,I,12) has possible simple poles at w = % + % and is
holomorphic elsewhere. (For a general introduction to the subject, we refer the reader to [10].)

Using the above theory together with one-variable convexity results, one sees that for every € > 0

(2.8) [(w=3+ L) (w =3 = L)D(w, 1,¢)] < max{1, (NT)(!-Relw))/2ke (Np)l/2=Re(w)tey

The implied constant also has a dependence on w, and the bound is uniform for w in compacta. Hence,
we can obtain a region of absolute convergence for our multiple Dirichlet series as a convolution of a GL(2)

automorphic L-series and the above series D(w, I,1)2). That is, for i = 1,2 we define

(29) Zi(87’11};7'[',’(/)]7’l,[}2) = 8(1 - S)('LU - % - %)(w - % + %)Zi(87w;7'[',’(/)]7’l/}2)7
and it follows from (2.8) that Z(s,w; m,11,12) for i = 1,2 is holomorphic in the region

(2.10) R' = {(s,w)| Re(s) > max{12, 22 — Belw) 29 Ro(y)) ).

918 2
This is demonstrated carefully in Section 5.
Our multiple Dirichlet series have another fruitful interpretation upon interchanging the order of sum-

mation, so that the inner sum is over ideals I € Z(S). To present this form, first define the correction

polynomials Q(s, J;m,X ,11), for ideals J =[], Pv"rd“(']), by

3

(211) Q(S7J;7T7YJ0’¢)1) = H Q(S7P:FY7YJO’¢)1;7T) H (n’y+k71)57"7+2k71

v — v
ord, (J)=nvy k=1 ord, (J)=nv+k v

—

T (a(Pm““)wl <P51>> |

where

(212)  Q(s, PM7,x;m) = a(P)g,” "7 — (P )y (P)g,  "THD*

ny _q_

—a(P" " HX(Py)ay”

ny

(ny—1)s + a(PJW,Q)quflfnfys:
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and where we make the convention that a(z) = 0 for all non-integral zz. Then we will show the following

result in Section 3.

Proposition 2.2. In the region Re(s) > 10/9 and Re(w) > 1

(Jo)2(J)Ls(s, m ® X 5,41)
(NJ)w

(2.13) Zy(s,w,mh1,102) = (s(nw —n /2 + 1) Z

JEI(S)

Q(S7 J) W:YJOUJI);

and

E(Jo) 2 (J)Ls(s, ™ & Xoth1)
(NJ)U}

(2.14) Zy(s,w, m;1,19) = (s(nw —n/2+ 1) Z

JEI(S)

Q(S: Ja T, XJO’I/J])‘

Given the results of Proposition 2.2, we can use upper bounds on the Fourier coefficients of our L-series
and the finite Dirichlet polynomials Q, together with standard one-variable convexity arguments, to show

that the functions Z(s w, ;1,12) for i = 1,2 are holomorphic in the region
R" = {(s,w)| Re(w) > max{1, > — Re(s),2 — 2Re(s)} }.

Since R' and R" have a non-empty intersection, we see that the functions Zi(87’LU,7T;’(/)],’I/J2) for i = 1,2

have an analytic continuation to the union of these regions, given by

(2.15) R = {(s,w)| Re(w) > max{2 — 2Re(s), &2 — Re(s), 2 — Re(s) 20 _ Re(s)} }.

We use the two interpretations of the multiple Dirichlet series to exhibit functional equations as w +— 1—w
and s — 1 — s. Translating the region R under these equations will lead to an analytic continuation. By
adding in the contributions at the infinite places, we can state a precise formulation of the functional equation
inherited by the multiple Dirichlet series from the Eisenstein series. Define

def 1/2 nq T2 . 1 i nw—2+1
(2.16) T, (w) % [(2r)~1/2pmw—3+ ] [[rw— 5+ ) Dw™ 2",
Pl 2 n
where D g denotes the discriminant of the field K and rs is the number of pairs of complex embeddings. This
set of gamma factors comes directly from the Fourier analysis and multiplication formula for the gamma
function. Then I'),(w)D(w,I,1)2) has a functional equation as w — 1 — w, which we exploit to obtain the

following proposition.

Proposition 2.3. In the region R given by (2.15),

Da(l—w)Zi(s+w—1/2,1—wimr, b)) [T (1=ap/> 7 7™) =" ®(w, b, )T (w) Z (s, wi m, 0011028, ),

vESy 13
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where each ®(w, s, €) is a function of w which is bounded in vertical strips of bounded width. The sum is

taken over all characters & with conductor dividing C and order dividing n.

Now equipped with one functional equation, we go in search of a second. By interchanging the order
of summation, decomposing the sums in (2.4) and (2.5) according to primes dividing J, we will view our
Dirichlet series as weighted sums of L-series in s associated to 7. Thus our series inherit functional equations
as s = 1 —s. To make this precise, we must first include the appropriate Gamma factors which complete
the L-series. Define T'k(s) by

Dk|
(2m)r=

(2.17) T (s) = ( )sr(s +iv)"2D(s — iv)™2,

where again Dg is the discriminant of K, ro denotes the number of pairs of complex embeddings in our

totally complex field K, and % + 12 is the eigenvalue corresponding to the automorphic representation .

Proposition 2.4. In the region R,

(2.18) H (1 — %) <1 — W) Tk (s)(s(nw + 2ns — 37” + 1) Z1(s,w,m, ¢1,19)
UGSf v v
= Z B(Sal/)llf)FK(]' - S)CS(n“) o % + 1)Z2(1 — S, w+ 25 — 1;”:@]71!)211]]25)
€€Re

where the functions B(s;11,€) are bounded in vertical strips of bounded width.

The proofs for these two propositions are completed in Section 4. Because we will apply both functional
equations to our multiple Dirichlet series in order to obtain an analytic continuation, we would like to
define I'-factors at the infinite places which are invariant under both functional equations as s = 1 — s and

w +— 1 —w. Thus, according to the previous propositions, we define

(2.19) I(s,w) =Tk (s)Tr(s+w —1/2)Tp(w)Ty(w + 2s — 1),
and define
(220) Z;(S,’LU;’/T7’I/J],'(/)2) :F(s,w)CS(nw—FQns— %ﬂ +1)ZZ‘(S7’IU;7T,’(/)]7’I/J2) for i = 172

The pair of functional equations from Propositions 2.3 and 2.4, repeatedly applied to the region R, provide
an analytic continuation to all of C2. This is demonstrated in Section 5. We will show in Section 6 that,

when specialized to s = 1/2, the resulting expression is absolutely convergent for w in some right half-plane.
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The functional equation together with this convergence will allow us to show in Section 7 that if there is a

single nonvanishing twist at s = %, there must in fact be infinitely many nonvanishing twists at s = %

3. INTERCHANGING THE ORDER OF SUMMATION — A PROOF OF PROPOSITION 2.2

Proof of Proposition 2.2: We give the proof for (2.13), noting that the proof of (2.14) follows identically.
First, we consider the expression for 7, (s, w;m, 11, 19) given in (2.4). Using the bound |a(T)| < (NI)'/9+¢

for the Fourier coefficients, as well as the fact that |G(I,.J)| < (NJ)'/?, we see that 21(s7w;7r,1/)171/}2)

converges absolutely and uniformly in the region of C? satisfying Re(w) > 3/2 and Re(s) > 2. Thus the

interchange of summation is allowed in this smaller region. Then, using the bound given in (2.8), we see

that in fact the series defining Zl(s, w; , 11, 19) converges to an analytic function in the region Re(s) > 19—0
and Re(w) > 1.

Fix an ideal J in Z(S) and decompose it according to J = JoJ? where Jy = J;J3....J" | again denotes
the n*™ power free part of J. Let v € S be a place such that ord,(JJ) = nv, so that we may write J = P"7.J'
with (J', P,) = 1. We must analyze the resulting object G(I, J).

Writing I = P’ with (I', P,) = 1, gives

a(D)in (1)
2

(N)G(I, I)X s, (De(Jo) _ ) a(l’)wl(l’)%(J)G(I',J’)Y.fo(f’)E(Jo)X
(NI)* (NJ)®

o : (NI/)s(NJI)w

ord, (I')=0

IeZ(S)

(P (PGP, PI)X g, (P))
&

NP ))\s+nvw
A>0 v

We first evaluate the sum over A. If v = 0, the sum becomes

Z( DL (P)X g, (P7)

_ W -
(NPU) L (877T®XJ0¢1)=

A>0
where L) (s, 7 ® X,%1) denotes the Euler factor associated to the place v in the L-series.
If v > 1, then using (2.3) we obtain

)3 a(P)y (PGP}, PIX g, (Py) _ alPy ) (P71 )X (P77 1)

As+nyw nyw+(n *"A’
A>0 q’l) v q’U’Y +( T ]) !
(3.1 - A A A
Z qv - l)a(Pv )Ull (Pv )X-](] (Pv )
n’wa—+1 qi\s .

A>ny
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We wish to sum this geometric series, pulling out a factor of L(”)(s, T ® X,%1). We must therefore write
the Fourier coefficients a(P.) in terms of the v'® Satake parameters. (Recall that for v € S, @, 8, = 1 and

oy + By = a(P,).) We have
)\+1 6)\+1

)
1) 6 v

— —1 —
L(v)(S7 TR Y.]Odjl) — <1 - Ay X g, (I;Z)d)l (Pv)> <1 - BUXJO(

= (1= a(P)Xy (P)1(P)ay " + Xy (Po) 1 (Py) g, %)

Substituting these definitions into the latter sum of (3.1) and evaluating the geometric sums, we have

a(P}) =

and

PU>¢1<PU>) -

S
qv

5~ AP (PR (RY) 1 [Z a3, ( m](m)ZB*“XJ(J(W](PM

A>nry qv ay — By If\Zn’Y qv A>ny qv
1 a:}zw+] . _ an+] .
= [0 - e R (R = B (1 (P (P |
LW (s, 7,X,%1) n n s
= S (@) — PR (P (P)a, )

Therefore, we may rewrite the entire equation (3.1) as

)3 a(P})yr (PY)G(PY, Pr7)X 4 (P)

As+nyw
Qv

A>0
1

nvw+n’ys7—+l [
v

*a(Pq?771)¢1( Py)x.1,(Py) qy

(g = 1) [a(P7) = a(P )1 (PR, (P)a, *) 1O (5, m @ X, 00)]

LY (5w © %, t0)

n’yw+nv57"2—7+l
v

(=a(PP N (Po)xay (Po) 4y [1 = a(Po)X g, (Po)1 (Po)a,

+XJ, (Pv)Qd)l (Pv)QqJQS] + ((Iv - 1) [a(PJW) (Pnﬁy 1)¢1( v)XJO (R))q;g)]) .
Expanding in the second bracket, and using the relation
a(Py" " Na(Py) = (ew = Bo) " () = By (e + Bo) = a(P)7) +a(P7 ),

we find that the above expression equals

LW (s, ® X ,%1) [

n’yw+nv57%+l
v

wa(P7) = a(Py7 DX (Po)n (Pu) gy~

(Po)ay +a(P772)] .

=

—a(P7 )X, (Py)
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Putting it all together, we have

a(PY)s (PGP, PI)R,(PY)
2

As+nyw
quv

A>0

L(U)(S TR Xy, ) L —nvs n
- s DU a(Pr) g " — (PR )R (P (P Y-

n - "24717 ny—1 n i,] nvs
a(PP Yy (PG (P "% a(Prr—)g,2 0

v

Recall the convention that a(z) = 0 for all non-integral . Then repeating the above process for all such

places v with P, not dividing .Jy, for any fixed ideal J we have

S(N'])w
I
_ LW (s, & X ,11) (D)1 (D)ps (J)G(L, J)R g, (D)e(Jo)
— ]J qg,yw Q(g P XJOwla ) z’: (NI)S(NJO)w 3
ord, (J)=nvy I1J5°

where Q(s, P, x.j,%1;7) is as defined in (2.12).

We must now repeat this analysis for the remaining sum over I such that I|J§°. Let v be a place such
that P,|Jo. That is, ord,(J) = ny + k, for some k € {1,2,...n — 1} and denote ord,(I) = A. Then, writing
I =PM'and J = PR ]’ we have
ny 4k

G(I7J) :G(R))\Il7pq?w+kjl) — qu 2 G(I’:J’); lfA:n’Y‘Fk—l
0, otherwise.

Moreover, in this case fﬁ; = (1) since P,|.Jy, so on(ﬁ;) = 1 Thus we may write

a(l)r (12 (J)G(T, J)e(o)
(33) ; (N[)e (NJ)U}
IlJ5°

(n*H—k‘,71)s+(n’y+k)mf%’“71 (NI/)S(NJI)U}

v

(a(PW’“)%(PW“)) S AT NGA I, (T)e()
(

I'P,)=1
I'|Jge

Repeating this for the remaining finite list of places v such that P,|.Jy, we have

) 3 (ODGUICE D) _ (s ﬁ II (f(Pﬁ’“’“)wl(R?W“) )

- (NI)s (N.J)w - ny+k—1)s+(ny+h)w— 221
1Jge = ord, (H)=ny+k
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Combining this result with the information from (3.2) and (2.12) and noting that our characters ; have

order n, the original series for fixed J takes form

a(T)yr (1) ()G(T, J)X 4, (T)e(Jo)
(33 2 NI (N

=¢e(Jo)2(J)Ls(s,m @ X ,91) X
IT€Z(S)

H Q(s, P, X 15 m) ﬁ H a(PPY R Dy (PFT)
- q:}’Y“’ - (n'y+k71)s+(n'y+k)w77"74';71 ’
ord, (J)=nvy ord, (J)=nv+k v

Summing over each ideal .J € Z(S), the result follows. [l

We will also need the following lemma.

Lemma 3.1. Let the notation be as above. The correction factor Q(s,J;m,X ;,41) satisfies the following

functional equation in s:

(36) Qs TimXthr) = (VoS3 oo T2 22 (o o T2 TQ( = 5, T, Xy ).

Proof: From the definition made in (2.12), one readily sees that at each prime ideal P, with (P,, Jy) = 1,
Q(s, Py X g1 m) = (4y7) 72 QL = 5, P, X0 015 7).

Moreover, for each of the prime ideals P, with P,|.Jy for any choice of k, we have the identity

(a(Pq?”*’“)z/n (PJ“)) ey pe) (“(PW'“WR” ) |

(ny+k—1)s—2ath-l (ny+h1)(1_s)_ 22tk
v v

The lemma therefore follows by combining the above identities. [

4. A FUNCTIONAL EQUATIONS: A PROOF OF PROPOSITIONS 2.3 AND 2.4

Proof of Proposition 2.3: This follows as an immediate corollary of the functional equation as w — 1 — w for
[ (w)D(w, I,19) given as Corollary I1.2.4 of [11]. Note the necessity of twisting by characters ¢ and 9
so that as the functional equation takes Eisenstein series to a linear combination of Eisenstein series at each
cusp, the form of our basic Dirichlet series remains the same. Our ®(w, &) is then essentially a scattering

matrix for this functional equation. (]

Recall from Proposition 2.2 that we have

e(Jo)2(J)Ls(s, m ® X 5,41)
(NJ)w

Zl (S,’U},ﬂ'; wl:wQ) = CS(”“) o 77,/2 + 1) Z

JEI(S)

Q(Sa Ja T, YJOwl)a
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and

E(Jo)Yp2(J)Ls (s, m @ x.10%1)
(NJ)w

ZQ(Sa’w:ﬂ-; 1/)171/12) = CS(”“) o 77,/2 + ]') Z

JEI(S)

Q(Sa Ja T, X.]del):

where Q(s,J;m, X ,%1) is the correction polynomial defined in (2.11). To facilitate the statement of the
results of this section, we extend the definitions of Z; and Z; to include arbitrary linear combinations of
characters in place of 11 and 4. In particular for E € £, let dr be the characteristic function of the class

E, and consider

1/2, Lgs(s, X
(4.1) Za(s, wsm, n, Biba) = (s —nj2+1) 3 L2 J"WQ((JN) ,)‘Z“‘ O,
JET(S) ’
J~E
where for notational convenience, we put
(42) L(S; ™ Y,],(/)l) = L(S7 ™R Y,]Oi/)]) Q(S7 J: W7Y.]0l¢)1 )

We determine the functional equation for this completed L-function in the following lemma.
Fix an ideal J in Z(S). Let Jy = JiJ3...J" | denote its n'™ power free part, and write Jy = IHE,
where E represents the class of Jy in R¢, and where Iy = 1 mod C. The conductor of xj, is given by

fio0 = J1J2 - Jn—1Cg, where CF is a constant depending only on the class E.

Lemma 4.1. With the notation as above,

1—2s o
) L(1 = 8,7 xs0)).

‘ e NJC
(4.3) L(s,m @ X¢1) = e(5,X1,) " €(5, ™ ® Xpth1) v <—F> ( -

fE Nfg
Proof: From (2.1), we have L(s, 7 @, ¢1) = (s, n @ X, 1) L(1 — 5,7 ® x.1,¢; ). We will evaluate the factor
e(s,m ® X ,01) = e(s, (m ® 1) ®X,,) using Proposition 2.1. The central character of 7 is trivial, therefore

the central character of 7 @ 1); is ¥?. Thus we have

1—2s
) (5,7 ® 1 ¥p)

Ji-- I C NJ; -+ J, 1C
(4.4) a(s,w@},ﬂ%):5(%7YIO)2¢]2( 1 1 E)( 1 . 1CE

fe fr
The lemma then follows by combining the above with the functional equation for Q(s, J;,X ;,%1) given in

Lemma 3.1. [

We are now ready to demonstrate the functional equation for Z; as s = 1 — s. The functional equation

in Z5 can be shown completely analogously.
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Proof of Proposition 2.4: Using Lemma 4.1, together with the fact that

1_ o, 1 1 1

= _ = 2
5(57)(10) E(§7XJO) _5(§7X.]0)5(§7XE) )

we see that

(4.5)  Zi(s,w;m, 1, 0p2)

_ 2(1/2, Iyt () Lis( — 5,7 © xay) 77 L= 5.7 @ )
AED 3 (N7 T I eex,m

JEI(S)
J~E

veS

where

NC 1-2s ) C
A = (T2) it (52) /200, 0 v ).

Recall that the L-series in the numerator is the completed L-series (see (4.2)).
1

To proceed further, multiply both sides of (4.5) by ——. Then
(4.5) Ugf LW (n —ns, 7 ®@¢7)
L(D)(l — 85T XJ@Q — |1+ avXJoEl (Py) 4ot O‘Z’ilXJoEl (Pz?il)
L) (n —ns, ™ ® Y}) g qq()””)(]*S)
v ) PU n-l ) Pn71
x |1+ 6 X.]o]di]s( ) 4ot Bv (A;.f):é](]](isz)) )
Qv Qv
Hence for each J and each v € Sy the term
LU = 5,7 @ xa,¢1) 1

L0V (n —ns,m@¢7) L0 (s,m @X,,11)
becomes a finite Laurent polynomial in ¢S whose dependence on J is through terms of the form x . (P,).

Since v € Sy and J is in a fixed class E of R¢, we have xj,(P,) = &,(E) for some character &, of Rc.

Similarly, the quotient

I1 LW —s,m@xst) _ Tr(l- 5)

(4.6) L0 (5,7 X ,11) Tk (s)

VES
where 'k (s) is defined as in (2.17), is independent of .J.

Since

Zf(87w;7'[',’(/)],’(/)2) = F(S}’LU)CS(TL'[U + 2ns — %ﬂ + 1)Z1 (87’111;7'[',’(/)]7’1)[}2)7



NON-VANISHING TWISTS OF GL(2) AUTOMORPHIC L-FUNCTIONS 17

where we recall that I'(s,w) is the complete set of Gamma factors defined in (2.19), we conclude that

IT (1- 2220 (1= 20 2t v =

vESy Tv
A(S,Z/Jl,E)Z;(l —s,w+ 25 — I;W7E]=¢2¢%6E)'

Moreover, the functions A(s; )1, F) are finite Laurent polynomials in N.J*. Summing over &,

Zf('g71l)77raw17w2) = Z Zf('9711)77raw17¢25E)

Ee&

so that

@n I <1 - %) <1 - %) Z7 (8, w,m, 01, 1b2)

veS; Qv Qu

= > B(s;¢n,8Z5(1 = s,w + 25 — 1w, §y, a1} ),

EERC

where B(s;1,£) is a linear combination of the A(s;1)1, E). This is precisely Proposition 2.4. [1

5. ANALYTIC CONTINUATION

We wish to analytically continue the functions Z(s w; T, 1, y) for i = 1,2 to C?, for each choice of 1,
and ,. This will be achieved using the functional equations for the Z}, along with properties of the series
D(w, I,v,) and the Dirichlet series L(s,m ® X,¢1). As above, we will restrict our attention to 21, as the
arguments for Z» will be almost identical.

First, we consider the expression for Z;(s,w;m,1¥1,12) given in (2.4). Recall that the bound |a(I)| <.
(NI)'/9+¢ for the Fourier coefficients, as well as the fact that |G(I, J)| < (NJ)!/2 implies that Z; (s, w; 7, ¢y, 1))
converges absolutely and uniformly in the region of C? satisfying Re(w) > 3/2 and Re(s) > 2. Then, as
mentioned earlier, by the bound given in (2.8), the series defining 7 (s,w; m, 1,1)2) converges to an analytic
function in the region Re(s) > 12 and Re(w) > 1.

Next, we examine the behavior of Zl(s,w;ﬂ',zpl,wg) when Re(s) < —1/9, utilizing the expression for
Z1(s,w;m, 1,19) given in (2.13). It will be convenient to work with this series as

Z1(5771’§7T:¢1=¢2): Z Zl(sa’w;ﬂ-7¢17(sz2)7

EcRc
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with Z;(s,w;m,¢¥1,5g19) as given in (4.1). The full Dirichlet series L(s, 7 ® X j¢1) satisfies the functional

equation given in (4.3). This functional equation involves gamma factors, as we have
(5.1) L(s,m@Xy,t1) = [[ LW (s,m @ Xy,01) = Tic(s)A(s) Ls (5,7 @ X001,

where A(s) = [[,cs, L™ (s, 7 ®X,,41). Combining (5.1) with (4.3), we obtain

Tr(l—s) A1 —

Tr(5) A(s)S)B(S’ E)ND)'* Ls(1 = 5.7 @ X 4.

(5.2) Ls(s,m @ X 1) =

where we put

| ‘ JO NC 1—-2
B@lD=d%Ym%““®Yth€(ﬁf>(Mz)

We set s = —1/9+ o + it in (5.2) and examine the factors on the right, as |t| — co. For the Gamma factors,

using a simplified version of Stirling’s formula given by
(o + it)] ~ [t~ 2eap(—m]t]) as |t] - oo,

we see that, as |t| — oo,

‘ T (10/9 — o — it)

~ Mt (22/9—40)ro
Lr(—1/9+ 0 +it) g

A(g—o—it

for some positive constant M. The factor 14(,7)) is a finite polynomial in powers of ¢7, hence it is

independent of ¢. Finally, the factor LS(% — o0 —it,m ® X ¢1) is bounded as a function of ¢, since, by

Rankin-Selberg theory, the full L-series is absolutely convergent when s = 70 Thus we see that Lg(—1/9+

o +it, ™ ® X 41 ) has polynomial growth as a function of ¢, for fixed o < 0.

For Re(s) < —1/9, we therefore have

(53) |Z] (87’LU;7T,'(/)]7’I/J2)| LeC ( )|t‘ (2/o= o) Z Z Re (w)+20—11/9—¢"’
E€Rc JEI(S
J~E

where ¢(o) is a constant independent of ¢, given by ¢(g) = nax {¢(o, E)}, with
€Rc

Now, the series on the right-hand side of (5.3) converges absolutely and uniformly on compacta in the region
satisfying Re(s) < —1/9 and Re(w) > 2 — 2 Re(s). Now by applying a generalized version of the Phragmén-
Lindel6f Theorem, we see that for s with real part between —1/9 and 10/9, Z, extends to a complex analytic
function, provided Re(w) > 19/9 — Re(s). Therefore, our region of analyticity for 7 (s,w;m, 1,1)9) is the

region R = {(s, w)| Re(w) > max{1, %> — Re(s),2 — 2Re(s)} }.
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To obtain a second region of analyticity for Z;, we again consider the expression for Z; in terms of

D(w,I,1s), as given in (2.6). If Re(w) < 0, then (2.8) gives
(=3 + $)(w = 5 = 5)D(w, Is)| L (NI)!/27Relw)te,

hence we see that

(NI)1/9+F (Nl)l/QfR.e(w) B Z 1

\Z1(s,w;m, 1, )| K Z (NI) (NI )s+Re(w)—11/18—¢"

IeZ(S)

I€Z(S)

The implied constant has a dependence on w with the bound uniform for w in compacta. Consequently,

the initial region of convergence of Z(s,w;m,v1,12), i.e. Re(w) > 1 and Re(s) > 12, is extended to

9
include the region of C? satisfying Re(w) < 0 and Re(s) > 29/18—Re(w). Then by a second application
of the Phragmén-Lindel6f theorem, we see that analyticity of Zl(s, w; , 11, 12) extends to the region R' =
{(s,w)| Re(s) > max{L, 2 — M, 2 —Re(w)} }.

These regions overlap, which means that 21 (s,w;m, 1,1)2) can be analytically continued on their union,
R =R UR". By an almost identical argument, Zg(s, w; m, 11, 19) also is analytic on the region R. Now we
may apply the functional equations for the Z;, represented for convenience as a : (s,w) = (1 —s,w+2s—1)
and 8 : (s,w) = (s +w —1/2,1 — w), to extend this region of analyticity. Applying the transformation «

to the region R, we obtain a region which overlaps R, and when we take the convex hull of their union, we

obtain the half-plane {(s,w)|Re(s) > 22 — Re(w)}.

18

Finally, applying the transformation 8 to this half-plane, we obtain another half-plane which overlaps it.

Therefore when we take the convex hull of their union, we obtain all of C?, as desired.

6. ABSOLUTE CONVERGENCE OF SUMS IN A RIGHT HALF-PLANE

We first analyze the individual expressions Zi(%,w;n,@/}],z/a) for i = 1,2. Again, we will restrict our
attention to Z; in what follows, as the convergence of Z, will evidently follow in the same fashion. To begin,
we separate the sum over J in terms of two pieces the first corresponding to n'" power free Jy, and the

second corresponding to .J,. From (2.13), we have

Zl <%,’LU;7T,'(/)]7’I/J2> =

Z E(JO)Zp?(JO)LS(%:F:Y.]le) Z Q(%:J;T“Y.Igwl).

ToeT(s) (NJ(] ) 0 (NJn )nw

n'P-power free

J.€T(S)
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In the expression for Q(%, J; 7, X 7,¥1) obtained from (2.11), we abbreviate the notation by defining

(6-1) CJo,wl(Pv) = ( v)djl( v) + Xlo( v)@l(Pv):
and writing

1
0 (5P Taghiw ) = alP) = alPE)ay i (P) + Py

For fixed .Jy, we show that the sum over .J, is absolutely convergent in a certain right half-plane in w. We

may write

Z Q(%w];mY]‘ﬂ/}l)

J,,,GI(S) (Ne]n)nw

S ) B O il IOTCG S R I o Y e C L
- k= v > (NPv)n’Yw v > (va)nvw
=1 ord, (J)=nvy+k 720 ord, (J)=nvy 720

and then analyze each of the geometric sums individually, using the Satake parameters. First, we have

3 a(PP RN (PYY) i (P oot — gt
(NP, ) a1 "

720 720

k—1
— wl(fij Bv) [aﬁ(l 7an;nm) Bk( 17]1 ;mu) 1:|

= (P (1 —alq, ™) (1 - Bre, ™) [aPETY) +a(Pr T g
Notice that we have two of the factors in the Euler factor corresponding to the non-archimedean places v in
the symmetric n'™® power L-function. Namely, for each such place v, we have the j = 0 and j = n factors in
the expression
(6.2) L(”)(mu,ﬂ', sym”) = H (1—alipgig ™t
0<j<n

Next, we have

_1
Z Q(%,qulv,%}owl;ﬁ) — 1+ Z a(PJW) B a(P;w*l)qv 2CJoﬂ/Jl (Pv) + a(Pgw?Q)qvil

nyw nyw
7>0 (NBy )™ y>1 v
:1+; (O/ 7(17%6’] (P)+(a q )*1) a:}z (liaannw)fl
oy — ,81] Ly v Jo, 1 v vYv qgw v Qv
671 n,—nw
- (Bv - Cfo 1P1( ) (B?)Qv) ) g ( B ) .
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After factoring out (1 — a”g, ™)~ 1(1 — B"q, ™) ! from the entire expression and simplifying, we obtain

Z Q(]E7R?’Y7YJO¢1;7{)

v>0 (NP, )
— (1 a” 7nw) 1(1 _Qn 77111))71 14+ (1(P5"72) o a(Pq?il)C,]g,zpl(R;) (Pn72) 1
= vy v Qv qnw nw+1/2 nw+1 2nw+1
v Qv qv qv

Therefore the sum over .J,, € Z(S) becomes

(63) Z Q(%:(J;TF:YJO’I/M) —

N']n)nw
Jn€L(S)

H(l - anq;nw) (1 _Aan 7mu ]j H wl(ijl) [(Z(Pjil) + a(Pszkfl)q;mu]

v

Ordv(J =k (n)
< 11 1+ a(Py %) a(Py ")Ceu (P) 4 a(Py?) L L
qnw nw-+1 /2 nw-+1 2nw+1
v v Qv qv Qv

ord, (J)=0(n)

In order to express this sum in terms of L(nw,nw,sym™), we multiply through by the remaining factors in

(6.2) and their reciprocals. If we put

Ry(n,w;m) = H (1 —atipig vy

1<j<n—1
_ (1 _ an 2(];”“]) . (1 avq;nw)( _ Bvq;nw) . (1 o 17)1 2(];”“]) if n is Odd,
(1—ay 2q,™) (1 = ayq, ™) (1 — g, ") (1 = Bug, ™) - (1 = B} %q, ™) if nis even,

then we have

Z ] T, XJO’l/Jl)

= Ls(nw,m,sym™) R j, (w; ),

€T
where
n—1
Ry (w; ) = [T BRwimw (@) [aPF) +a(Py g, ™
k=1 ord, (v](]) k
a(Py~?)  a(Py")Ciyu: (Py) | a(Py—?) 1
X H Rv(n7’LU§7T) 1+ e - qmu+f/2 qmu+1 q2mu+1

)
ord, (Jo)=0

The factor L(nw,w,sym™) converges absolutely for Re(w) > 1 + 1. In the factor Ry, (w; =), the product
over places v with P, | Jy is a finite product, and therefore it does not affect convergence. In the infinite

product over places v with P, t Jg, for a given place v, it is clear that the terms

Pn72 Pnfl Z)v
oI g AP (P)
q;r)zw q;r)zw+ /
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determine the region of convergence. Using the fact that
1/9+4+€
a(P,) <e 0,/

([12]) we see that the first of these two terms is in fact more restrictive. We find that this infinite product,

and hence R, (w; ), converges absolutely for Re(w) > % + %. Now suppose there are only finitely many
twists for which Ls(3,m,X,%1) is nonzero. Then

To)a(Jo) Ls(, 7, X
Ls(nw,7,s5ym™) 3 e(Jo)a( o(%\us()i,ﬂ X, ¥1)
Jo€Z(S) <0

n"hfpower free

Ry, (w;m),

will converge absolutely for Re(w) > L +1. (Note that since we are restricting our attention to the case n > 3,

L

L_s)

this would mean that there exists some ¢ > 0 such that the sum converges absolutely for Re(w) >

7. NONVANISHING TWISTS (PROOF OF THEOREM 1.1)

We now use the results of the previous sections to prove Theorem 1.1. We require the following lemma.
Lemma 7.1. Suppose the Dirichlet series

Lw)=>" b(gff)

is absolutely convergent for Re(w) > 1/2—4, for some positive 6. Suppose further that there exist Dirichlet se-
ries My (w), May(w), ..., M, (w) and functions y1 (w), y2(w), .

, Ve (w) which satisfy the following conditions:
(1) Each M;(w) is absolutely convergent for Re(w) >1/2 — 4.
(2) Each vj(w) is holomorphic for Re(w) > 0, and for all k > 0,0 > 1/2 we have the estimate

vi(o +it) <<po |t|7%, as |t| = 0.
(3) There is the functional equation

L(w) = Z’yj(w)Mj(l —w).

Then L(w) is identically zero.

To apply the Lemma, we set s = 2

5 and view the functions Z;(s,w;m,91,19) for i = 1,2 as Dirichlet
series in w. In particular, after repeated applications of the functional equations, the Dirichlet series L(w)
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Zi (3

3,w;m, 1,1) satisfies the functional equation

Lw)= Y Yeew)Z(1/2,1—wim &, &)
¢1,62€R.

for some collection of functions 7, ¢, satisfying condition 2 of Lemma 7.1. (To see this, apply the w-functional
equation, followed by the s-functional equation, followed by the w-functional equation to Z; (s, w;w,1,1) at
s = 3.) If there are only finitely many idele class characters x s, of order n such that L(1/2,7 ® x.,) is
nonzero, then as established in the previous section, there exists a positive § such that the Dirichlet series
on both sides of the above equation are absolutely convergent for Re(w) > 1/2 — 4. It follows that L(w) is
identically zero and the proof of Theorem 1 is complete.

Proof of Lemma 7.1: Suppose L(w) is not identically zero. Choose ¢’ with 0 < §' < ¢ such that L(1/2+44") =
A # 0. Then

L(1/2+ 0 +it) < Y |y(1/2+ 6 +it)| - [M;(1/2—8)| — 0 as [t| - .
J

b(d)

Choose X so large that |L(1/2+ 4") — Z q1/2+0"

d<X

< A/3. Choose tq so that |d~"° — 1| < 1/3 for all

d < X. Then

. : b(d) 1 b(d)
|L(1/2 4 6" +ity) — L(1/2 4 6")| < ;;W <1—dit0> + d;(W < 24/3.
< Z

Hence |L(1/2 + ¢' + itg)| > A/3. However, we can find arbitrarily large such ¢o. This contradicts the fact

that L(1/2+ ¢ +it) » 0 as t — oc. [
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