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§1. Error-Correcting Codes
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e A main goal of coding theory is the de-
sign of coding schemes which achieve error
control: use to detect and correct errors in
received messages.



An Example

“If you cen rebd this, then yop're dojng error-
corredtion.”

In natural languages like English, words are
usually “far enough apart” that even if some
of a message is corrupted, it is still intelligible.

In the systems used for other types of commu-
nication, similar robustness in the presence of
“noise” is a very desirable feature.



Mathematical Setting

Messages

e are divided into “words’” or blocks of a fixed
length, k,

e Use symbols from a finite alphabet A with
q Ssymbols

Simplest case (also best adapted to electronic
hardware) is an alphabet with two symbols:
A = {0,1}, identified with the finite field F5
(addition and multiplication modulo 2 — for in-
stance 1 + 1 = 0), but we will see others in a
few moments also.

Usually, all strings or k-tuples in Ak are con-
sidered as possible words that can appear in a
message.



Encoding and Decoding

To correct errors, some redundancy must be
built into the encoded form of the message.

One way is to make the encoded message con-
sist of strings or n-tuples of length n > k over
the same alphabet. Then encoding and decod-
ing operations are functions:

E:AF 5 A"
and
D : A" — AF
where E is 1-1, and Do E = I on Ak. (D

might also take a “fail” or “not decoded” value
on some words in the complement of Im(FE)
containing too many errors to be decodable.)

We call C = Im(FE) the set of codewords, or
just “the code.” Any C of this form is called
a block code of length n.



Errors

When an error is introduced in a word sent over
the channel, the effect is to replace a codeword
xr by a received word z/ # z.

If the alphabet A has a sum operation satisfy-
ing usual algebraic rules (commutativity, asso-
ciativity, existence of a O element and additive
inverses), then we can think of =/ as a vector
sum z/ = x4+ e, where e € A" is the error vec-
tor. wit(e) determines how many entries of z
are corrupted, and decoding is the same as de-
termining e, then subtracting it off to recover
xZ.

We will restrict to this case from now on, and
in particular assume A is a finite field with gq
elements for some gq. The case q = 2 is the
binary field Fo, = {0,1} with addition modulo
2.

04+0=0,140=04+1=1,14+1=0.
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Hamming Distance

For errors to be correctable, codewords must
be widely enough ‘separated” using:

Definition. (Hamming Distance) Let x,y €
Fg. Then

d($,y) — |{7’€ {1,...,7?,} : xz#:yz”

number of non-zero entries in x — y.

Example: d(11000111,10100101) = 3

d(x,y) is a metric or distance function (on the
finite set F{;). In particular, the triangle in-
equality:

d(z,y) < d(z,z) + d(z,y)
holds for all x,y,z € Fg.

The weight of a word z is wt(x) = d(x,0) =
number of nonzero entries. For instance, we
have wt(11000111) = 5.



Error-Correcting Capacity

The Hamming distance measures a code’s er-
ror detecting and error correcting capacity:

Proposition 1 If a code C C Fg satisfies

d(u,v) >s+1

for all distinct w,v € C, then all error vectors
of weight s less can be detected. If d(u,v) >
2t+1, all error vectors of weight t or less will be
corrected by the “nearest-neighbor” decoding
function:

D(z) = E"Y(ce C: d(z,c) is minimal).

We write

B(u,s) = {y € F7 : d(u,y) < s}.

(the closed ball with center u, radius s for the
Hamming distance)



The Proof

Proof: If d(u,v) > s+ 1 for all u # v in C,
then changing s entries in a codeword never
produces another codeword.

Assume d(u,v) > 2t + 1 for all u,v € C. The
closed Hamming balls of radius ¢ about the
codewords u,v must be disjoint. For if not,
and y € B(u,t) N B(v,t), we would have

d(u,v) < d(u,y) +d(y,v) < 2¢

by the triangle inequality. But this contradicts
our assumption.

Shows: If u is sent, weight of error e is < ¢, then
u-+e is still closer to uw than any other codeword
— nearest neighbor decoding will correct error!
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Coding Practice

e Nearest neighbor decoding can fail if error
vector has weight > t.

e In most reasonable situations, errors of smaller
weight are more likely than errors of larger
weight, though.

e Based on type of information to be trans-
mitted, properties of channel, energy “bud-
get” available etc. an engineer would se-
lect a code where the probability of that
happening was acceptably small.
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Important Parameters of Codes

e R =k/n, the information rate

e d = ming,,ccd(zr,y), the minimum dis-
tance (or d/n the relative minimum dis-
tance).

There are many known theoretical bounds on
these parameters. One such:

Proposition 2 (Singleton Bound) For each fixed
d, the parameters n,k of codes of minimum
distance d satisfy

d<n—k+1.
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Good Codes

“Good" codes are ones for which R = k/n is
not too small (so the code is not extremely
redundant), but for which d is relatively large.

There is a famous theorem of Claude Shannon
(father of this theory) that says very roughly
“good codes exist” but gives no explicit way
to construct them.

One of the main research directions in coding
theory has been to find constructions of “good

codes’ .

Tools: Algebra of polynomials, finite fields, ge-
ometry, etc.
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Codes with more algebraic struc-
ture

All examples we study will be linear block codes:
e The alphabet Fy is a finite field,

e [ he set of codewords C' is a k-dimensional
vector subspace of Fg.

e For E, can take any linear mapping with
image C' — matrix is called a generator ma-
trix for C.

e Writing all k- and n-tuples as row vectors,
can take GG to be an k£ x n matrix whose
rows span C, and E(z) = zG.

Note: to describe a linear code we need only
k elements in a basis, rather than all ¢ code-
words!
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An Example

In Ff consider the code C given by the gener-
ator matrix

(1 O 0O O 1 1 O\

G — O 1 0 0 1 0 1

O 0 1 0 0 1 1

\O O 0 1 1 1 1)
Parameters n =7,k =4,d = 3.

Since 3=2-1+4 1, this code can correct any
single bit error in word of length 7.

How we can tell: For linear codes, if z,y € C,
then x —y € C too. Hence

:c;rzylgc dle,y) = a:;g]ymC’ d@=y,0) = Z;qulgcd(z 0)
In other words: For linear codes, the minimum
distance is the same as the minimum weight
of a nonzero codeword.
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Example, continued

There are 2% = 16 different codewords for this
code (all linear combinations of the rows of G):

e Oone: (0,0,0,0,0,0,0) has weight zero,

e seven have weight 3:
(1,0,0,0,1,1,0) (1,0,0,1,0,0,1)
(1,1,1,0,0,0,0) (0,1,0,1,0,1,0)
(0,1,0,0,1,0,1) (0,0,1,0,0,1,1)
(0,0,1,1,1,0,0)

e seven have weight 4
e one has weight 7: (1,1,1,1,1,1,1)

(Words of weight 4 are “complements” of the
words of weight 3.)
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More On This Example

The code given by G above has another in-
teresting property: every word in FZ is either
a codeword, or Hamming distance 1 from a
unique codeword. (Reason: 16-(147) = 128.)

A rudimentary decoder would use a ‘‘check ma-
trix'" H for C such as

1 1 O
(1 O 1\
O 1 1
H=(1 1 1
1 0 O
O 1 O
\o 0 1/

for which the codewords z € C (written as
columns) are the solutions of tH = 0.
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Decoding

Assuming error has weight <1,
e Given received y compute s = yH,;
e If s =0, then y € C,

e If not, then repeat z’ := y with one bit
toggled until z’H = 0. Then 2z’ is a code-
word within Hamming distance 1 of y, and
that was the transmitted word, assuming
no more than 1 bit in the codeword was
corrupted.

As before, this method may not correctly de-
code a received word y if weight of error is too
large.
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Hamming Codes

e The [7,4,3] binary code in this example is
an example of a Hamming code.

e [ he general binary Hamming code C) has
parameters [n,k,d] =[2"-1,2" —r —1,3].

e Parity check matrix H, is the 2" — 1 x r
matrix whose rows are the 2" — 1 nonzero
vectors of length r over F».

e r € Cr & xH, = 0, or equivalently the en-
tries of x are coefficients in a linear depen-
dence between rows of H,

o = d=3.
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Some ther Famous Codes

e The Golay code — a remarkable [23,12,7]
binary code. The Hamming balls of radius

3 about 212 codewords completely fill out
F33:

23 23 23
22+ ()4 () + (5 ==

e BCH codes — give a way to construct binary
codes of length 2° — 1 with any designhed
minimum distance ¢; actual minimum dis-
tance satisfies d > §. Construction uses
much of the same algebra as the Reed-
Solomon codes we will study in §3.

e Low-Density Parity-Check codes — inten-
sively studied recently.
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§2. Cyclic and Multi-cyclic codes,
Finite Fields

e A linear code C C Fg IS said to be cyclic if it
IS invariant under the cyclic shift mapping

0-(007 C1,CDy ..., Cn—l) — (Cn—17 Co,C1y-- -, Cn—2)

e Often assume n is relatively prime to g here
to avoid some algebraically “interesting”
behavior; not necessary, though.

e T his property has another nice algebraic
interpretation and leads to interesting en-
coding and decoding methods.
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Algebraic translation

Define
o F7 o Ft]/(t" — 1)
(cos---rCn_1) = cotecit+ -+ cp 1t !

(right hand side mod t™ —1.)

Proposition 3 IfC is a cyclic code, then o(C)
is an ideal in the ring Fy[t]/{(t" — 1), and con-
versely.

Proof: ©(C) is a vector subspace, since ¢ is
the standard linear isomorphism between F’(}
and the quotient ring.
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Proof, continued

So, we only need show ¢(C) closed under prod-
ucts by elements of Fy[t]/(t" — 1). First note
that if ¢ € C is a vector as above,

t-p(c) = cot+cit’+---+c, 1t"
= ¢, 14cot+- -+, ot" T modt”—1
= ¢(o(c))

This is in ¢(C) because C is invariant under o.
But now by distributivity, ¢(C) is closed under
arbitrary products. //

Note: Can also view R = Fy[t]/(t" — 1) as the

group algebra of the cyclic group of order n:
FylZn).
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More on the structure of cyclic
codes

e Easy to see that the ring R = Fy[t]/(t" — 1)
is a principal ideal ring, since Fg[t] is.

e Every ideal in R is generated by the coset
of some ¢g(t) of degree n — 1 or less.

e Also, can take g(t)[t™ — 1 in Fq[t].

e Call ¢g(t) a generator polynomial for the
cyclic code.

e Can always normalize g(t) to make it monic.
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Some Examples

e In F5[¢], the polynomial t1°—1 = ¢1541 has
irreducible factors: (¢+41), (t24t+1), (t*+
t+1), @*+ 3+ 1), T+ 2+ 7+t 4 1)

e = 2° = 32 different divisors, each of which
can be taken as the generator polynomial
for a binary cyclic code with n = 15.

e For example, code with g(t) =

E+1D)E+t+1) = +t* + 2+ 1
has n = 15,k = 10,d = 4.

e One generator matrix is formed from cyclic
shifts of:

(0,0,0,0,0,0,0,0,0,1,1,0,1,0,1)
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A First Generalization

The algebraic interpretation of cyclic codes given
above suggests several generalizations. The
first is relatively straightforward.

e Replace Fy[t]/(t"—1) by a finite-dimensional
quotient of a polynomial ring in more than
one variable, of the form

R=Fg[ty,...,tm]/(t3 — 1, ...ty — 1)

e Consider ideals I C R.

The resulting codes are called abelian codes,
and m-dimensional cyclic codes in the litera-
ture.

25



2-D Cyclic Codes

e For example, with m = 2, the codewords
could be viewed as either as polynomials in
two variables (linear combinations of mono-
mials t71t52, with 0 < e; < n;), or as rect-
angular arrays.

e Closure under multiplication by t; means
code is invariant under simultaneous row-
wise cyclic shifts.

e Similarly, closure under multiplication by %5
means the code is invariant under simulta-
neous column-wise cyclic shifts.

e Could also study these codes as ideals in
the group algebra Fy[Zn, X Zn,].
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An Example

For instance, we can ask: What is the smallest
2D-cyclic code C' of size n1 X no = 3 X 3 over
F> containing the codeword:

1 0 1
X=[0 1 0|~
1 0 1

X corresponds to the polynomial:

px = 1+ 15 + t1to 4 t5 + t5t3
(or, better, the coset of this polynomial in R =
Faolt1,t2]/(t3 + 1,83 + 1)).
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Example, continued

We claim that the ideal generated by px in R is
equal to the ideal generated by p; = t?+t1+1
and po =5 +t>+ 1. This is equivalent to the
claim that

I=(px,t3+ 1,63+ 1)

equals

J = (p1,p2)
in Fo[t1,t>]. We see:

px = pip2 +top1 +tipo
+1 = (t+ Dy
= I C J. Similarly, can see py,p> € I (Exer-
cise!), so I = J.

(Grdobner bases give a nice way to test equality
of ideals. Can also deduce I = J here from
properties of the Galois field F4 — next lecture!)
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Example, concluded

From the description of the code as the ideal
J above, can see:

n=9,k=5,d<3
(Estimate on d comes from the weight of the

codewords corresponding to p; and p>.)

We have a basis for the code consisting of the
words corresponding to:

2 2
p1,t2p1,t5p1,t1p2,t1P2

29



Looking Ahead

The algebra of ideals I C R is more interesting
than in the case m = 1.

Not every ideal is principal, for instance, as we
see already in the example done before!

For all m > 1, the theory of Groebner bases can
be applied, for instance, to construct encoding
and decoding algorithms. We will study these
for cyclic and abelian codes in §4 and §6.
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Finite Fields

To describe our next examples, we need to
introduce explicit fields larger than Fo, = {0, 1}
or the “prime fields” F, (integers mod p) to
be used as code alphabets.

To see idea, we might want set of strings of
0,1's of a fixed length r to be the alphabet.
r = 4 would give 2% distinct symbols:

0000,0001,0010,0011,0100,0101,0110,0111,
1000,1001,1010,1011,1100,1101,1110,1111.

In order to work with the set-up of linear codes,
though, this set must be given the structure of
a field.
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A Field With 16 Elements

We can interpret a string 83658180 (B; € F»)
as a polynomial in a new variable «:

Bz + Bra? + Bra 4+ Bg

The set of all 16 such expressions will be de-
noted by Fig.

Addition operation: usual polynomial addition
(same as vector addition in F3).

Multiplication operation: we know how to mul-
tiply polynomials:

(P + 1)@’ +1)=a’+a’+a’+1.
But of course the degree of the product is too
large here. To reduce to the proper range of
degrees, we divide by some polynomial of de-
gree 4 in o and take the remainder of the prod-
uct.

Of course, we are working in the quotient ring
Fola]/(h(a)).

32



A Field with 16 Elements, con-
tinued

This much works for any divisor polynomial
h(a) of degree 4. But, do we always get a
field this way?

The answer is no, since h(a) must be irre-
ducible in order for the (h(a)) to be a maximal
ideal and the quotient ring to be a field.

For instance, it can be checked that both h(a) =

a*+a+1 and h(a) = a*+a3+1 areirreducible
in FQ[O:].

33



A Field with 16 Elements, con-
cluded

Another more elementary way to see that we
have a field is to check 1,a,a?,...,al? are all

distinct, and o!® = 1. Hence

e T he powers of a give all the nonzero ele-
ments of Fi4, and

e Each element of has a multiplicative in-
verse al®k  (That is, the multiplicative
group F]’_‘6 is a cyclic group of order 15.)

« IS called a primitive element for Fq¢.
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Finite (Galois) Fields

Theorem 1 Let p be prime in 4.

1. The set of integers mod p is a field denoted
F, (a prime field).

2. For all p and all »r > 1, there are irreducible
h(a) of degree r in Fpla].

3. Let h(a) be irreducible of degree r. Then
Fpla]l/(h(a)) is an extension field of the
prime field Fp with p" elements.

4. Different choices of irreducible h of the
same degree yield isomorphic fields, called

Fr

5. Every field Fpr has a primitive element.
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§3. Applications: Reed-Solomon
and BCH Codes

Suppose we want to construct codes attaining
the Singleton bound. (These are called MDS,
or “maximum distance separable,” codes).

Restricting to codes of length n < g, here is a
way if the code alphabet is Fg4. Fix an integer
k < q. Polynomials of degree < kK have at most
k—1 roots in Fy, and some have precisely that
many roots.

Write L; for the set of all polynomials in Fg[x]
of degree < k. We will always assume k < ¢
here.
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Application, continued

L; is a vector space over F, of dimension k.
For each polynomial f € L;, we construct a
word in Fg by evaluating f at the elements of
F,, to get a g-tuple (letting a be a primitive
element),

(£(0), £(1), f(@),..., f(a?2))

(recall =1 =1). When we do this, we get a
word with

e at most k — 1 zero entries, hence

eatleast q —(k—1)=qg—-k+1=n—-—k+
1 nonzero entries (and some have exactly
k — 1 zero entries).
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Application, continued

The set of all such words is a linear code since:

e [, is a vector space, and

e the evaluation mapping is linear.

Hence the resulting code will have

e dimension k and

e minimum distanced = n—k-+1 when k£ < gq.
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Application, concluded

e Using all g elements of Fy, we get extended
Reed-Solomon codes.

e Standard Reed-Solomon codes come from
evaluating only at the nonzero elements of
the field (omitting the f(0) entry to get a
word in FZ™1).

e Can also take the polynomials vanishing
at some fixed subset of nonzero elements,
evaluate them, and delete the zeroes to
form evaluation vectors of length n < ¢g—1 —
yields the shortened Reed-Solomon codes.
(The actual codes used in the CD audio
system are examples of these.)
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In Summary ...

Theorem 2 Pick a primitive element o for F,
and write the nonzero elements of ¥y as

1a,...,a972
Let kK < q and L, = {f € Fylz] : deg f < k}.
Write
ev: L, — Fg_l
foe (FQ), (), ., f(a?2)).

Then Im(ev) is a linear code with n = q — 1,
dimension k, and minimum distance d = n —
k+1 = q— k, called a Reed-Solomon code,
RS(k,q). All Reed-Solomon codes are MDS
codes withd=n—-k+ 1.
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An RS Example

For example, using the standard monomial ba-
SIS

{1, z, 2,13, ... ,xk_l}

for L;, the Reed-Solomon code RS(3,16) (pa-
rameters: n = 15,k = 3,d = 13 over Fqig, SO
163 = 4096 distinct codewords) has generator
matrix

G: 1 a a2 e o o a7 a8 e« o o a14
14 13

[
Q
N
Q
N
Q
Q
Q
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How RS Codes are Used

Reed-Solomon codes are commonly used in sit-
uations where errors tend to occur in “bursts”
rather than randomly.

This includes communication to and from deep-
space exploration craft, the CD digital audio
system, and many other applications.

Reed-Solomon and other block codes over For

can correct relatively long bursts of errors on
the bit level, even if d is relatively small.
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Burst Error Correction

Can “go back” and think of B,_1a" 1+ ... +

B1a+Bg in For as the vector (8,_-1,...,81,80) €
FZX.
2

Then a Reed-Solomon codeword is represented
by a string of (2" — 1)r bits.

A burst of s-r consecutive bit errors, for in-
stance, will change at most s+ 1 of the entries
of the codeword, as elements of For.

Hence, RS(3,16) above can correct burst er-
rors of bit length up to 20 =5-4. Random er-
rors of weight < 6 are correctable since d = 13.
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More on Structure of RS Codes

Reed-Solomon codes also have additional al-
gebraic structure as in §2.

This greatly facilitates the encoding and de-
coding operations. To see the idea, consider
the generator matrix G for the Reed-Solomon
code RS(k,q) constructed by evaluating the
monomials {1,z,z2,...,zF"1} at the o € F}.
The :th row of GG has the form

(1)1, ()1, (a2) 1., (a7 2) 1.
Cyclically permuting this row, we obtain
(@2~ H ()" (@)t (o073,
which is equal to
aG=1@=2) (1)1 (4)=1 (a2)"1 .. (a272)i"1)
because a4~ 1 = 1.
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RS Codes are Cyclic

Thus, a cyclic permutation of the 7th row yields
a scalar multiple of the same row—it is also
one of the Reed-Solomon codewords!

The cyclic permutation is a linear mapping S
on Fg_l, and we have just seen that there is a
basis of RS(k,q) consisting of eigenvectors for
S.

It follows that the Reed-Solomon code RS(k, q)
Is invariant under S, since all the codewords are
linear combinations of the rows of G. These
observations give the proof of the following
fact.

Theorem 3 For all g and all k < q, the Reed-
Solomon code RS(k,q) is cyclic.

45



To the Generator Polynomial

Consider the mapping

¥ RS(k,q) — Fglt]/(t97 1 —1)
(CO, Cly---, Cq_2) = CQ —|— Clt —|— .. _|_ Cq_th—Q

as in §2.

Caution: that there are two rings of polynomi-
als “in play” now. The first is the ring Fy[x]
containing the polynomials that are evaluated
to form the Reed-Solomon codewords. The
second is the ring Fy[t] (or Fy[t]/(t9~1—1)) con-
taining the polynomial forms 1 (c) of the Reed-
Solomon codewords. Care should be taken not
to confuse these(!)

46



To the Generator Polynomial, con-
tinued

Every element of ¢¥(C) has the form

Y(c) =cog+cit+---+ cq_th_2
where we obtain the coefficients
k—1

¢ci = Y a;j(a")’
j=0

by evaluating some fixed f(xz) = Z?;%a

r=a' fori=0,...,q— 2.

-y
§T at

Substituting these expressions for ¢;, interchang-
ing the order of summation:

q=2 (k=1 AN
Y(e) 2 (Z aj(az)f) t!

i=0 \j=0

k—1 q-—2
S a, (z <aﬂt>z)

=0 i=0

a7



The Generator Polynomial, Fi-
nally

In Fg, rootsof 0 =1+ 2+ 224 ---+ 2972 are
all z #=0,1. Hence the inner sum in previous is
equal to zero provided that a7t # 0, 1.

The whole sum = 0 if aJt % 0,1 for all j =
0,....k—1, &te{a,a?...,a9 511 Conse-
quently, every ¥ (c) is divisible by

g(t) = (t —a)(t —a?)---(t — i F 71y,

In fact, by comparing dimensions, we have:

Theorem 4 The polynomial
g(t) = (t—a)(t —a?)---(t —ad k71

is the generator polynomial for RS(k,q).
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An Alternate Form

Since the minimum distance of a Reed-Solomon
code satisfies d = q — k, the generator polyno-
mial can also be written as

g(t) = (t —a)(t —a?)---(t —a?™1).

For example, the Reed-Solomon code RS(3,16)
from above has

g(t) = (t —a)(t —a®)(t —a3)---(t — al?)

sinced=15-3+41 = 13.
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The BCH Codes

The second class of codes we will consider were
discovered at almost the same time as the
Reed-Solomon codes, independently by Bose
and also by Chaudhuri and Hocquenghem.

They are known as BCH codes, and they are of
interest because they give examples of codes
of general block length over F; (not just n < g
as for the Reed-Solomon examples) that can
be designed to satisfy d > 4, for a given 9.

They are also cyclic, so they can be described
most simply by giving a method for construct-
ing their generator polynomials. As we will see,
they are also very closely connected to Reed-
Solomon codes.
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Motivation for the Construction

BCH construction uses a smidgen of Galois
theory to construct codes over F, with good
d. If gcd(n,q) = 1, then the nth roots of unity
in Fy are distinct.

Theorem 5 (The BCH Bound) Let 3 be a
primitive nth root of unity in an extension field
F,/Fq, and assume that g(t) € Fq4[t] is the gen-
erator polynomial of a cyclic code C of length
n over Fy. Consider the set of powers Bj such
that g(87) = 0. Assume this contains a string
of consecutive powers:

/BZO, /BZO‘I_]., L ,/BZO+5_2

of length 6 — 1. Then the minimum distance
of C satisfies d > ¢.

In RS case, n =qg — 1, so a primitive nth root
of unity is just a primitive element of Fg,, and

there is no field extension involved.
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The Construction

BCH codes in general are constructed by “cook-
ing up’” generator polynomials that are guar-
anteed to have consecutive strings of powers
of a primitive nth root of unity among their
roots.

From Galois theory for finite fields, we know
that Gal(F,/Fq) is cyclic of order r, generated
by the Frobenius automorphism F(x) = z4.

If g(t) € Fy[t] and g is a root of g, then since
F fixes the coefficients in g, F(8) = B4 is also
a root of g. This observation can be used to
simplify the description of the desired ¢(t).
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BCH Codes over Fo

The binary BCH codes (i.e. BCH codes over
F-) are the most commonly encountered ones,
and make the idea clear.

Take n odd. To get a cyclic code with min-
imum distance d > 6 = 2s + 1, take 8 any
primitive nth root of 1 in an extension Four/F>
(with » as small as possible, of course).

Let mgi(t) be the minimal polynomial of Bk in
F>[t]. Then full set of roots of mg(t) is

gk F(B) = g2k F(F(B)) = p*,... 32 %

(all exponents mod n since " =1). So if

g(t) = ICm(mB, M3, Mgs, . .. mﬁgs_l)

then all the 87 for 1 < j < 2s will be among
the roots. Hence the BCH bound will imply
d>d=2s-+ 1. There is a similar statement
for all q.
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Conclusion

It is not too difficult to find examples where
the actual minimum distance of a BCH code
IS strictly larger than the “desighed distance”
d.

Example: take n = 31,0 = 9 over F».

Other more refined lower bounds on d for cyclic
codes are also known, but this is an area where
research continues and our understanding is
not complete yet.
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84. Encoding and Decoding via
Grobner Bases

The extra symmetry of a cyclic code means
that less information is required to specify a
systematic encoder than for a general linear
code of the same dimension.

In fact all we need to know is the n — k coef-
ficients in @ monic generator polynomial ¢(t).
(Note: if dimC = k, then the degree of ¢(t)
will be n — k.)

Moreover, the encoding process can be de-
scribed very succinctly using a standard alge-
braic algorithm — polynomial division!
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Systematic Encoding via Division

For this description of systematic encoding,

e Coefficients of t"~% ... t"~1 are the he in-
formation positions, and

e Coefficients of 1,...,t" k=1 are the parity
checks.
Input : g(t), generator poly
information symbols ¢y, ..., cg
Output : y,a codeword
p = Cltn_k + ...+ thn—l;
y = p— Rem(p,g,t);

Since g has degree n — k, the remainder will
contain only 1,¢,...,t" %=1  The other terms
will be the same as in p.
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Generalization to m-dimensional
Cyclic Codes

The method here generalizes immediately to
m-dimensional cyclic codes (viewed as ideals I

in Fglt1,...,tm]/{t3t — 1,... t0m= 1)),

Generator polynomial ¢(t) is replaced by any
GrObner basis G for I.

Univariate polynomial division replaced by mul-
tivariate division w.r.t. ¢G.
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RS Decoding

Several different but related extremely efficient
decoding algorithms for Reed-Solomon and BCH
codes have been developed — one major reason
for the Reed-Solomon codes’ popularity.

e Berlekamp-Massey algorithm, very commonly
used in practice

e Another algorithm paralleling the Euclidean
algorithm for the GCD of two polynomials
IS also known

We'll study the first approach here.
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The Setup

For simplicity, assume Reed-Solomon code C
satisfies d = 2s + 1. Then by Proposition 1,
any s or fewer errors in a received word should
be correctable.

q—2

Let ¢ = Z]:O

c;jt! be a codeword of C.

In Fy[t], c is divisible by

g=((t—a)(t—a?) - (t —a D).

Suppose that ¢ is transmitted, but some er-
rors are introduced, so that the received word
is r = c+ e for some e = Y ;¢ eit’. L = error
locations, and we assume |L| < s. The coeffi-
cients e; are the error values.
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The Decoding Problem

Given the received word r, determine the set
of error locations L and the error values e; for
the error polynomial e with s or fewer nonzero
terms (if such a polynomial exists).

First, we compute s; = r(a?) forallj =1,...,d—
1, called the syndromes of the received word.

e If these are all zero, then r is divisible by
g, and assuming wt(e) < s, r must be the
codeword we sent.

e If some syndromes are nonzero,

sj =r(a?) = c(a?) + e(al) = e(a?),

since c is a multiple of g.

e Hence we can try to use the information in-
cluded in the syndromes to determine e(t).
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The Syndrome Polynomial

The syndromes may be used as the coefficients
in a polynomial
d—1 .
S(u) = sjuj_l,
J=1
called the syndrome polynomial for the received
word r. Its degree is d — 2 or less.

By extending the definition of s; = e(a’) to all
exponents 5 we can also consider the formal
power series

@)

S(u) = sjuj_l.

7=1
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—~

Another form for S

Suppose we knew e(t) for a received word with
wt(e) <s. Then, s; = Y;ep e () = Ser e,(a).
Exchanging the order of summation, then sum-
ming formal geometric series,

S(u) = Sjuj_l
=1
m . . .

= e; (047’)3107_1
1€L 1=1

. eiozi
ier, (1 —atu)

o w(u)

()’

where
(= H(l—aiu), w = e; 0 H(l—aju).
i€L i€l i
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The Error Locator
The roots of ¢ are precisely the o~ for i € L.

Since the error locations can be determined
easily from these roots, ¢ is called the error
locator polynomial.

Turning to the numerator w, we see that

degw < deg/? — 1.

In addition, if ¢ € L,

w(a™) = e;a (1-ala™") #0.
j#i,j€L
Hence w has no roots in common with 4. From
this we deduce the important observation that
the polynomials w and ¢ must be relatively
prime.
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The Key Equation

Similarly, if we consider the “tail”

S(u) — S(u) = ( q(ai)«f) i
j=d \icL
(u)’

where
g = eiozid (1 — o).
icL j7i
7€L
The degree of g is also at most deg/? — 1.

Combining these, and writing d — 1 = 2s we
obtain the relation
(KE) w = £S + u?g.

This is the key equation for decoding.
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A "Key” bservation

The derivation of (KE) assumed the error poly-
nomial e was known. But now consider the
actual situation. Given the received word r, S
is computed. We consider (KE) as a relation
between the known polynomials S, u?%, and un-
knowns 2, N\, I

(KE" Q = AS + u?°T.

Suppose a solution (2,A, M) of (KE") is found,
which satisfies the degree conditions: deg/\ <
s, and deg 2 < deg A\,

and in which €,A are relatively prime. We
claim that in such a solution A must be a factor
of w91 — 1, and its roots give the inverses of
the error locations.

65



A Uniqueness Statement
The last claim is a consequence of:

Proposition 4 Suppose wit(e) < s, and let S
be the corresponding syndrome polynomial. Up
to a constant multiple, there exists a unique
solution (2,\,I") of (KE’) that satisfies the
degree conditions above, and for which 2 and
/\ are relatively prime.

Proof: The actual error locator ¢ and the cor-
responding w, g give one solution. Let (2,A,IN)
be any other. Start with

w

Q

(S + u?sq
AS + u?sT,

multiply the second by ¢, the first by A and
subtract. We obtain

wA = QU+ u?*(gN\ — £I).
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Proof, continued

By the degree conditions, w/A and €2¢ are ac-
tually polynomials of degree at most 2s—1, SO
it follows that

w/\ = QY

(and gA\ = {4I'). Since both pairs (w,¢) and
(2, \) are relatively prime, they can differ only
by a constant multiple.//

Any solution of (KE') for which the degree
conditions are satisfied can be used to decode:

e Solve A(u) =0 in Fg\{0}, and get the error
locations.

e [ hen find the error values as follows.
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The Forney Formula

Let (w,4,g) be the solution of (KE') in which
the actual error locator ¢ (with constant term
1) appears. If 4 € L, then

w(a™) = o’e;xi(a™)
where x; = [[;i(1 — a/u). (This is called the
Forney formula.) Hence we can solve for e,
once we know the error locations.

The preceding discussion shows that solving
the decoding problem can be accomplished by
solving the key equation (KE').
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Recasting the Key Equation

From now on, for our purposes, it will be more
convenient to regard (KE) as a congruence:

Q = AS mod u?%.

Congruences of the same form are studied in
numerical analysis in the context of Padé ap-
proximation.

We will now follow Fitzpatrick and see how
computational commutative algebra can be used
to solve the key equation.

Given the integer s and S € F,[u], consider set
of all pairs (Q2,\) € Fy[u]? satisfying:

K = {(S,A\) : © = AS mod u?%}.
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Module of Solutions

K is an Fy[u]-submodule of F,[u]?. In addition,
every element of K can be written as a com-
bination (with polynomial coefficients) of the
two generators (u2%,0) and (S,1) for K, which
involve only known polynomaials.

We use the theory of Grobner bases in modules
over a polynomial ring.

Monomials in Fy[u]? are simply monomials in u
times one of the standard basis vectors e or
€H.

Let r € Z, and define an order >, by the fol-
lowing rules. First, ue; >, u"e; if m > n and
: = 1 or 2. Second, u™es> >, u"eq if and only
if m+4r > n.

70



An Example; Some General Db-
servations

For example, with r = 2, the monomials in
F,[u]? are ordered by > as follows:

€1 <2 u€q <o u261 <o €9 <o u3e1 <ou€p <p---.

Grobner bases for submodules of Fgu]? with
respect to the >, orders have very special forms.

Proposition b Let M be a submodule of the
free module Fy[u]?, and fix r € Z. Assume
(LT>,(M)) is generated by u*e; = (u®,0) and
ube, = (0,u) for some a,b > 0. Then a sub-
set G C M is a reduced Grobner basis of M
with respect to >, if and only if G = {g1 =

(911,912),92 = (g21,922)}, satisfying the fol-
lowing two properties:

a) LT(g1) = u%ey (in g11), and LT (g2) = ubes
(in g>>) for a,b as above.

b) deg(g>1) < a and deg(gq1o) < b.
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A Corollary; Minimal Elements

Proposition 6 LetG = {(S,1), (u?%,0)} be the
generators for the module K. Then G is a
Grobner basis for K with respect the order
>4eg(s)- Note that LT>deg(S)((S, 1)) =(0,1) =
€H.

A minimal element of a module M with respect
to > is a g € M such that LT(g) is minimal
with respect to >. For instance, the module
element (S5,1) is minimal with respect to the
order >geq(s) in K = ((S,1), (u?%,0)) since

e> = LT((S,1)) <geq(s) LT((u*%,0)) = u*e;.

Minimal elements of M C Fy[u]? are unique,
up to a (nonzero) constant multiple.

Proposition 7 Fix any >, order on F,[u]?, and
let M be a submodule. Every Grobner basis
for M with respect to >, contains a minimal
element of M with respect to >,.
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T he Particular Solution e ant

Proposition 8 Each solution (2, \) of the key
equation and the degree conditions deg{2 <
deg A —1 with relatively prime components is a
minimal element of K under the >_1 ordering.

The Berlekamp-Massey approach builds up the
minimal element iteratively by solving the con-
gruences 2 = AS mod u™ for m=20,...,2s.
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The Iterative Step

Proposition 9 Let K,, be the module of so-
lutions of Q2 = AS mod u™, and let

B = {(a1,b1),(az,b2)}
be a >, Grobner basis of K,,, with the first
element minimal. Let'S = S mod v™t1 and let
c; be the coefficient of u™ in b;S — a;. Define
B = {(a',b}), (a5,b5)}: If c; = O, then

(CL,]_, b,]_) — (CL]_, bl)

(ah,b5) = (uap,uby).
If ¢4 # 0, then
(al]_ab,]_) — (ua17Ubl)02
(a5,b5) = (az,bz)—a(alabl)-

Then B’ is a >, Grdbner basis for K, 1.

Apply the Proposition repeatedly with »r = —1,
starting from the >_; Grobner basis for Kg:
{(0,1),(1,0)} .
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An Example

The final values (a1(u),b1(u)) are (g(u),4(u))
from (KE), up to a constant multiple. So the
roots of by(u) are the inverses of the error lo-
cations.

We demonstrate this with an example. Use
the field Fg (with h(a) = a3+ a + 1), and
the Reed-Solomon code RS(3,8), which has
d=n—-k+1=7-3+4+1 =25, so s = 2.
Suppose the codeword

c=ev(l)=(1,1,1,1,1,1,1)
IS sent, but it is corrupted by errors to yield
r=(1,0,1,1,1,1, 02+ 1),
or in polynomial form

r=14at+t2+t3+t*+ 2+ (a® + 1)t°.
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Example, continued

The first step is to compute the syndromes and
the corresponding syndrome polynomial S(u).
For instance,

s1 = r(a)
1+a2+a2+a3+a4—|—a5—|—a6(a2+1)
= 1+ @+ + (@ +a)+(®+a+1)
+(a® 4+ a+ 1)
Similarly,
So = a4,33 = 0,84 = a4,
So

S(u) = o? + o*u + a*u3

(note the shift in indexing, as in the definition
of S above).
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Example, continued

Start with

Ko ={(0,1),(1,0)}

Step 1:
S = o
c1 = oz2-1—|—O=oz27éO
co = a®-0+1=1
K1 = {(1,0°),(0,u)}
(with the >_1-minimal element first).

Step 2:
S = a2 -+ a*u
cp = [(oz2 + a*u) - a® + 1]“ = o?
co = [(a2—|—a4u) -u—|—0}u = o

Ky, = {(1,u+ a5), (u, a5u)}

(with the >_1-minimal element first).
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Decoding, continued

Step 3:
S = o+ a*u+ 0u?
c1 = [(o:2 + a*u) - (u+ ) + 1}“2 = o
co = [(oz2 + a*u) - aPu + u} = a2

u2

Kz = {(u+ > a3), (u,u + a’u)}

(with the >_1-minimal element first).

Step 4:
S = a2 -+ a*u -+ a3
cp = 1
co = a?

So (u,u,u? + a”u) + o*(u + o>, a3)
= (a5u + oz2, u? + a®u + 1)

is the minimal element of K.
78
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Error Locations and Values

The minimal element in K4 has constant co-
efficient 1 and gives (w, ) exactly (not just up
to a scalar multiple).

The roots of the error locator are v = a,a®,
soO the errors occurred in locations —1 =6 and
—6=1 (mod 7).

The error values are found with the Forney
formula:
(c?a®+a?) = ae1(14+afa®) = e = a3 = a+1

and

(cPa+ a?) = ae1(1 4 aa) = eg = o?

(Compare with the codeword and received word!)
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§5. Codes From rder Domains

Around 1980 — a big new development in cod-
ing theory:

e Start with a smooth curve X defined over
F,;. Let & and D be effective divisors on
X, sums of Fg-rational points, w/ disjoint
supports.

e Take L(G) = {f € Fy(X) : (/) +G >0} U
{0}, an F4-vector subspace of Fy(X).

e Define for D = Py 4+ --- 4+ Py,

ev: L(G) — Fy
fo= (f(PL),..., f(Pn))

e Let C = Cr(D,G) = im(ev) C Fj. (Note:
ev is linear so C is a linear code.)
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An Example
Called AG Goppa codes.

Let g =4, Fy = Fs[a]/{(a®?+ a4+ 1) (ais prim-
itive).

Take X to be the Hermitian curve over Fy:
X = V(23 + y?z + y22) ¢ P2. X is smooth,
genus g = 1. There are 9 F4-rational points
on X: @=(0:1:0), and 8 affine points.

(Note: This is the maximum possible for a
curve of genus 1 over F,4, by the Hasse-Well
bound:

| X(Fg)| <1449+ 29+/4.)

Want X to have "many” Fg-rational points in
this construction.)
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X(Fg), X =V (23 +y? +y)

Yy

o’ ° ° °
o ° ° °
lg

‘o
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A Goppa Code from
Take G=mQ, D=Y% | P,

It can be seen easily that z € L(2Q) and y €
L(3Q). In fact L(3Q) = Span{l,z,y}.

The Goppa code Cr(D,3Q) is the span of the
rows of the matrix:

1 1 1 1 1 1 1 1
O 0 1 1 Qo Qo a?  o?
O 1

« « « « « 042

By Bézout's theorem, this code has param-
eters [8,3,5] over F4 (any < 2 errors in a re-
ceived word can be corrected by nearest neigh-
bor decoding).
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To Y rder Domains”

e We took G = m(@ and D = sum of all other
Fg-rational points to maximize n (gives the
class of “one-point Goppa codes")

e Also, X in a “special position” (only one
point at infinity) = polynomials in affine
coords give elements of L(mQ), m > 1.
The pole orders of the affine coord funs
generate the Weierstrass semigroup of X
at Q. (Can always achieve this by reem-
bedding X by |kQ|, k> 2g — 1 if we want.)

e Can completely describe construction of codes
and a good decoding algorithm (Berlekamp-
Massey-Sakata) via algebra of the ring R =
L(coQ) = UX_oL(mQ), and the discrete
valuation vg on Fq(X).
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A Generalization

Hgholdt, van Lint, and Pellikaan (building on
a lot of previous work) recently introduced the
following idea:

Def. Let R be a Fg-algebra. Let (I',+,<)
be a well-ordered semigroup. An order, or
weight, function is a surjective mapping p
R — {—o0} UT satisfying:

1. p(f) = —oc0o & f=0
2. p(ef) = p(f) for all f € R, all c#0in F,
3. p(f 4+ 9) 2 max<{p(f),p(9)}

4. if p(f) = p(g) # —o0, then 3 ¢ # 0 in Fy
such that p(f —cg) < p(f)

5. p(fg) = p(f) + p(g)
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First Properties

e AXioms 1 and 5 imply that R must be a
domain; a ring with an order function is
called an order domain.

o Let K = QF(R).

e From now on, restrict to case I a sub-
semigroup of Z’“>O, some r > 1, so finitely
generated.

e Then WLOG, may assume r = tr.deg.Fq(K).

e “order” refers to the ordered F, basis of R
with distinct p-values guaranteed by axiom
4
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Some Examples

e As above, R = L(ocoQ) is an order domain
for any point Q € X, a smooth curve. [ =
Weierstrass semigroup of X at Q, p(f) =

—v(f). (Goppa)

e R=Fy[X1,...,X;] is an order domain tak-
ing I = Z%,, < a monomial order, p(f) = «
if LT-(f) = X% for f £=20. (Reed-Muller)

e Can construct all order domains with a given
[, as in following example. Take r = 2,
r = ((0,2),(1,1),(3,0)) C Z2, ordered by
graded lex (for example).
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Examples, cont.

e 3 generators for [ = there is a surjective
ring homomorphism:

¢ F¢lX,Y,Z] — R,

where if ¢(X) =z, ¢(Y) = vy, etc. p(x) =
(0,2), p(y) = (1,1), p(2) = (3,0).

e Easy to see that all relations between p(x),
p(y).p(z) are generated by p(2322) = p(y°)

e For axioms to hold, must have p(y®—cz?23)
< p(y®) forsomec# 0. = R=F,[X,Y, Z]/I,
where I = (F),

F=Y%_¢X273 + lower order terms

e Can check all such R are order domains
(and all deformations of the monomial al-
gebra Fy[I'] = Fy[v?, uv, u3]).
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An “Extrinsic’ Characterization

Theorem 6 (Geil-Pellikaan) Let R be an order
domain with a given finitely-generated value
semigroup I' C Z%,4. Let

Rr = F¢[l'] = Fq[Xq,..., Xs]/Ir

be the monomial (or toric) algebra associated
tol'. Then R has a flat deformation to Rf
(coming from a presentation of R similar to
our last example above).
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rder Domains and Valuations

On the other hand, there is a close connec-
tion between order domains and valuations on
function fields (recall the Goppa code case!)

e If R is an order domain with field of frac-
tions K, then

Sp={f/9€ K :p(g)>p(f)}

is a valuation ring in K (that is, for all
h# 0 in K, either he S,, or 1/h € S,).

e S, is a local ring with maximal ideal M, =

{f/g9€ K:p(g) >p(f)}

e R is in a special "Fg-complementary posi-
Sp N R+ M.
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rder Domains and Valuations,
cont.

e Conversely, using results of Mosteig and
Sweedler, can show

Theorem 7 Any valuation on a function
field, with rational rank equal to the tran-
scendence degree, with center a point “at
infinity” on a projective model yields a cor-
responding order domain in the function
field.

e See arXiv:math.AC/0304292 for more details.

e In particular, applies to varieties of interest
in coding theory (Hermitian hypersurfaces,
Grassmannians, flag varieties, ... )
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Codes From rder Domains
To construct codes from an order domain R =

Fqlz1,...,2¢ /I, generalize Goppa's construc-
tion:

e Let A be the ordered basis of R (ordered
by p value, or equiv. w-weight) given by
the monomials in complement of LT~ (1)

e Let X = V(I), and X(Fy) = {P1,...,Pn}
be the set of Fg-rational points on X

o Let V, be the span of the first ¢ elements
of A

o Letev: R—F2 ev(f) = (F(PL),. .., f(Pn))

e Get codes E; = ev(V,), Cy = Evj.
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Codes From rder Domains, cont.

e Results of O’'Sullivan = many features of
one-point Goppa codes generalize to these
codes from all order domains: Good bounds
on minimum distance of C, codes (Feng-
Rao-Duursma) tied to an efficient decod-
ing algorithm (B-M-S)

e Construction of good codes by this method
still requires finding X with many Fg-rational
points, good minimum distance properties,

e On the other hand, there is the possibil-
ity of exploiting known higher-dimensional
varieties of interest.
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Final Example

Consider the Hermitian surface:
H=v(xITt 4 x9tt 4 xgtl  xatl

in P3 over the field Fpo.

o V7 = V(Xp) is a smooth Hermitian curve
on H

e b, ={(0:1:4:0)} is a point on Vj if
54t = 1.

e From standard construction of composite
divisorial valuations corresponding to flags
of subvarieties, we get an order domain
structure on the ring L(ccV7) on H (the
subring of the function field consisting of
functions with poles only along V7 (arbi-
trary order).
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Hermitian Surface Codes

e Can also derive explicit presentation as de-
formation of the toric algebra for

r=1((1,9),(1,¢+1),(1,0))

e H has (¢?+1)(¢3+1) F o-rational points,

of which ¢34 1 lie on the plane section Vj.
= we get generalized Goppa codes from H

with n = ¢?(¢> + 1) = ¢° + ¢°.

e With £/ = 4, for instance, evaluating 1, X1, Xo, X3
yields E4 code with k =4 and d = ¢° — ¢3
(maximum number of zeroes is (¢g+1)¢° =
e+ q?).

e With ¢ = 2, d = 2° — 23 = 24. (Best
known code with n = 36,k = 4 over Fy
has d = 25.)
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Conclusion

e Ironically, when order domains were intro-
duced by Hgholdt, van Lint, and Pellikaan,
their goal was to ‘“take the (hard) alge-
braic geometry out of the theory of Goppa
codes” (1)

e As it turns out, their synthesis of that the-
ory has made it possible to use even more
commutative algebra and algebraic geome-
try to construct new examples of error con-
trol codes, generalize the existing decoding
algorithms, etc.
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6. The BMS Decoding Algo-
rithm

Berlekamp-Massey-Sakata algorithm applies to
duals of evaluation codes from order domains
(and similar m-dimensional cyclic codes).

Can formulate it

e “internally” in R = Fy[x1,...,2¢]/I (approach
in lecture notes), or

e “externally” in polynomial ring Fgl[z1,...,z¢].

We'll take second approach here (and consider
a very idealized version of the decoding prob-
lem that puts some of the complicating fea-
tures in the background — indicate how those
are addressed at end.)
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Set-up

In §5, the evaluation code E, was defined to
be the image of

evg: Ly — F/
f — (f(P1)77f(Pn))7
where S = {Py,..., P,} = the Fg-rational points

of V(I) and Ly is the F4-span of the first ¢ el-
ements of the ordered basis A for R.

The dual code is C, = EL . Codewords of E,
furnish parity check equations for the code-
words of C,: For y € F,

n

y € Ca & (y,ev(f)) = y;f(P;) =0, all fe& L,
j=1
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Syndromes

Analogs of the syndromes used in 34 for decod-
ing Reed-Solomon codes. One way to pack-
age:. syndrome mapping associated to y € F(?.

If x € Cy is sent and y = x 4 e is received, can
use Se(f) to correct.

Sy(f) — Ssc(f) + Se(f) — Se(f)
for all f € Lg,.
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Decoding

e Components of vectors c,e,y are indexed
by the Fg-rational points of X, in particular
e = (ep : P € X(Fy)) (X = V({) from
presentation of R).

e [ he error vector e is determined by loca-
tions of the nonzero entries <« a subset of
X (Fgy), and the error values ep # 0.

e Strategy: Determine the error-locator ideal
I, =

{f €eFylzy,...,x¢] - f(P) =0 if ep =0}

e In fact, BMS produces a Grobner basis G =
{91,...,9} for I with respect to the order
> used for the presentation of R.
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Syndrome Series

Another way to package the syndromes: Given
e, and u € Z4 5 (¢ from pres'n of R as a quotient

of a polynomial ring), we let

Ey, = {e,ev(z")) = epz"(P)
P
be the syndromes of the error vector.

Define:

in T =Fgllzgt, ...,z ]

Also let S =Fylxq1,...,x¢].
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Algebraic Context

Elements of T act as linear functionals on S.
Let A =) ,ayxz™" €T and B = > ,byx’ € S.
Then A(B) € F, is the degree O part of the
product:

U

T also has the structure of S-module accord-
ing to the following product operation: if A, B
above and C = Y}, cypx?, then (C - A)(B) =
A(CB).

For monomials: z¢ € S, =P €T, then

B {xa—ﬂ if in T
0 otherwise
(extend by linearity).

(Same as one version of the theory of duality
and Macaulay inverse systems. In fact T is
the linear dual space of S, under the pairing
defined above.)
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The Key Equation for €

Theorem 8 Let S be as above. Then f € I
if and only if

(KE) f‘Se:O.

proof: Let f =3, fmx™. Then

f-Se = ( fmxm) - ( Eua?_u)
m u>0

— ( mem—I—r)w_r
r>0 m

Hence f-Se = 0 & >, fmEpm4, = 0 for all
r > 0.
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Proof, cont.

By the definition of the E,,

mem—I-r — (fm erm_I_T(P))
m P

= epx’ (P) (

P

fmxm(P)>

m

epz’ (P)f(P)
P

If f € I, then sum is zero for all » > 0, so
f-Se = 0. Conversely, if f-Se =0, then

epf(P)z"(P) =0
P

for all » > 0. Hence epf(P) = 0 for all P, so
fel.//
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Idealized Version of Decoding

Suppose we (somehow) knew the full syndrome
series Se.

Note: in actual decoding, we only know the
truncation containing terms E,x"“ correspond-
ing to basis " of L,. But because of equations
z] —z; = 0 over Fy, a finite initial segment de-
termines the rest (in fact Se represents a ratio-
nal function of the x; as was true in RS case

in 84).

From duality setup, the S-submodule of T' gen-
erated by Se contains all the information needed
to recover I., and here's one way to do it!

Same approach could also be used for RS de-
coding (gives version of Berlekamp-Massey).
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Decoding algorithm, (VERY) rudi-
mentary version

Algorithm.

Input: Se, monomial order > on S
compatible with order function in R
QOutput: G = Grobner basis for I,
B = monomial basis for S/ 1.
Initialize: G :={}; B := {1}
List .= {Lg := 29 - S.}
for monomials % in > order do
Loy = x% - Se
if {Lq} U List linearly dependent then
G =GU{z*+ >3 cﬁazﬁ}
else
B := BU{z“};
List := List U {x®S¢}
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Comments

e Reason this works: (X cax®) -Se = 0 € T
IS equivalent to > cqx® € I by theorem on
(KE)

e EXxperienced “Grobnerians” will recognize
the outline of Buchberger-Moéller, or FGLM
here. BMS is in same family of algorithms,
as Teo Mora has observed(!)

e Deliberately vague about stopping criteria.
After a finite number of steps B will stabi-
lize at size wt(e)

e “Real” BMS algorithm is more economi-
cal in that it only stores a set of maximal
elements for B and minimal elements for
complement of B, updates those as it pro-
ceeds
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Further Comments

e But, main simplification here is actually the
assumption that full S¢ is known (not just
the truncation).

e In “real’” BMS algorithm, this is handled
by an ingenious idea of Feng and Rao.

e Additional terms in S are computed as
needed

e Uses a “majority voting” idea to determine
syndrome values not known directly from
received word. See references for the de-
tails here(!)

e Also means that elements of the Grobner
basis “in progress” might be modified as
the algorithm proceeds and more terms added
to Se.
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Final Example

For our final example we take the code Cg =
Eg from the order domain

R = Fylr,yl/(z> + y° + y)

as in §5 (the Hermitian curve over F4). Cg has
parameters [n,k,d] = [8, 3, 5].

As above we will assume the full Se is known
for some error of weight < 2. Writing « for a
primitive element of F4, suppose

Se = o+ o -+ 2 -+ ozy_2
tazr 3+ a2rty 2 4 oy 3
o2y 2 4 21,3
Yoz 3y 24 2253 4 az 3y 3
4 ...

(Rest is determined from this via relations z% —

r=y*—y=0.)
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Example, continued

We will use the > 3y, order (z >y for the
lex), so monomials will be processed in the or-
der:

1<:U<y<x2<xy<y2<x3<$2y<...

Already with 1-Se and x - Se, we find a linear
dependence:

So we add z 4+ o to G.

Next, y-Se and Se are linearly independent, so
we add y to B.

With the next two monomials that are pro-
cessed: z2 and xy, we find consequences of
the first relation added to G: 224 a2 (in char-
acteristic 2!), and zy 4+ ay.
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Example, continued

These are added to G in the basic form of the
algorithm, though of course they are unneces-
sary (will not be a part of a reduced Grobner
basis for I.). Could avoid this by only using
monomials that are not multiples of leading
terms of elements of G already found.

With 42, we find a new relation:

(vP+y+1)-Se=0eT
So y? 4+ y+ 1 is also inserted in G.

In fact, we have found the Grobner basis of I,
at this point:

{z+a,y°+y+1}
Error locations are the solutions of these:
P = (a,a),(a,a?)

Then determine error values by generalized For-
ney formulas!
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