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Abstract. We study the co-circular relative equilibria (planar central con-
figurations) in the four-vortex problem using methods suggested by the study

of co-circular central configurations in the Newtonian four-body problem in

recent work of Cors and Roberts. Using mutual distance coordinates, we show
that the set of four-vortex relative equilibria is a two-dimensional surface with

boundary curves representing kite configurations, isosceles trapezoids, and de-

generate configurations with one zero vorticity. We also show that there is a
constraint on the signs of the vorticities in these configurations; either three

or four of the vorticities must have the same sign, in contrast to the non-co-

circular cases studied by Hampton, Roberts, and Santoprete.

1. Introduction

Understanding central configurations is a problem of fundamental importance
in celestial mechanics (for instance, see [11]). Recent years have seen heightened
interest in the study of central configurations, in part due to the fact that advances
in computing power have made it possible to utilize tools from algebraic geometry
to study such problems. These tools have led to breakthroughs such as the proof
that there are only finitely many central configurations for each collection of positive
masses in the four body problem ([6]), and the proof of finiteness in generic cases
of the five-body problem ([5, 1]).

Similarly useful is the study of relative equilibrium configurations of collections
of Helmholtz vortices, [7, 11]. Helmholtz vortices, thought of as whirlpools lying in
an infinite plane composed of a perfect fluid, were first introduced as a means of
modeling the interactions of two-dimensional slices of collections of columnar vortex
filaments. The study of relative equilibria of vortices has applications that range
from basic fluid mechanics to the study of how cyclones and hurricanes interact and
evolve over time.

Algebraically, the equations defining relative equilibria of vortices are very similar
to those defining relative equilibria of masses. Suppose vortices of strengths Γi

(unlike the masses in the Newtonian problem, these can have positive or negative
real values) are initially located at positions qi ∈ R2. Writing rij = ‖qi − qj‖ for
the mutual distance, then we have a relative equilibrium if for all i,

(1.1)
∑
j 6=i

Γj
(qi − qj)
r2
ij

= −λ(qi − c),

where λ is a constant and c is the center of rotation. The equations (1.1) differ
from their Newtonian equivalents because of the r2

ij in the denominators (where
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r3
ij appears in the equations for relative equilibria of masses). The difference is

caused by a logarithmic potential in the vortex case that replaces the gravitational
potential in the Newtonian case.

In this paper, we study relative equilibria of collections of four point vortices
whose locations lie on a circle in the plane (the co-circular configurations in the
title). The inspiration for this study can be found in a recent paper in which Cors
and Roberts study the corresponding problem for four co-circular masses under
Newtonian gravity, [2]. Other articles devoted to the study of co-circular central
configurations include [4, 9]. We also use a number of general results on the vortex
problem from a second recent article by Hampton, Roberts, and Santoprete, [8].
We first present a set of equations in mutual distance coordinates whose solutions
correspond to these configurations in §2. By analyzing the set of solutions of these
equations, in §3 we obtain a surface in R3 whose points parametrize the family
of co-circular relative equilibria. Next, in §4, we prove a result concerning the
possible signs of the vorticities for a co-circular relative equilibrium. We discuss
some constraints on the positions qi and the vorticities Γi in relative equilibria in
§5. Finally, we follow [2], mutatis mutandis, and analyze two symmetric cases (kites
and isosceles trapezoids) in §§6 and 7. These cases correspond to boundary points
of our surface.

2. Equations for relative equilibria in mutual distance coordinates

By using results from [8] on the general four-vortex problem and adapting results
from [2] on the co-circular case of the four-body problem, in this section we will
derive a set of equations characterizing the co-circular relative equilibria in the
four-vortex problem.

By Equation (10) of [8], the following relation (a consequence of the Dziobek
relations in the vortex case) is necessary and sufficient for the existence of a four-
vortex relative equilibrium with mutual distances rij > 0, 1 ≤ i < j ≤ 4:

(2.1) (r2
13 − r2

12)(r2
23 − r2

34)(r2
24 − r2

14)− (r2
12 − r2

14)(r2
24 − r2

34)(r2
13 − r2

23) = 0.

For future reference, we note that this equation can be rearranged algebraically in
many different ways. We will also need the following forms:

(2.2) (r2
14 − r2

24)(r2
13 − r2

34)(r2
12 − r2

23)− (r2
14 − r2

34)(r2
13 − r2

23)(r2
12 − r2

24) = 0,

(2.3) (r2
23 − r2

24)(r2
14 − r2

34)(r2
12 − r2

13)− (r2
24 − r2

34)(r2
13 − r2

14)(r2
12 − r2

23) = 0,

and

(2.4) (r2
24 − r2

23)(r2
13 − r2

34)(r2
12 − r2

14)− (r2
34 − r2

23)(r2
13 − r2

14)(r2
12 − r2

24) = 0.

Now we impose the condition that the locations of the four vortices lie on a
single circle in the plane. Numbering the positions sequentially around that cir-
cle, it follows that r12, r23, r34, r14 are the lengths of the exterior edges of a cyclic
quadrilateral, and r13, r24 are the lengths of the diagonals. Letting

(2.5) a = r12r34 + r14r23, b = r12r14 + r23r34, c = r12r23 + r14r34,
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from the Law of Cosines and the fact that opposite interior angles in the quadri-
lateral are supplementary, it follows that

r2
13 =

ab

c
(2.6)

r2
24 =

ac

b
.(2.7)

Multiplying the two equations above and taking square roots gives Ptolemy’s the-
orem on cyclic quadrilaterals:

(2.8) r13r24 = r12r34 + r14r23.

As in [2], we will always fix the numbering of the vortices so that r12 is the
largest exterior side length and we will normalize the unit of distance so r12 = 1.
Then

(2.9) r23, r34, r14 ≤ 1.

As noted in [2], we also have
r13

r24
=
b

c
,

so
r13 − r24 ≥ 0⇔ b− c ≥ 0⇔ (r14 − r23)(r12 − r34) ≥ 0.

Since r12 ≥ r34 by our choice of labeling,

(2.10) r14 ≥ r23 ⇔ r13 ≥ r24.

We note some additional useful consequences of the equations above relating
the diagonals of the cyclic quadrilateral to the exterior sides. In words, these
inequalities will say that the diagonals of the cyclic quadrilateral are longer than
any exterior side on the opposite side of the diagonal from the longest exterior side.
For instance, from (2.6), notice that

(2.11) r2
13 − r2

14 = r34

(
r34r23 + r2

23r14 + r14 − r3
14

r23 + r14r34

)
> 0

(since r14 − r3
14 ≥ 0 by (2.9)). By similar computations, we also have

r2
13 − r2

34 > 0,(2.12)
r2
24 − r2

23 > 0,(2.13)
r2
24 − r2

34 > 0.(2.14)

Let Γi ∈ R\{0}, i = 1, . . . 4 denote the strengths (vorticities) of the four vortices.
The derivation of (2.1) above and a computation analogous to that giving equations
(16-18) in [2] leads to the following vorticity ratio formulas:

Γ2

Γ1
=

r23r24(r2
13 − r2

14)
r13r14(r2

24 − r2
23)

,(2.15)

Γ3

Γ1
=

r23r34(1− r2
14)

r14(r2
23 − r2

34)
,(2.16)

Γ4

Γ1
=

r24r34(r2
13 − 1)

r13(r2
24 − r2

34)
.(2.17)

We can always normalize (choose units for vorticity) to set Γ1 = 1. By (2.3), (2.11),
(2.12), (2.13), and (2.14), the numerator in the formula for Γ2 and the denominators
in the formulas for Γ2 and Γ4 are always nonzero, so the values of Γ2 and Γ4 are
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Figure 1: The surface F3(r23, r34, r14) = 0 Figure 2: Another view

always determined by these. The equation (2.16) gives a well-defined value for Γ3

unless r2
23 − r2

34 = 0. Looking at (2.4), (2.12), and (2.13), we see that this implies
1 − r2

14 = 0 so the quotient is actually indeterminate. If, on the other hand, the
factor 1−r2

14 vanishes, then (2.4) and (2.11) show that r2
23−r2

34 = 0, or 1−r2
24 = 0.

When r2
23 − r2

34 = 0, an alternate formula for Γ3 can be derived using (2.1):

(2.18) Γ3 =
(r2

13 − 1)(r2
24 − 1)r2

23

(r2
24 − r2

23)(r2
13 − r2

23)
.

There are solutions with r14 = r12 = r24 = 1 corresponding to degenerate configu-
rations with vortices 1, 2, 4 forming an equilateral triangle and Γ3 = 0. Similarly,
there are degenerate configurations with r13 = r12 = r23 = 1 and Γ4 = 0. The
configurations with r14 = r12 = 1 and r23 = r34 are the symmetric kites to be
studied in §6.

Collecting all of the results stated above, we see the following statement.

Theorem 2.1. A co-circular configuration of four vortices with mutual distances
rij, vorticities Γi, and with r12 = 1, r14 < 1 and Γ1 = 1 is a relative equilibrium if
and only if the rij and Γi give a common zero of the following set of six polynomial
equations:

F1 = r2
13(r23 + r34r14)− (r34 + r14r23)(r14 + r23r34)

F2 = r2
24(r14 + r23r34)− (r34 + r14r23)(r23 + r14r34)

F3 = (r2
13 − 1)(r2

23 − r2
34)(r2

24 − r2
14)− (1− r2

14)(r2
24 − r2

34)(r2
13 − r2

23)(2.19)
F4 = r13r14(r2

24 − r2
23)Γ2 − r23r24(r2

13 − r2
14)

F5 = r14(r2
23 − r2

34)Γ3 − r23r34(1− r2
14)

F6 = r13(r2
24 − r2

34)Γ4 − r23r24(r2
13 − 1).

When r12 = r14 = 1, the equation F5 = 0 is replaced by a similar equation F ′5 = 0
derived from (2.18).

3. The surface of co-circular relative equilibria

As suggested by the naive count of variables and equations in the system (2.19),
with our normalizations, the set of co-circular relative equilibria is two-dimensional.
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Figure 3: Plot of r2
23 + r23r34 + r2

34 − 1 = 0 with the graph of F3(r23, r34, r14) = 0

The equations F4 = F5 = F6 = 0 in Theorem 2.1 express the vorticities Γ2,Γ3,Γ4

in terms of the rij . Moreover, we may use the equations F1 = 0 and F2 = 0 to
write the squared diagonals r2

13 and r2
24 as functions of the other mutual distances

as in Equations (2.6) and (2.7) above. Using these two relations one can think of
F3 as a function of the three exterior side lengths r23, r34, r14:

F3(r23, r34, r14) = (r2
13 − 1)(r2

23 − r2
34)(r2

24 − r2
14)− (1− r2

14)(r2
24 − r2

34)(r2
13 − r2

23),

and then the equation F3 = 0 defines an algebraic surface in the R3 with coordinates
r23, r34, r14.

By (2.9), we can plot the set of points on which F3 = 0 implicitly in the unit
cube. Figure 1 shows the view of the surface looking along the positive r14-axis
toward the r23, r34-plane. There is a nearly-vertical portion of the surface that is
obscured from this viewpoint, but visible in the rotated view in Figure 2. However,
the entire implicit plot is symmetric across the plane r14 = r23 (this can be seen by
the fact that interchanging r14 and r23 takes (2.1) to (2.2)).

Therefore we can assume without loss of generality that r14 ≥ r23, and so also
r13 ≥ r24 by (2.10). We will only consider that portion of the graph in the following.
Because of the shape, we will refer to it as the bowtie surface.

We next consider what configurations correspond to points on the boundary
curves. Note that if r14 = r23, then equations (2.5), (2.6), and (2.7) imply that
r13 = r24 as well, so the only cases where r14 = r23 are the configurations known
as isosceles trapezoids. These will be studied in more detail in §7. We next note
that since 1 = r12 ≥ r14 ≥ r23 the rest of the boundary is defined by r14 = 1.
Substituting this into F3 and factoring yields:

F3(r23, r34, 1) = (r23 − r34)(r23 + r34)2(
r2
23 + r23r34 + r2

34 − 1
)
.

The first factor vanishes on points corresponding to kite configurations where r23 =
r34. The kite cases will be completely characterized in §6.
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Figure 4: Γ3, view along r14 axis Figure 5: Γ3, view from side

The second factor is never zero for positive mutual distances. Hence it is left to
consider cases where

r2
23 + r23r34 + r2

34 − 1 = 0.
Examining (2.7), we see that when r12 = r14 = 1, this equation is equivalent to
r2
24 = 1. Therefore, the vortices 1,2,4 are at the corners of an equilateral triangle

and it follows by (2.18) that Γ3 = 0. Thus, the points on this curved component of
the boundary shown in Figure 3 correspond to degenerate configurations.

4. The signs of the vorticities

In this section we will analyze the possible signs of the Γi in solutions of the
system of equations from Theorem 2.1. We will see that in fact in any such relative
equilibrium either all of the Γi have the same sign, or else three of the Γi have the
same sign and the remaining vorticity has the opposite sign.

We were led to conjecture these patterns by plots showing the values for the
vorticity Γ3 obtained from the equation F5 = 0 in (2.19) on the points of the
bowtie surface defined by F3 = 0. To generate the plots in Figures 4 and 5, we
solved the equation F3 = 0 numerically for r14 as a function of r23 and r34 at a
collection of points in the projection of the bowtie onto the r23, r34 plane, then
plotted positive Γ3 values in blue and negative Γ3 values in red. Figure 4 shows
a top view along the direction of the r14-axis. Figure 5 shows the same plot of
Γ3-values, but from one side.

In the remainder of this section, we will give an analytic proof that Γ3 takes
opposite signs on the two lobes of the bowtie surface. We will need the following
fact from [2]; this depends only on the geometry of the cyclic quadrilateral.

Lemma 4.1 ([2], Lemma 4.6). Under the assumption r14 ≥ r23, and the conse-
quence noted above in (2.10), it follows that

r13

r24
≤ r14

r23
.

Proof. For the convenience of the reader we reproduce the proof from [2]. From
(2.6) and (2.7), and using the assumptions r12 = 1 and r23 ≤ r14, we have

r13

r24
=
b

c
=
r14 + r23r34

r23 + r14r34
≤ r14(1 + r34)
r23(1 + r34)

,
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which implies the claim. �

Lemma 4.2. In all co-circular four-vortex relative equilibria as above Γ2 > 0.

Proof. From the equation F4 = 0, we have

(4.1) Γ2 =
r24

r13
· r23

r14
· (r2

13 − r2
14)

(r2
24 − r2

23)
.

The inequality Γ2 > 0 follows from (2.11) and (2.13). �

The portion of the bowtie surface with r14 ≥ r23 off the boundary curves is
composed of two lobes: one (on the left in Figure 1) on which r23 < r34, and a
second on which r23 > r34. We will call these open subsets of the bowtie surface
lobe I and lobe II, respectively. The closures of the two lobes of the surface intersect
only at the point corresponding to a degenerate configuration that is also a kite.

We will deal with the points in the interior of lobe II first, since they follow
essentially the same patterns as those found by Cors and Roberts in the co-circular
4-body central configurations. We note that in [2] the inequality r23 ≥ r34 was de-
duced from the positivity of the masses mi (see §2.2 of [2]). However, this inequality
holds by definition on our lobe II.

Theorem 4.3. On lobe II, we have

Γ2 ≥ Γ4 ≥ Γ3 > 0.

Hence all four of the vorticities have the same sign on lobe II.

Proof. The inequality Γ2 ≥ Γ4 follows from the equations F4 = 0 and F6 = 0, or
from (2.15) and (2.17). These say

Γ2 =
r23r24(r2

13 − r2
14)

r13r14(r2
24 − r2

23)

Γ4 =
r34r24(r2

13 − 1)
r13(r2

24 − r2
34)

.

and the inequalities r23 > r34, r14 ≤ 1, and r13 ≥ r14 combine to give Γ2 ≥ Γ4.
Finally, Γ4 ≥ Γ3 > 0 follows using Lemma 4.1 just as in the proof of Theorem 4.4
of [2]. �

Now we analyze the situation on lobe I and show:

Theorem 4.4. On lobe I, we have

Γ4 > Γ2 > 0 > Γ3.

Hence three of the vorticities are positive and one is negative on lobe I.

Proof. The inequality Γ2 > 0 follows again from Lemma 4.2. On lobe I, r23 < r34

and the equation F5 = 0 from (2.19) imply that Γ3 < 0. Hence to finish the proof,
we only need to show that Γ4 > Γ2 on this lobe of the bowtie.

We begin from the equations F4 = 0 and F6 = 0 from (2.19). Solving for Γ2,Γ4

and multiplying, we have

Γ2Γ4 =
r23r

2
24r34

r2
13r14

· (r2
13 − r2

14)
(r2

24 − r2
23)
· (r2

13 − 1)
(r2

24 − r2
34)

.
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We will show first that Γ2Γ4 > 0. From (2.3), we also have

(4.2)
(r2

13 − r2
14)

(r2
24 − r2

23)
=

(r2
14 − r2

34)(r2
13 − 1)

(1− r2
23)(r2

24 − r2
34)

.

Substituting into the previous equation we have

Γ2Γ4 =
r23r

2
24r34

r2
13r14

· (r2
14 − r2

34)
(1− r2

23)
·
(
r2
13 − 1

r2
24 − r2

34

)2

.

Hence the sign of Γ2Γ4 is determined by the sign of the factor r2
14 − r2

34.
By rearranging (2.2) and (2.3) (with r12 = 1), we obtain the following equations

(4.3)
(r2

14 − r2
34)

(1− r2
23)

=
(r2

13 − r2
34)(r2

24 − r2
14)

(r2
13 − r2

23)(r2
24 − 1)

=
(r2

13 − r2
14)(r2

24 − r2
34)

(r2
13 − 1)(r2

24 − r2
23)

.

In the rightmost expression in (4.3), all of the factors except r2
13 − 1 are known

to be positive by equations (2.11), (2.13), and (2.14). Similarly from (2.12) and
r23 < r34, the factors r2

13−r2
34 and r2

13−r2
23 in the middle product are also positive.

We consider the following possible cases. If r2
24 − r2

14 and r2
24 − 1 have the same

sign, then Γ2Γ4 > 0 and we are done.
On the other hand we claim that the case where these factors have opposite signs,

so r2
24−1 < 0 but r2

24−r2
14 > 0, is not possible for a four-vortex relative equilibrium

(even though these relations are certainly possible for a cyclic quadrilateral). We
note that in this remaining potential “bad” case, from (4.3), we have r2

13 − 1 < 0,
so the edge lengths are ordered as follows:

(4.4) r12 = 1 > r13 > r24 > r34 > r14 > r23.

We will show that this is incompatible with the equation F3 = 0, but in the rear-
ranged form given in (2.4).

Denote the factors in that equation as ABC − abc = 0. Under the assumptions
that the lengths are ordered as in (4.4), we see

A = r2
24 − r2

23 > a = r2
34 − r2

23 > 0.

We claim that it is also true that BC > bc > 0, so the equation ABC − abc = 0
cannot hold. First, BC > 0 and bc > 0 by (4.4). Expand out the products in
BC − bc, noting one cancellation, to obtain

r2
13r

2
24 + r2

14 + r2
34r

2
14 − r2

13r
2
14 − r2

34 − r2
14r

2
24.

By Ptolemy’s theorem from (2.8) we can substitute for the first term and simplify
to obtain

BC − bc = r2
14(r2

23 + r2
34 + 1− r2

13 − r2
24) + 2r14r23r34.

By the Law of Cosines as before we have

r2
23 + r2

34 = r2
24 + 2r23r34 cos(θ3),

where θ3 is the interior angle of the quadrilateral at vortex 3. Hence

BC − bc = r2
14(1− r2

13) + 2r14r23r34(1 + r14 cos(θ3)) > 0.

This shows that this case cannot occur. Hence the product Γ2Γ4 > 0 and in addition
r2
14 − r2

34 > 0.
It remains to show that Γ4 > Γ2. By (2.15) and (2.17),

Γ4

Γ2
=
r34r14

r23
· (r2

13 − 1)(r2
24 − r2

23)
(r2

13 − r2
14)(r2

24 − r2
34)

.
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As noted above, from (2.3) (with r12 = 1), we obtain

(4.5)
(r2

13 − 1)(r2
24 − r2

23)
(r2

13 − r2
14)(r2

24 − r2
34)

=
(1− r2

23)
(r2

14 − r2
34)

.

Hence
Γ4

Γ2
=
r34r14(1− r2

23)
r23(r2

14 − r2
34)

.

Note that both the numerator and the denominator are positive by the argument
showing Γ2Γ4 > 0. We subtract the denominator in the last expression from the
numerator and factor to obtain

(r34 − r14r23)(r14 + r23r34)

The first factor is positive since r34 > r23 on lobe I and r14 < 1. The second factor
is automatically positive since the rij are distances. Hence Γ4 > Γ2 and the proof
is complete. �

5. Further constraints on the qi and the Γi

We have already seen that, as in the Newtonian case, not every cyclic quadri-
lateral can appear in a relative equilibrium of four vortices; there are additional
geometric constraints imposed by (2.1). The following lemma is inspired by the
proof of Conley’s Perpendicular Bisector Theorem for Newtonian central configu-
rations from [10] and gives another type of constraint. To our knowledge, this sort
of argument has not been used before for vortices and this sort of approach could be
useful in other situations. However, the fact that the Γi can be positive or negative
makes it somewhat difficult to foresee the circumstances where something of this
sort might be used (other than for cases where it is assumed that all the Γi are
positive, for instance). We continue to assume that the positions of the vortices are
labeled in sequential order around the circumscribed circle, r12 = 1 is the longest
exterior side of the quadrilateral, r23 ≤ r14, and Γ = 1.

Lemma 5.1. Let L be the perpendicular bisector of the chord of the circle connect-
ing q2 and q3. Then q1 and q4 lie on opposite sides of L. In particular, the arc
from q1 to q2 along the circle not containing q3 and q4 is less than a semicircle.

Proof. We begin with the observation that, by Theorems 4.3 and 4.4, Γ1 = 1 and
Γ4 > 0 have the same sign in all of our relative equilibria. From (1.1) with i = 2, 3
we have the equations:

Γ1
q2 − q1

r2
12

+ Γ3
q2 − q3

r2
23

+ Γ4
q2 − q4

r2
24

= −λ(q2 − c)

Γ1
q3 − q1

r2
13

+ Γ2
q3 − q2

r2
23

+ Γ4
q3 − q4

r2
34

= −λ(q3 − c).

Subtracting these two equations and rearranging, we see that the vector

(5.1) Γ1

(
q2 − q1

r2
12

− q3 − q1

r2
13

)
+ Γ4

(
q2 − q4

r2
24

− q3 − q4

r2
34

)
is a scalar multiple of q2 − q3. Let v be a unit vector orthogonal to q2 − q3.
The standard inner (dot) product of v and q2 − q3 is 〈v, q2 − q3〉 = 0. Hence
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〈v, q2−q1〉 = 〈v, q3−q1〉 and 〈v, q2−q4〉 = 〈v, q3−q4〉. Call the first of these scalars
d1 and the second d4. Then taking the inner product of (5.1) and v we obtain

(5.2) Γ1d1

(
1
r2
12

− 1
r2
13

)
+ Γ4d4

(
1
r2
24

− 1
r2
34

)
= 0.

We claim that this relation can only hold when q1 and q4 lie on opposite sides of L.
Note that 1

r2
12
− 1

r2
13

(respectively, 1
r2
24
− 1

r2
34

) is zero only if q1 (respectively, q4) lies
on the perpendicular bisector L. Moreover the sign is positive if q1 (respectively,
q4) lies in the half plane bounded by L and containing q2 and negative on the half
plane containing q3. On the other hand, d1 and d4 both have the same sign since q1

and q4 lie in the same half-plane bounded by the chord through q2 and q3. Hence
the only way the left side of (5.2) can cancel to zero is if q1 and q4 lie on opposite
sides of L. �

Theorem 5.2. In all of our relative equilibria, Γ2 ≤ 1.

Proof. In a cyclic quadrilateral, it is a standard fact that the angle between an
exterior side and a diagonal is equal to the angle between the opposite side and the
other diagonal. It follows that the four triangles formed by the two diagonals and
the exterior sides are similar in pairs. In particular the angle at q4 in the triangle
formed by q1, q2, q4 and the angle at q3 in the triangle formed by q1, q2, q3 are equal.
Denote this angle by θ. By Lemma 5.1, θ < π/2, so cos(θ) > 0. By the Law of
Cosines in these triangles,

r2
13 + r2

23 = r2
12 + 2r13r23 cos(θ)

r2
14 + r2

24 = r2
12 + 2r14r24 cos(θ).

By Lemma 4.1, r13r23 ≤ r14r24, and hence since cos(θ) > 0 it follows that r2
13+r2

23 ≤
r2
14 + r2

24. Hence r2
13 − r2

14 ≤ r2
24 − r2

23 and the statement to be proved follows since
each of the three factors in the product giving Γ2 in (4.1) is ≤ 1. �

It follows from this result that Γ1 = 1 ≥ Γ2 ≥ Γ4 ≥ Γ3 > 0 on lobe II from the
previous section. On lobe I we have Γ4 > Γ2 > 0 > Γ3, but at present we do not
see how to get good bounds on Γ4 or Γ3.

6. The kite configurations

We call a convex quadrilateral a kite if two opposite vertices lie on an axis of
symmetry of the configuration (see Figure 6). Thus a co-circular relative equilib-
rium forms a kite if and only if one pair of opposite vortices lie on the diameter of
the circumscribed circle. There are also kites that are not co-circular, but we will
not consider them. In the following, we will assume as in Figure 6 that the axis of
symmetry passes through vortices 1 and 3.

The definition of a kite implies that adjacent sides are equal for the two vortices
that lie on the diameter of the circle. Thus the conditions r12 = r14 = 1 and
r23 = r34 hold. For any kite inscribed in a circle, each side of the line of symmetry
forms a right triangle. This gives us the Pythagorean relation

(6.1) r2
13 = 1 + r2

34.
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Figure 6: Kite configuration with line of symmetry through vortices 1 and 3

To analyze this case, we will use (2.19), but with F5 = 0 replaced by the equiva-
lent form F ′5 = 0 from (2.18). We will make use of Gröbner bases for the ideals gen-
erated by these polynomials. See [3] for general background on this algebraic tech-
nique. Equations for the kite configurations are obtained by substituting r14 = 1
and r23 = r34. We adjoin an additional equation

1− tr13r24r34Γ2Γ3Γ4

to force the variables appearing there to be nonzero. Using sage ([12]), we compute
a Gröbner basis for the substituted ideal with respect to the lexicographic order
with the variables ordered as follows:

t > r13 > r24 > r34 > Γ2 > Γ3 > Γ4.

The resulting Gröbner basis contains 24 polynomials, one of which depends only
on Γ3,Γ4. After factoring, we see that this polynomial is

(6.2) (4Γ2
4 + Γ4Γ3 + Γ4 − 2Γ3)(−4Γ2

4 + Γ4Γ3 + Γ4 + 2Γ3).

The next polynomial in the Gröbner basis is

Γ2 − Γ4,

which shows that Γ2 = Γ4 for all kite configurations, as we expect from the sym-
metry.

The real vanishing locus of each of the two factors in (6.2) is a hyperbola in the
Γ3,Γ4 plane and each of these equations can be solved for Γ3 in terms of Γ4:

(6.3) Γ3 =
∓4Γ2

4 − Γ4

Γ4 ∓ 2

(the − sign gives the solution of the equation from the left-hand factor in (6.2) and
the + gives the solution of the equation from the right-hand factor).

Adjoining each factor in (6.2) to the ideal individually and computing Gröbner
bases again, all of the other variables can be expressed in terms of Γ4. From the
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system using the left-hand factor in (6.2), for instance, we obtain

r2
34 =

3Γ4

Γ4 − 2
,

r2
24 =

6Γ4

2Γ4 − 1
,

r2
13 =

4Γ4 − 2
Γ4 − 2

.

All of the right sides must be positive since rij must be nonzero and real. In
addition, r34 ≤ 1 forces −1 ≤ Γ4 ≤ 0. However since Γ4 > 0 on the interior of lobes
I and II of the bowtie surface from Theorems 4.4 and 4.3, we see that the left-hand
factor from (6.2) is satisfied only for points on the surface F3 = 0 with r23 > r14.

With the right-hand factor in (6.2), we obtain

r2
34 =

3Γ4

Γ4 + 2
,

r2
24 =

6Γ4

2Γ4 + 1
,(6.4)

r2
13 =

4Γ4 + 2
Γ4 + 2

.

(The last equation also follows from (6.1).) Now the equation for r2
34 shows that to

get 0 < r34 ≤ 1, we must have 0 < Γ4 ≤ 1. Using the + signs in (6.3), it follows that
Γ3 < 0 for 0 < Γ4 <

1
4 and Γ3 > 0 for 1

4 < Γ4 ≤ 1. The points with Γ3 < 0 form
one of the boundary curves of lobe I of the bowtie surface considered above, and
the points with Γ3 > 0 give one boundary curve of lobe II. When Γ4 = 1

4 , it follows
that r34 = 1√

3
, and the corresponding configuration is the symmetric degenerate

configuration mentioned before: an equilateral triangle configuration with Γ1 = 1,
Γ2 = Γ4 = 1

4 , and an additional vortex with Γ3 = 0. When Γ4 = 1, we have a
geometric square configuration with all exterior sides equal to 1, diagonals equal to√

2, and all vorticities Γi = 1.
We have proved the following statements.

Theorem 6.1. There is exactly one kite configuration corresponding to each point
on the intersection of the bowtie surface F3 = 0 and the plane given by r23 = r34.
These configurations are parametrized by the value of the vorticity Γ4 with 0 <

Γ4 ≤ 1 as in (6.4). The other vorticities are Γ2 = Γ4 and Γ3 = 4Γ2
4−Γ4

Γ4+2 . The values
0 < Γ4 ≤ 1

4 give the portion of the boundary curve in the closure of lobe I and the
values 1

4 ≤ Γ4 ≤ 1 give the portion of the boundary curve in the closure of lobe II.

7. The isosceles trapezoid configurations

We will call a convex quadrilateral possessing a line of symmetry passing through
the midpoints of two opposite edges an isosceles trapezoid. Any such quadrilateral
has a circumscribed circle. If we label the vertices as in Figure 7, then the equal
pairs of distances are r13 = r24 and r14 = r23. The corresponding 4-vortex relative
equilibria have been described already in §7 of [8]. Hence we will only briefly
discuss how the results of Hampton, Roberts and Santoprete can be recovered with
our setup. To analyze this case, we will use (2.19). Equations for the isosceles
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Figure 7: An isosceles trapezoid

trapezoid configurations are obtained by substituting r23 = r14 and r24 = r13. We
adjoin an additional equation

1− tr14r13r34Γ2Γ3Γ4

to force the variables appearing there to be nonzero. Using sage ([12]), we compute
a Gröbner basis for the substituted ideal with respect to the lexicographic order
with the variables ordered as follows:

t > r14 > r13 > r34 > Γ3 > Γ4 > Γ2.

The resulting Gröbner basis contains 35 polynomials. In factored form, the equa-
tions from the polynomials with the three smallest lex leading terms are

(Γ2 − 1)(r34 + 1) = 0,
(Γ4 − 1)(Γ3 − Γ4)(r34 + 1) = 0,
(r34 − 1)(r34 + 1)(Γ3 − Γ4) = 0.

The first implies that Γ2 = 1, since r34 > 0. Similarly, the second implies either
Γ4 = 1 or Γ4 = Γ3 and the third implies r34 = 1 or Γ4 = Γ3. If r34 = 1, then
the configuration must be a geometric square and all the Γi = 1. Hence we see the
symmetry of the vorticities directly from the form of the Gröbner basis polynomials.

From the subsequent polynomials in the basis, we can solve for the remaining
distances in terms of Γ3 with this triangular form system:

r2
34 =

2Γ3 + Γ2
3

2Γ3 + 1
,

r2
13 =

Γ3r
2
34 − r34

Γ3 − r34
,(7.1)

r2
14 =

Γ3r
2
34 + 2r2

13 − Γ3 − 2
2r2

13 − 2
.

From the first equation here, we see that 0 < r34 ≤ 1 only when −2 < Γ3 ≤ −1
or 0 < Γ3 ≤ 1. The last equation then shows r2

14 > 0 only when 0 < Γ3 ≤ 1.
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Theorem 7.1. There is exactly one isosceles trapezoid configuration corresponding
to each point on the intersection of the bowtie surface F3 = 0 and the plane given
by r14 = r23. With the labeling in Figure 7, these configurations are parametrized
by the value of the vorticity Γ3 with 0 < Γ3 ≤ 1 as in (7.1). The point with Γ3 = 1
corresponds to the geometric square configuration.
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