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1 Definition of the Multiple Dirichlet Series

In this section, we present general notation for root systems and the corresponding
Weyl group multiple Dirichlet series.

1.1 Root Systems

Let Φ be a reduced root system contained in V , a real vector space of dimension r.
The dual vector space V ∨ contains a root system Φ∨ in bijection with Φ, where the
bijection switches long and short roots. If we write the dual pairing

V × V ∨ −→ R : (x, y) 7→ B(x, y), (1)

then B(α, α∨) = 2. Moreover, the simple reflection σα : V → V corresponding to α
is given by

σα(x) = x−B(x, α∨)α.

Note that σα preserves Φ. Similarly, we define σα∨ : V ∨ → V ∨ by σα∨(x) = x −
B(α, x)α∨ with σα∨(Φ∨) = Φ∨.

For our purposes, without loss of generality, we may take Φ to be irreducible (i.e.,
there do not exist orthogonal subspaces Φ1,Φ2 with Φ1 ∪ Φ2 = Φ). Then set 〈·, ·〉
to be the Euclidean inner product on V and ||α|| =

√
〈α, α〉 the Euclidean norm,

where we normalize so that 2〈α, β〉 and ||α||2 are integral for all α, β ∈ Φ. With this
notation,

σα(β) = β − 2〈β, α〉
〈α, α〉

α for any α, β ∈ Φ (2)
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We partition Φ into positive roots Φ+ and negative roots Φ− and let ∆ =
{α1, . . . , αr} ⊂ Φ+ denote the subset of simple positive roots. Further, we will
denote the fundamental dominant weights by εi for i = 1, . . . , r satisfying

2〈εi, αj〉
〈αj, αj〉

= δij δij : Kronecker delta. (3)

Any dominant weight λ is expressible in terms of the εi, and a distinguished role in
the theory is played by the Weyl vector ρ, defined by

ρ =
1

2

∑
α∈Φ+

α =
r∑
i=1

εi. (4)

1.2 Algebraic Preliminaries

In keeping with the foundations used in previous papers (cf. [5] and [6]) on Weyl
group multiple Dirichlet series, we choose to define our Dirichlet series as indexed by
integers rather than ideals. By using this approach, the coefficients of the Dirichlet
series will closely resemble classical exponential sums, but some care needs to be
taken to ensure the resulting series remains well-defined up to units.

To this end, we require the following definitions. Given a fixed positive odd
integer n, let F be a number field containing the 2nth roots of unity, and let S be
a finite set of places containing all ramified places over Q, all archimedean places,
and enough additional places so that the ring of S-integers OS is a principal ideal
domain. Recall that the OS integers are defined as

OS = {a ∈ F | a ∈ Ov ∀v 6∈ S} ,

and can be embedded diagonally in

FS =
∏
v∈S

Fv.

There exists a pairing

(·, ·)S : F×S × F
×
S −→ µn defined by (a, b)S =

∏
v∈S

(a, b)v,

where the (a, b)v are local Hilbert symbols associated to n and v.
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Further, to any a ∈ OS and any ideal b ∈ OS, we may associate the nth power

residue symbol
(
a
b

)
n

as follows. For prime ideals p, the expression
(
a
p

)
n

is the unique

nth root of unity satisfying the congruence(
a

p

)
n

≡ a(N(p)−1)/n (mod p).

We then extend the symbol to arbitrary ideals b by multiplicativity, with the con-
vention that the symbol is 0 whenever a and b are not relatively prime. Since OS is
a principal ideal domain by assumption, we will write(a

b

)
n

=
(a
b

)
n

for b = bOS

and often drop the subscript n on the symbol when the power is understood from
context.

Then if a, b are coprime integers in OS, we have the nth power reciprocity law
(cf. [22], Thm. 6.8.3) (a

b

)
= (b, a)S

(
b

a

)
(5)

which, in particular, implies that if ε ∈ O×S and b ∈ OS, then(ε
b

)
= (b, ε)S.

Finally, for a positive integer t and a, c ∈ OS with c 6= 0, we define the Gauss
sum gt(a, c) as follows. First, choose a non-trivial additive character ψ of FS trivial
on the OS integers (cf. [2] for details). Then the nth-power Gauss sum is given by

gt(a, c) =
∑

d mod c

(
d

c

)t
n

ψ

(
ad

c

)
, (6)

where we have suppressed the dependence on n in the notation on the left. The
Gauss sum gt is not multiplicative, but rather satisfies

gt(a, cc
′) =

( c
c′

)t
n

(
c′

c

)t
n

gt(a, c)gt(a, c
′) (7)

for any relatively prime pair c, c′ ∈ OS.
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1.3 Kubota’s Rank 1 Dirichlet series

Many of the definitions for Weyl group multiple Dirichlet series are natural extensions
of those from the rank 1 case, so we begin with a brief description of these. We will
also need the form of these series when demonstrating functional equations for specific
examples in Section 3.

A subgroup Ω ⊂ F×S is said to be isotropic if (a, b)S = 1 for all a, b ∈ Ω. In
particular, Ω = OS(F×S )n is isotropic (where (F×S )n denotes the nth powers in F×S ).
Let Mt(Ω) be the space of functions Ψ : F×S −→ C that satisfy the transformation
property

Ψ(εc) = (c, ε)−tS Ψ(c) for any ε ∈ Ω, c ∈ F×S . (8)

For Ψ ∈Mt(Ω), consider the following generalization of Kubota’s Dirichlet series:

Dt(s,Ψ, a) =
∑

0 6=c∈Os/O×s

gt(a, c)Ψ(c)

|c|2s
. (9)

Here |c| is the order of OS/cOS, gt(a, c) is as in (6) and the term gt(a, c)Ψ(c)|c|−2s is
independent of the choice of representative c, modulo S-units. Standard estimates for
Gauss sums show that the series is convergent if R(s) > 3

4
. Our functional equation

computations will hinge on the functional equation for this Kubota Dirichlet series.
Before stating this result, we require some additional notation. Let

Gn(s) = (2π)−2(n−1)sn2ns

n−2∏
j=1

Γ

(
2s− 1 +

j

n

)
. (10)

In view of the multiplication formula for the Gamma function, we may also write

Gn(s) = (2π)−(n−1)(2s−1) Γ(n(2s− 1))

Γ(2s− 1)
.

Let
D∗t (s,Ψ, a) = Gm(s)[F :Q]/2ζF (2ms−m+ 1)Dt(s,Ψ, a), (11)

where m = n/ gcd(n, t), 1
2
[F : Q] is the number of archimedean places of the totally

complex field F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin let qv denote the cardinality of the residue class field Ov/Pv, where

Ov is the local ring in Fv and Pv is its prime ideal. By an S-Dirichlet polynomial we
mean a polynomial in q−sv as v runs through the finite number of places in Sfin. If
Ψ ∈Mt(Ω) and η ∈ F×S , denote

Ψ̃η(c) = (η, c)S Ψ(c−1η−1). (12)
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Then we have the following result (Theorem 1 in [6]), which follows from the work
of Brubaker and Bump [2].

Theorem 1 Let Ψ ∈ Mt(Ω) and a ∈ OS. Let m = n/ gcd(n, t). Then D∗t (s,Ψ, a)
has meromorphic continuation to all s, analytic except possibly at s = 1

2
± 1

2m
, where

it might have simple poles. There exist S-Dirichlet polynomials P t
η(s) depending only

on the image of η in F×S /(F
×
S )n such that

D∗t (s,Ψ, a) = |a|1−2s
∑

η∈F×S /(F
×
S )n

P t
aη(s)D∗t (1− s, Ψ̃η, a). (13)

This result, based on ideas of Kubota [18], relies on the theory of Eisenstein series.
The case t = 1 is handled in [2]; the general case follows as discussed in the proof of
Proposition 5.2 of [5]. Notably, the factor |a|1−2s is independent of the value of t.

1.4 The form of higher rank multiple Dirichlet series

We now begin explicitly defining the multiple Dirichlet series, retaining our previous
notation. By analogy with the rank 1 definition in (8), given an isotropic subgroup Ω,
letM(Ωr) be the space of functions Ψ : (F×S )r −→ C that satisfy the transformation
property

Ψ(εc) =

(
r∏
i=1

(εi, ci)
||αi||2
S

∏
i<j

(εi, cj)
2〈αi,αj〉
S

)
Ψ(c) (14)

for all ε = (ε1, . . . , εr) ∈ Ωr and all c = (c1, . . . , cr) ∈ (F×S )r.
Recall from the introduction that, given a reduced root system Φ of fixed rank

r, an integer n ≥ 1, m ∈ OrS, and Ψ ∈ M(Ωr), we consider a function of r complex
variables s = (s1, . . . , sr) ∈ Cr of the form

ZΨ(s1, . . . , sr;m1, . . . ,mr) = ZΨ(s; m) =
∑

c=(c1,...,cr)∈(OS/O×S )r

H(n)(c; m)Ψ(c)

|c1|2s1 · · · |cr|2sr
.

The function H(n)(c; m) carries the main arithmetic content. It is not defined as
a multiplicative function, but rather a “twisted multiplicative” function. For us, this
means that for S-integer vectors c, c′ ∈ (OS/O×S )r with gcd(c1 · · · cr, c′1 · · · c′r) = 1,

H(n)(c1c
′
1, . . . , crc

′
r; m) = µ(c, c′)H(n)(c; m)H(n)(c′; m) (15)
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where µ(c, c′) is an nth root of unity depending on c, c′. It is given precisely by

µ(c, c′) =
r∏
i=1

(
ci
c′i

)||αi||2
n

(
c′i
ci

)||αi||2
n

∏
i<j

(
ci
c′j

)2〈αi,αj〉

n

(
c′i
cj

)2〈αi,αj〉

n

(16)

where
( ·
·

)
n

is the nth power residue symbol defined in Section 1.2. Note that in the
special case Φ = A1, the twisted multiplicativity in (15) and (16) agrees with the
identity for Gauss sums in (7) in accordance with the numerator for the rank one
case given in (9).

Remark 1 We often think of twisted multiplicativity as the appropriate general-
ization of multiplicativity for the metaplectic group. In particular, for n = 1 we
reduce to the usual multiplicativity on relatively prime coefficients. Moreover, many
of the global properties of the Dirichlet series follow (upon careful analysis of the
twisted multiplicativity and associated Hilbert symbols) from local properties, e.g.
functional equations as in [5] and [6]. For more on this perspective, see [15].

Note that the transformation property of functions in M(Ωr) in (14) above is
motivated by the identity

H(n)(εc; m)Ψ(εc) = H(n)(c; m)Ψ(c) for all ε ∈ OrS, c,m ∈ (F×S )r.

The proof can be verified using the nth power reciprocity law from Section 1.2.
Now, given any m,m′, c ∈ OrS with gcd(m′1 · · ·m′r, c1 · · · cr) = 1, we let

H(n)(c;m1m
′
1, . . . ,mrm

′
r) =

r∏
i=1

(
m′i
ci

)−||αi||2
n

H(n)(c; m). (17)

The definitions in (15) and (17) imply that it is enough to specify the coefficients
H(n)(pk1 , . . . , pkr ; pl1 , · · · , plr) for any fixed prime p with li = ordp(mi) in order to
completely determine H(n)(c; m) for any pair of S-integer vectors m and c. These
prime-power coefficients are described in terms of data from highest-weight repre-
sentations associated to (l1, · · · , lr) and will be given precisely in Section 2.

1.5 Weyl group actions

In order to precisely state a functional equation for the Weyl group multiple Dirichlet
series, we require an action of the Weyl group W of Φ on the complex parameters
(s1, . . . , sr). This arises from the linear action of W , realized as the group generated
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by the simple reflections σα∨ , on V ∨. From the perspective of Dirichlet series, it
is more natural to consider this action shifted by ρ∨, half the sum of the positive
co-roots. Then each w ∈ W induces a transformation V ∨C = V ∨ ⊗ C → V ∨C (still
denoted by w) if we require that

B(wα,w(s)− 1

2
ρ∨) = B(α, s− 1

2
ρ∨).

We introduce coordinates on V ∨C using simple roots ∆ = {α1, . . . , αr} as follows.
Define an isomorphism V ∨C → Cr by

s 7→ (s1, s2, . . . , sr) si = B(αi, s). (18)

This action allows us to identify V ∨C with Cr, and so the complex variables si that
appear in the definition of the multiple Dirichlet series may be regarded as coordi-
nates in either space. It is convenient to describe this action more explicitly in terms
of the si and it suffices to consider simple reflections which generate W . Using the
action of the simple reflection σαi on the root system Φ given in (2) in conjunction
with (18) above gives the following:

Proposition 1 The action of σαi on s = (s1, . . . , sr) defined implicitly in (18) is
given by

sj 7→ sj −
2〈αj, αi〉
〈αi, αi〉

(
si −

1

2

)
j = 1, . . . , r. (19)

In particular, σαi : si 7→ 1− si.

1.6 Normalizing factors and functional equations

The multiple Dirichlet series must also be normalized using Gamma and zeta factors
in order to state precise functional equations. Let

n(α) =
n

gcd(n, ||α||2)
, α ∈ Φ+.

For example, if Φ = Cr and we normalize short roots to have length 1, this implies
that n(α) = n unless α is a long root and n even (in which case n(α) = n/2). By
analogy with the zeta factor appearing in (11), for any α ∈ Φ+, let

ζα(s) = ζ

(
1 + 2n(α)B(α, s− 1

2
ρ∨)

)
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where ζ is the Dedekind zeta function attached to the number field F . Further,
for Gn(s) as in (10), we may define

Gα(s) = Gn(α)

(
1

2
+B(α, s− 1

2
ρ∨)

)
. (20)

Then for any m ∈ OrS, the normalized multiple Dirichlet series is given by

Z∗Ψ(s; m) =

[ ∏
α∈Φ+

Gα(s)ζα(s)

]
ZΨ(s,m). (21)

By considering the product over all positive roots, we guarantee that the other
zeta and Gamma factors are permuted for each simple reflection σi ∈ W , and hence
for all elements of the Weyl group.

Given any fixed n, m and root system Φ, we seek to exhibit a definition for
H(n)(c; m) (or equivalently, given twisted multiplicativity, a definition of H at prime-
power coefficients) such that Z∗Ψ(s; m) satisfies functional equations of the form:

Z∗Ψ(s; m) = |mi|1−2siZ∗σiΨ(σis; m) (22)

for all simple reflections σi ∈ W . Here, σis is as in (19) and the function σiΨ, which
essentially keeps track of the rather complicated scattering matrix in this functional
equation, is defined as in (37) of [6]. As noted in Section 7 of [6], given functional
equations of this type, one can obtain analytic continuation to a meromorphic func-
tion of Cr with an explicit description of polar hyperplanes.

2 Definition of the Prime-Power Coefficients

In Section 3 of [1], we gave a precise definition of the p-power coefficients H(n)(pk; pl)
in a multiple Dirichlet series for root systems of type Cr with n odd. The vector
l = (l1, l2, . . . , lr) appearing in H(n)(pk; pl) was associated to a dominant integral
element for Sp2r(C) of the form

λ = (l1 + l2 + · · ·+ lr, . . . , l1 + l2, l1) =
r∑
i=1

(`i + 1)εi, (23)

where εi for i = 1, . . . , r are the fundamental dominant weights. The contributions to
H(n)(pk; pl) were parametrized by basis vectors of the highest weight representation
of highest weight λ+ ρ, where ρ is the Weyl vector for Cr defined in (4), so that

λ+ ρ = (l1 + l2 + · · ·+ lr + r, . . . , l1 + l2 + 2, l1 + 1) =: (Lr, · · · , L1). (24)

8



In this section, we give a definition for the p-parts of H in terms of crystal graphs
and their associated BZL-patterns, and we demonstrate how this definition matches
the one given in terms of GT -patterns. For precise details of the correspondence
between BZL-patterns and GT -patterns of type Cr, we refer the reader to [19].

Consider Sp2r(C), with the enumeration of simple roots given by

α1 = 2εm, α2 = ε1 − ε2, . . . , αr = εr−1 − εr, (25)

In Section 6 of [19], Littelmann designates this as a “good enumeration,” and
explicitly defines Cλ, the convex polytope that arises from using the associated so-
called “nice decomposition” of the long element of the associated Weyl group:

w0 = s1(s2s1s2)(. . .)(sr−1 . . . s1 . . . sr−1)(srsr−1 . . . s1 . . . sr−1sr). (26)

(NOTE: Previously, we chose coordinates so that the simple roots were

α1 = 2e1, α2 = e2 − e1, . . . , αr = er − er−1. (27)

Do we need to change the assignment of patterns to k-coordinates based on making a
different choice, or can we simply claim that there is some suitable change of variables
that results in this assignment?)

Following Littlemann [19], we construct a triangle consisting of r centered rows
of boxes, with 2(r + 1 − i) − 1 entries in the row i, starting from the top. To each
vector c ∈ Rr2 , let ∆(c) denote the triangle whose entries are the coordinates of c,
with the boxes filled from bottom row to top row, and from left to right. We then
identify c with its triangle, written as ∆(c) = (ci,j), where as Littelmann’s notation,
ci,j is the j-th entry in the i-th row, but with i ≤ j ≤ 2r − i. Also, for convenience
in the discussion below, we will write ci,j := c2r−j for i ≤ j ≤ r. Thus when r = 3,
we are considering triangles of the form

c1,1 c1,2 c1,3 c1,2 c1,1

c2,2 c2,3 c2,2

c3,3

Need to describe how the desired BZL patterns arise from the crystal
graph, using the operators fi (or ei?).
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The following summarizes the construction of Cλ+ρ, as given in Theorem 6.1 and
Corollary 1 in Section 6 of [19], with the specialization λi = `i + 1, for 1 ≤ i ≤ r.

Proposition 2 Given the good enumeration w0 as in (26) for the Weyl group of
Sp2r(C), and λ as in (23), then Cλ+ρ is the convex polytope of all triangles ∆(ci,j)
such that the entries in the rows are non-negative and weakly increasing, and satisfy
the following upper-bound inequalities for all 1 ≤ i ≤ r and 1 ≤ j ≤ r − 1:

ci,j ≤ `r−j+1 + 1 + s(ci,j−1)− 2s(ci−1,j) + s(ci−1,j+1), (28)

ci,j ≤ `r−j+1 + 1 + s(ci,j−1)− 2s(ci,j) + s(ci,j+1), (29)

and ci,r ≤ `1 + 1 + s(ci,r−1)− s(ci−1,r). (30)

Recall from [1], a GT -pattern P has the form

P =

a0,1 a0,2 · · · a0,r

b1,1 b1,2 · · · b1,r−1 b1,r

a1,2 · · · a1,r

. . . . . .
...

ar−1,r

br,r

(31)

where the ai,j, bi,j are non-negative integers and the rows of the pattern interleave.
That is, for all ai,j, bi,j in the pattern P above,

min(ai−1,j, ai,j) ≥ bi,j ≥ max(ai−1,j+1, ai,j+1)

and
min(bi+1,j−1, bi,j−1) ≥ ai,j ≥ max(bi+1,j, bi,j).

We considered the set of all GT -patterns with top row (a0,1, . . . , a0,r) = (Lr, . . . , L1),
which form a basis for the highest weight representation with highest weight λ + ρ,
and referred to this set of patterns as GT (λ+ ρ).

Proposition 3 (DEFINE) Map between GT -patterns and BZL-patterns...

Remark 2 In Section 6 of [19], Littelmann gives an example illustrating this cor-
respondence, in the case of rank 3. This example is given below, with the corrected
first entry in the second row.
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9 5 1
6 5 0

5 3
5 2

3
1

←→

7 7 4 3 3

2 1 0

2

We will subject our BZL-patterns to certain decoration rules that will be used
to explicitly determine each pattern’s contribution to the sum defining the p-power
coefficients of our multiple Dirichlet series. These decorations will consist of boxes
and circles, applied according to the following rules:

1. The entry ci,j is circled if ci,j = ci,j+1. We understand the entries outside the
triangular array to be zeroes, so the right-most entry in a row will be circled if
it equals 0.

2. The entry ci,j is boxed if equality holds in the upper-bound inequality for ci,j
given above in Proposition 2.

The above map between GT -patterns and BZL-patterns, together with the dec-
oration rules, is illustrated in the following example.

5 3 1
4 2 1

4 2
3 2

3
1

←→

5 3 2m2 1

2 1m1

2

The contributions to each H(n)(pk; pl) with both k and l fixed come from a sin-
gle weight space corresponding to k = (k1, . . . , kr) in the highest weight represen-
tation λ + ρ corresponding to l. Given a BZL-pattern ∆(ci,j), define the vector
k(∆) = (k1(∆), k2(∆), . . . , kr(∆)) with

k1(∆) =
r∑
j=1

ci,r,

and ki(∆) =
r+1−i∑
j=1

(cj,r+1−i + cj,r+1−i), for 1 < i ≤ r.

(32)
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We define

H(n)(pk; pl) = H(n)(pk1 , . . . , pkr ; pl1 , . . . , plr) =
∑

∆∈Cλ+ρ
k(∆)=(k1,...,kr)

G(∆) (33)

where the sum is over all BZL-patterns ∆ with top row (Lr, . . . , L1) as in (24)
satisfying the condition k(∆) = (k1, . . . , kr) and G(∆) is a weighting function whose
definition which is defined as follows: To each entry ci,j in ∆, we associate

γ(ci,j) =


qci,j if ci,j is circled (but not boxed),

gδjr+1(pci,j−1, pci,j) if ci,j is boxed (but not circled),

φ(pci,j) if neither,

0 if both.

(34)

where gt(p
α, pβ) is an nth-power Gauss sum as in (6), φ(pa) denotes Euler’s totient

function for OS/paOS, q = |OS/pOS| and δjr is the Kronecker delta function. We
then define

G(∆) =
∏

1≤i≤r,
i≤j≤2r−1

γ(ci,j). (35)

3 Functional equations by reduction to rank 1

In this section, we provide evidence toward global functional equations for the multi-
ple Dirichlet series ZΨ(s; m) through a series of computations in a particular rank 2
example. We will demonstrate that these multiple Dirichlet series are, in some sense,
built from combinations of rank 1 Kubota Dirichlet series and thus inherit their func-
tional equations. Similar techniques to those presented here would apply for arbitrary
rank.

Recall from (19) that, in rank 2, we expect functional equations corresponding
to the simple reflections

σ1 : (s1, s2) 7→ (1− s1, s1 + s2− 1/2) and σ2 : (s1, s2) 7→ (s1 + 2s2− 1, 1− s2), (36)

which generate a group acting on (s1, s2) ∈ C2 isomorphic to the Weyl group of C2,
the dihedral group of order 8.

With notations as before, let n = 3, and m = (p2, p1) for some fixed OS prime p.
Then we will illustrate how our definition of the coefficients H(3)(c; p2, p) leads to a
multiple Dirichlet series ZΨ(s; p2, p) satisfying the functional equations

ZΨ(s1, s2; p2, p)→ |p2|1−2s1Zσ1Ψ(1− s1, s1 + s2 − 1/2; p2, p) (37)
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and
ZΨ(s1, s2; p2, p)→ |p|1−2s2Zσ2Ψ(s1 + 2s2 − 1, 1− s2; p2, p) (38)

corresponding to the above simple reflections according to (22).
Our strategy is quite simple. To demonstrate the functional equation correspond-

ing to σ1, write

ZΨ(s1, s2; p2, p) =
∑

c2∈OS/O×S

|c2|−2s2
∑

c1∈OS/O×S

H(3)(c1, c2; p2, p)Ψ(c)

|c1|2s1
(39)

and attempt to realize the inner sum, for any fixed c2, in terms of rank 1 Kubota
Dirichlet series whose one-variable functional equations are all compatible with the
global functional equation in (37). Similar methods apply for the other simple re-
flection. One difficulty with this approach is that our definitions for H(n)(c; m) up
to this point have been “local” – that is, we have only provided explicit definitions
for the prime power supported coefficients. Of course, our requirement that the
H(n)(c; m) satisfy twisted multiplicativity then uniquely defines the coefficients for
any r-tuple of integers c, but there are many complications in attempting to patch
together the prime-power supported pieces to reconstruct a global series.

This strategy was precisely carried out in [5] and [6] for any root system Φ
provided n satisfies the Stability Assumption stated in (??). Indeed, global objects
were reconstructed from the prime-power supported contributions by meticulously
checking that all Hilbert symbols and nth power residue symbols combine neatly
into Kubota Dirichlet series with the required twisted multiplicativity. Our purpose
here is not to get bogged down in these complications, but rather to show how
global functional equations can be anticipated simply by considering the prime-power
supported coefficients. Note that in the example at hand, the stable cases for m =
(p2, p) require n ≥ 7, so n = 3 is not stable and the results of [6] do not apply.
Nevertheless, as we will explain, our method of reduction to the rank 1 case is still
viable.

3.1 Analysis of H(3)(c1, c2; p
2, p) with prime-power support

The nature of H(3)(c1, c2; p2, p) with c1, c2 powers of a fixed prime depends critically
on whether that prime is p, the fixed prime occurring in m = (p2, p), or a distinct
prime ` 6= p. The prime-power supported coefficients H(3)(`k1 , `k2 ; p2, p) at primes
` 6= p have identical support (k1, k2) for any such prime ` (as the support depends
only on ord`(m1) and ord`(m2)) and a uniform description as products of Gauss
sums in terms of `. The (k1, k2) coordinates of this support are depicted in Figure 1
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– the result of the affine linear transformation of the weights in the corresponding
highest weight representation ρ. The vertex in the bottom left corner is placed at
(k1, k2) = (0, 0). At each of the vertices in the interior, the number shown indicates
the number of BZL-patterns associated with that vertex, that is, the multiplicity in
the associated weight space. These counts include both strict and non-strict patterns,
though non-strict patterns give no contribution to the multiple Dirichlet series for
any n. Support on the boundary is indicated by black dots, each with a unique
corresponding BZL-pattern.

�
�

�
�
�
�

�
�
�
�
�
�

k1

k2

t t t
tttt

t 2

2 2

2

Figure 1: Support (k1, k2) for H(3)(`k1 , `k2 ; p2, p) (with indicated multiplicities of contributing
BZL patterns P having k(P ) = (k1, k2)).

For n = 3 each of the 8 patterns P (4 strict, 4 non-strict) in the interior of the
polygon of support have G(P ) = 0, so the only non-zero contributions come from
the 8 boundary vertices. Note that these are just the “stable” vertices, which have
G(P ) non-zero for all n.

The coefficients H(3)(pk1 , pk2 ; p2, p1) are much more interesting. Recall these coef-
ficients are parametrized by BZL-patterns with top row (L2, L1) = (5, 3) according
to (24). NEEDS TO BE CHANGED. The supporting vertices (k1, k2) for the
p-part are shown below in Figure 2. On the support’s boundary, stable vertices are
indicated by filled circles and unstable vertices are indicated by open circles, all with
multiplicity one.

Again, the choice of n = 3 will make G(∆) = 0 for many of the patterns ∆
occurring at these support vertices. Roughly speaking, the non-zero support for
any fixed n forms an n × n regular lattice beginning at the origin. However, this
lattice becomes somewhat distorted by the boundary of the polygon, particularly the
location of the stable vertices. In fact, our choice of (l1, l2) = (2, 1) in this example
is so small that this phenomenon is essentially obscured.

14



�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

k1

k2

t t
t

t
tt

t

t
d d d

d
d

dddd

d
d

d 2 2 2

3 4 4 3

2 4 5 4 2

4 6 6 4
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Figure 2: Support (k1, k2) for H(3)(pk1 , pk2 ; p2, p) (with indicated multiplicities of contributing
BZL patterns ∆).

3.2 Three Specific Examples

Returning to the discussion of functional equations, we will first demonstrate a func-
tional equation corresponding to the simple reflection σ1 taking s1 7→ 1− s1. Recall
our strategy is to show that for any choice of c2, we may write the inner sum in (39)
in terms of Kubota Dirichlet series. For example, let c2 = p8. By twisted multi-
plicativity, we see that H(3)(c1, p

8; p2, p) will be 0 unless ord`(c1) ≤ 1 for all primes
` 6= p (as evident from Figure 1, since we seek `-power terms with support k2 = 0).
More interestingly, using Figure 2, we see that p-power terms with k2 = 8 must have
3 ≤ ordp(c1) ≤ 8. Let’s examine the p-power coefficients more closely.

3.2.1 The functional equation σ1 with k2 = 8.

As seen in Figure 2, H(3)(pk1 , pk2 ; p2, p) with k2 = 8 has support at 6 lattice points
(k1, 8) with a total of 16 BZL-patterns. Having chosen n = 3 (so that all Gauss
sums appearing are formed with a cubic residue symbol), one checks that only five
of these 16 BZL-patterns have non-zero Gauss sum products associated to them.
These are listed in the table below.
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∆ k(∆) G(∆) G(∆) for n = 3

8 3 0

0

mm (3, 8) g2(p2, p3) g1(p7, p8) −|p|2g1(p7, p8)

6 5 2

0m (5, 8) g1(p1, p2) g2(p4, p5) g1(p7, p6) |p|6φ(p6)

8 3 0

3

m
(6, 8) g2(p2, p3) g1(p7, p8) g2(p4, p3) −|p|2g1(p7, p8)φ(p3)

6 5 2

1
(6, 8) g1(p1, p2) g2(p4, p5) g1(p7, p6) g2(1, p) |p|6φ(p6)g2(1, p)

8 3 0

5

m
(8, 8) g2(p2, p3) g1(p7, p8) g2(p4, p5) −|p|2g1(p7, p8)g2(p4, p5)

We have computed the final column in the table from the third column, using
the following three elementary properties of nth-order Gauss sums at prime powers,
which can be proved easily from the definition in (6):

1. If a ≥ b, then gt(p
a, pb) =

{
φ(pb) n|tb,
0 n - tb.

2. For any integers a and t, gt(p
a−1, pa) = |p|a−1gat(1, p).

3. For any integer t, gt(1, p) gn−t(1, p) = |p|.

For notational convenience, let the inner sum in (39) be denoted

F (s1; c2) =
∑

c1∈OS/O×S

H(3)(c1, c2; p2, p)Ψ(c)

|c1|2s1
. (40)
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Fix c2 = p8 and let

F (p)(s1; p8) =
∑
k1

H(3)(pk1 , p8; p2, p)Ψ(pk1 , p8)

|p|2k1s1
. (41)

From the table above, this sum is supported at k1 = 3, 5, 6 and 8, so that F (p)(s1; p8)
equals

−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1

[
1 +

g2(p4, p3)

|p|6s1
Ψ(p6, p8)

Ψ(p3, p8)
+
g2(p4, p5)

|p|10s1

Ψ(p8, p8)

Ψ(p3, p8)

]
+
|p|6φ(p6)Ψ(p5, p8)

p10s1

[
1 +

g2(1, p)

|p|2s1
· Ψ(p6, p8)

Ψ(p5, p8)

]
(42)

Ignoring complications from the Ψ function, both bracketed sums may be expressed
as the p-part of a Kubota Dirichlet series in s1. Indeed, letting D(p)

2 denote the
prime-power supported coefficients of the Kubota Dirichlet series D2 in (9), then

D(p)
2 (s1,Ψ

′, p4) =

[
1 +

g2(p4, p3)

|p|6s1
Ψ(p6, p8)

Ψ(p3, p8)
+
g2(p4, p5)

|p|10s1

Ψ(p8, p8)

Ψ(p3, p8)

]
for some appropriately defined Ψ′ ∈M2(Ω), as D(p)

2 (s1,Ψ
′, p4) contains g2(p4, pk1) in

the numerator, which is non-zero only if k1 = 0, 3 or 5 when n = 3. Similarly,

D(p)
2 (s1,Ψ

′′, 1) =

[
1 +

g2(1, p)

|p|2s1
· Ψ(p6, p8)

Ψ(p5, p8)

]
for an appropriately defined Ψ′′ ∈M2(Ω). Thus, according to (42), we may express
F (p)(s1) as the sum of p-parts of Kubota Dirichlet series multiplied by Dirichlet
monomials. The reader interested in checking all details regarding the Ψ function
should refer to Section 5 of [5]; our notation for the one-variable Ψ′ or Ψ′′ in M2(Ω)
derived from Ψ(c1, c2) is called Ψc1,c2 in Lemma 5.3 of [5].

In order to reconstruct the global object F (s1; c2) with c2 = p8, we now turn to
the analysis at primes ` 6= p. Since ord`(c2) = 0, then we can reconstruct F (s1; p8)
from the twisted multiplicativity in (15) and (17) together with knowledge of terms
of the form H(3)(`k1 , 1; p2, p). Then define

F (`)(s1; 1) =
∑
k1

H(3)(`k1 , 1; p2, p)Ψ(`k1 , p8)

|`|2k1s1

17



for all primes ` 6= p. Using twisted multiplicativity in (17),

F (`)(s1; 1) =
∑
k1

(
p2

`k1

)−2

3

(p
1

)−1

3

H(3)(`k1 , 1; 1, 1)Ψ(`k1 , p8)

|`|2k1s1

= Ψ(1, p8) +

(
p2

`

)−2

3

H(3)(`1, 1; 1, 1)Ψ(`1, p8)|`|−2s1

= Ψ(1, p8)

[
1 +

(
p2

`

)−2

3

g2(1, `)

|`|2s1
Ψ(`1, p8)

Ψ(1, p8)

]
.

To summarize, we have found that

F (p)(s1; p8) =
−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1
D(p)

2 (s1,Ψ
′, p4)+

|p|6φ(p6)Ψ(p5, p8)

|p|10s1
D(p)

2 (s1,Ψ
′′, 1)

and

F (`)(s1; 1) = Ψ(1, p8)

[
1 +

(
p2

`

)−2

3

g2(1, `)

|`|2s1
Ψ(`1, p8)

Ψ(1, p8)

]
, for all primes ` 6= p.

Now using twisted multiplicativity, we can reconstruct F (s1; p8). We claim that

F (s1; p8) =
−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1
D2(s1,Ψ

′, p4) +
|p|6φ(p6)Ψ(p5, p8)

|p|10s1
D2(s1,Ψ

′′, 1).

This may be directly verified up to Hilbert symbols (i.e. ignoring Hilbert symbols
in the power reciprocity law in (5)) by using twisted multiplicativity to reconstruct
H(c1, p

8; p2, p) from F (p)(s1; p8) and F (`)(s1; 1). But to give a full accounting with
Hilbert symbols one needs to verify that the “left-over” Hilbert symbols from re-
peated applications of reciprocity are precisely those required for the definitions of
Ψ′ and Ψ′′ (again referring to Lemma 5.3 of [5]).

We now return to our general strategy of demonstrating the functional equation
σ1 as in (36). The function ZΨ(s1, s2; p2, p) as in (39) with fixed c2 = p8 yields
F (s1; p8) as above. We must verify that this portion of ZΨ(s1, s2; p2, p) is consistent
with the desired global functional equation

ZΨ(s1, s2; p2, p)→ |p2|1−2s1Zσ1Ψ(1− s1, s1 + s2 − 1/2; p2, p)
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presented at the outset of this section. By Theorem 1,

D2(s1,Ψ
′, p4)→ |p4|1−2s1D2(1− s1,Ψ

′, p2)

and |p|−6s1−16s2 → |p|2−10s1−16s2 under σ1. Similarly, D2(s1,Ψ
′′, 1)→ D2(1−s1,Ψ

′′, p2)
and |p|−10s1−16s2 → |p|−2−6s1−16s2 under σ1. Taken together, these calculations imply
that

F (s1; p8)

|p8|2s2
→ |p2|1−2s1

F (1− s1; p8)

|p8|2(s1+s2−1/2)
,

which is consistent with the global functional equation for ZΨ above.
Throughout the above analysis, we chose to restrict to the case where c2 = p8 to

limit the complexity of the calculation. However, identical methods could be used
to determine the global object for arbitrary choice of c2 depending on the order of p
dividing c2, and hence verify the global functional equation for σ1 in full generality.

Remark 3 With respect to the s1 functional equation, it turns out to be quite
simple to figure out which BZL-patterns contribute to a particular Kubota Dirichlet
series appearing in F (s1; pk2). All such BZL-patterns agree at every entry except
the bottom one (which decrements as we increase k1) as can be verified in our earlier
table with k2 = 8. However, as we will see in the next section, functional equations
in s2 and the respective Kubota Dirichlet series used in asserting them obey no such
simple pattern.

3.2.2 The functional equation σ2 with k1 = 3.

We now repeat the methods of the previous section to demonstrate a functional
equation under σ2. As we will show, it is significantly more difficult to organize the
local contributions into linear combinations of Kubota Dirichlet series in terms of
s2. Once this is accomplished, the analysis proceeds along the lines of the previous
section, so we omit further details.

Let c1 = p3 be fixed. Mimicking our notation from the previous section, we now
set

F (s2; p3) =
∑
k2

H(3)(p3, c2; p2, p)Ψ(p3, c2)

|c2|2s2
. (43)

As in the previous section, the bulk of the difficulty lies in analyzing

F (p)(s2; p3) =
∑
k2

H(3)(p3, pk2 ; p2, p)Ψ(p3, pk2)

|p|2k2s2
.
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Again referring to Figure 2, coefficients H(3)(pk1 , pk2 ; p2, p) with k1 = 3 involve
9 different vertices and a total of 30 BZL-patterns, only six of which give nonzero
contributions in the case when n = 3. In the table below, we list only those BZL-
patterns yielding nonzero Gauss sums. The final column has again been computed
from the third column, using the elementary properties of nth-order Gauss sums
mentioned in the previous subsection.

∆ (k1, k2) = k(∆) G(∆) G(∆) for n = 3

000

3

mmm
(3, 0) g2(p2, p3) −|p|2

2 0 0

3

mm
(3, 2) g1(p, p2) g2(p4, p3) |p|g2(1, p)φ(p3)

3 3 2

0

m m (3, 5) p3 g1(p, p2) g1(p4, p3) |p|4g2(1, p)φ(p3)

4 3 2

0m (3, 6) g1(p, p2) g1(p3, p4) g2(p4, p3) |p|5φ(p3)

6 3 0

0

mm (3, 6) g1(p7, p6) g2(p2, p3) −|p|2φ(p6)

8 3 0

0

mm (3, 8) g1(p7, p8) g2(p2, p3) −g2(1, p)|p|9
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According to the above table, we have

F (p)(s2; p3) = −|p|2Ψ(p3, 1) +
|p|g2(1, p)φ(p3)Ψ(p3, p2)

|p|4s2
+
|p|4g2(1, p)φ(p3)Ψ(p3, p5)

|p|10s2

+
|p|5φ(p3)Ψ(p3, p6)

|p|12s2
− |p|

2φ(p6)Ψ(p3, p6)

|p|12s2
− g2(1, p)|p|9Ψ(p3, p8)

|p|16s2
.

(44)

By adding and subtracting certain necessary terms at vertices (3, 3) and (3, 5), and
using the fact that g1(1, p)g2(1, p) = |p| when n = 3, we find that F (p)(s2; p3) equals

− |p|2Ψ(p3, 1)

[
1 +

φ(p3)

|p|6s2
Ψ(p3, p3)

Ψ(p3, 1)
+
φ(p6)

|p|12s2

Ψ(p3, p6)

Ψ(p3, 1)
+
g2(1, p)|p|7

|p|16s2

Ψ(p3, p8)

Ψ(p3, 1)

]
+
g2(1, p)|p|φ(p3)Ψ(p3, p2)

|p|4s2

[
1 +

φ(p3)

|p|6s2
Ψ(p3, p5)

Ψ(p3, p2)
+
g1(1, p)p3

|p|8s2
Ψ(p3, p6)

Ψ(p3, p2)

]
+
|p|2φ(p3)Ψ(p3, p3)

|p|6s2

[
1 +
|p|g2(1, p)

|p|4s2
Ψ(p3, p5)

Ψ(p3, p3)

]
.

(45)

After analyzing the terms in the bracketed sums, ignoring complications from the
function Ψ as before, we have

F (p)(s2; p3) = −|p|2Ψ(p3, 1)D(p)
1 (s2,Ψ

′, p7)+
g2(1, p)|p|φ(p3)Ψ(p3, p2)

|p|4s2
D(p)

1 (s2,Ψ
′′, p3)

+
|p|2φ(p3)Ψ(p3, p3)

|p|6s2
D(p)

1 (s2,Ψ
′′′, p). (46)

Arguing similarly to the previous section, one can use these local contributions to
reconstruct the global Dirichlet series via twisted multiplicativity. The resulting
objects satisfy the global functional equation for σ2 as in (36).

3.2.3 The functional equation σ2 with k1 = 6.

As a final example, the set of all H(3)(pk1 , pk2 ; p2, p) with k1 = 6 involves 7 support
vertices and 18 BZL-patterns. In the case n = 3, however, only four of the BZL-
patterns have non-zero Gauss sum products associated to them. These are listed in
the table below.
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∆ k(∆) G(∆) G(∆) for n = 3

6 3 0

3

m
(6, 6) g1(p7, p6) g2(p2, p3) g2(p2, p3) |p|4 φ(p6)

4 3 2

3
(6, 6) g1(p1, p2) g1(p3, p4) g2(p2, p3) g2(p4, p3) −|p|7 φ(p3)

8 3 0

3

m
(6, 8) g1(p7, p8) g2(p2, p3) g2(p4, p3) −|p|9g2(1, p)φ(p3)

6 5 2

1
(6, 8) g1(p1, p2) g1(p7, p6) g2(1, p) g2(p4, p5) |p|11g2(1, p)φ(p6)

Upon first inspection, it is unclear how to package the Gauss sum products neatly
into p parts of Kubota Dirichlet series, as in the previous examples. However, the
two nonzero terms at (6, 6) cancel each other out when n = 3, as do the two nonzero
terms at (6, 8). This seems like a very complicated way to write 0, but we remind
the reader that the definition in terms of Gauss sums is “uniform” in n, in the sense
that only the order of the multiplicative character in the Gauss sum changes. For
other n, the p-part H(n)(pk1 , pk2 ; p2, p) with k1 = 6 will have the same 18 products
of Gauss sums, four of which are as shown in the third column of the table above.
However, the evaluations as in the last column of the table depend on the choice of
n and result in a different organization as Kubota Dirichlet series.
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