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Plan for the Workshop
� x1 { Error - Corre
ting Codes (\applied al-gebra")
� x2 { Codes with \extra stru
ture": 
y
li
and multi
y
li
 
odes
� x3 { More on stru
ture of �nite �elds, Reed-Solomon and BCH 
odes
� x4 { En
oding and de
oding algorithms viaGr�obner bases
� x5 { Algebri
-geometri
 Goppa 
odes and
odes from order domains
� x6 { The Berlekamp-Massey-Sakata de
od-ing algorithm 1



x1. Error-Corre
ting CodesS
hemati
 pi
ture of 
ommuni
ation:message#en
oder#transmitter#noise ! 
hannel#re
eiver#de
oder#message� A main goal of 
oding theory is the de-sign of 
oding s
hemes whi
h a
hieve error
ontrol: use to dete
t and 
orre
t errors inre
eived messages. 2



An Example\If you 
en rebd this, then yop're dojng error-
orredtion."In natural languages like English, words areusually \far enough apart" that even if someof a message is 
orrupted, it is still intelligible.In the systems used for other types of 
ommu-ni
ation, similar robustness in the presen
e of\noise" is a very desirable feature.
3



Mathemati
al SettingMessages
� are divided into \words" or blo
ks of a �xedlength, k,
� use symbols from a �nite alphabet A withq symbols

Simplest 
ase (also best adapted to ele
troni
hardware) is an alphabet with two symbols:A = f0;1g, identi�ed with the �nite �eld F2(addition and multipli
ation modulo 2 { for in-stan
e 1 + 1 = 0), but we will see others in afew moments also.Usually, all strings or k-tuples in Ak are 
on-sidered as possible words that 
an appear in amessage. 4



En
oding and De
odingTo 
orre
t errors, some redundan
y must bebuilt into the en
oded form of the message.One way is to make the en
oded message 
on-sist of strings or n-tuples of length n > k overthe same alphabet. Then en
oding and de
od-ing operations are fun
tions:E : Ak ! Anand D : An ! Akwhere E is 1-1, and D Æ E = I on Ak. (Dmight also take a \fail" or \not de
oded" valueon some words in the 
omplement of Im(E)
ontaining too many errors to be de
odable.)We 
all C = Im(E) the set of 
odewords, orjust \the 
ode." Any C of this form is 
alleda blo
k 
ode of length n. 5



ErrorsWhen an error is introdu
ed in a word sent overthe 
hannel, the e�e
t is to repla
e a 
odewordx by a re
eived word x0 6= x.If the alphabet A has a sum operation satisfy-ing usual algebrai
 rules (
ommutativity, asso-
iativity, existen
e of a 0 element and additiveinverses), then we 
an think of x0 as a ve
torsum x0 = x+ e, where e 2 An is the error ve
-tor. wt(e) determines how many entries of xare 
orrupted, and de
oding is the same as de-termining e, then subtra
ting it o� to re
overx.We will restri
t to this 
ase from now on, andin parti
ular assume A is a �nite �eld with qelements for some q. The 
ase q = 2 is thebinary �eld F2 = f0;1g with addition modulo2: 0 + 0 = 0;1 + 0 = 0+ 1 = 1;1+ 1 = 0:6



Hamming Distan
eFor errors to be 
orre
table, 
odewords mustbe widely enough \separated" using:De�nition. (Hamming Distan
e) Let x; y 2Fnq . Thend(x; y) = jfi 2 f1; : : : ; ng : xi 6= yigj= number of non-zero entries in x� y:
Example: d(11000111; 10100101) = 3d(x; y) is a metri
 or distan
e fun
tion (on the�nite set Fnq ). In parti
ular, the triangle in-equality : d(x; y) � d(x; z) + d(z; y)holds for all x; y; z 2 Fnq .The weight of a word x is wt(x) = d(x;0) =number of nonzero entries. For instan
e, wehave wt(11000111) = 5. 7



Error-Corre
ting Capa
ityThe Hamming distan
e measures a 
ode's er-ror dete
ting and error 
orre
ting 
apa
ity:Proposition 1 If a 
ode C � Fnq satis�esd(u; v) � s+1for all distin
t u; v 2 C, then all error ve
torsof weight s less 
an be dete
ted. If d(u; v) �2t+1, all error ve
tors of weight t or less will be
orre
ted by the \nearest-neighbor" de
odingfun
tion:D(x) = E�1(
 2 C : d(x; 
) is minimal):
We writeB(u; s) = fy 2 Fnq : d(u; y) � sg:(the 
losed ball with 
enter u, radius s for theHamming distan
e) 8



The ProofProof: If d(u; v) � s + 1 for all u 6= v in C,then 
hanging s entries in a 
odeword neverprodu
es another 
odeword.Assume d(u; v) � 2t+ 1 for all u; v 2 C. The
losed Hamming balls of radius t about the
odewords u; v must be disjoint. For if not,and y 2 B(u; t) \B(v; t), we would haved(u; v) � d(u; y) + d(y; v) � 2tby the triangle inequality. But this 
ontradi
tsour assumption.Shows: If u is sent, weight of error e is � t, thenu+e is still 
loser to u than any other 
odeword{ nearest neighbor de
oding will 
orre
t error!
9



Coding Pra
ti
e
� Nearest neighbor de
oding 
an fail if errorve
tor has weight > t.
� In most reasonable situations, errors of smallerweight are more likely than errors of largerweight, though.
� Based on type of information to be trans-mitted, properties of 
hannel, energy \bud-get" available et
. an engineer would se-le
t a 
ode where the probability of thathappening was a

eptably small.

10



Important Parameters of Codes
� R = k=n, the information rate
� d = minx6=y2C d(x; y), the minimum dis-tan
e (or d=n the relative minimum dis-tan
e).

There are many known theoreti
al bounds onthese parameters. One su
h:Proposition 2 (Singleton Bound) For ea
h �xedd, the parameters n; k of 
odes of minimumdistan
e d satisfyd � n� k+1 :
11



Good Codes\Good" 
odes are ones for whi
h R = k=n isnot too small (so the 
ode is not extremelyredundant), but for whi
h d is relatively large.There is a famous theorem of Claude Shannon(father of this theory) that says very roughly\good 
odes exist" but gives no expli
it wayto 
onstru
t them.One of the main resear
h dire
tions in 
odingtheory has been to �nd 
onstru
tions of \good
odes".Tools: Algebra of polynomials, �nite �elds, ge-ometry, et
.
12



Codes with more algebrai
 stru
-tureAll examples we study will be linear blo
k 
odes:
� The alphabet Fq is a �nite �eld,
� The set of 
odewords C is a k-dimensionalve
tor subspa
e of Fnq .� For E, 
an take any linear mapping withimage C { matrix is 
alled a generator ma-trix for C.
� Writing all k- and n-tuples as row ve
tors,
an take G to be an k � n matrix whoserows span C, and E(x) = xG:

Note: to des
ribe a linear 
ode we need onlyk elements in a basis, rather than all qk 
ode-words! 13



An ExampleIn F72 
onsider the 
ode C given by the gener-ator matrix
G = 0BBBB�1 0 0 0 1 1 00 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 1

1CCCCAParameters n= 7; k = 4; d = 3.Sin
e 3 = 2 � 1 + 1, this 
ode 
an 
orre
t anysingle bit error in word of length 7.How we 
an tell: For linear 
odes, if x; y 2 C,then x� y 2 C too. Hen
eminx6=y2C d(x; y) = minx6=y2C d(x�y;0) = minz 6=02C d(z;0)In other words: For linear 
odes, the minimumdistan
e is the same as the minimum weightof a nonzero 
odeword. 14



Example, 
ontinuedThere are 24 = 16 di�erent 
odewords for this
ode (all linear 
ombinations of the rows of G):
� one: (0;0;0;0;0;0;0) has weight zero,
� seven have weight 3:(1;0;0;0;1;1;0) (1;0;0;1;0;0;1)(1;1;1;0;0;0;0) (0;1;0;1;0;1;0)(0;1;0;0;1;0;1) (0;0;1;0;0;1;1)(0;0;1;1;1;0;0)
� seven have weight 4
� one has weight 7: (1;1;1;1;1;1;1)

(Words of weight 4 are \
omplements" of thewords of weight 3.) 15



More On This ExampleThe 
ode given by G above has another in-teresting property: every word in F72 is eithera 
odeword, or Hamming distan
e 1 from aunique 
odeword. (Reason: 16�(1+7) = 128.)A rudimentary de
oder would use a \
he
k ma-trix" H for C su
h as
H =

0BBBBBBBBBBBB�
1 1 01 0 10 1 11 1 11 0 00 1 00 0 1

1CCCCCCCCCCCCAfor whi
h the 
odewords x 2 C (written as
olumns) are the solutions of xH = 0.
16



De
odingAssuming error has weight � 1,
� Given re
eived y 
ompute s = yH;
� If s = 0, then y 2 C;
� If not, then repeat x0 := y with one bittoggled until x0H = 0. Then x0 is a 
ode-word within Hamming distan
e 1 of y, andthat was the transmitted word, assumingno more than 1 bit in the 
odeword was
orrupted.

As before, this method may not 
orre
tly de-
ode a re
eived word y if weight of error is toolarge. 17



Hamming Codes
� The [7;4;3℄ binary 
ode in this example isan example of a Hamming 
ode.
� The general binary Hamming 
ode Cr hasparameters [n; k; d℄ = [2r � 1;2r � r � 1;3℄.
� Parity 
he
k matrix Hr is the 2r � 1 � rmatrix whose rows are the 2r � 1 nonzerove
tors of length r over F2.
� x 2 Cr , xHr = 0, or equivalently the en-tries of x are 
oeÆ
ients in a linear depen-den
e between rows of Hr
� ) d = 3. 18



Some Other Famous Codes
� The Golay 
ode { a remarkable [23;12;7℄binary 
ode. The Hamming balls of radius3 about 212 
odewords 
ompletely �ll outF232 :212 � (1 + �231 �+ �232 �+ �233 �) = 223
� BCH 
odes { give a way to 
onstru
t binary
odes of length 2s � 1 with any designedminimum distan
e Æ; a
tual minimum dis-tan
e satis�es d � Æ. Constru
tion usesmu
h of the same algebra as the Reed-Solomon 
odes we will study in x3.
� Low-Density Parity-Che
k 
odes { inten-sively studied re
ently. 19



x2. Cy
li
 and Multi-
y
li
 
odes,Finite Fields
� A linear 
ode C � Fnq is said to be 
y
li
 if itis invariant under the 
y
li
 shift mapping�(
0; 
1; 
2; : : : ; 
n�1) = (
n�1; 
0; 
1; : : : ; 
n�2)
� Often assume n is relatively prime to q hereto avoid some algebrai
ally \interesting"behavior; not ne
essary, though.
� This property has another ni
e algebrai
interpretation and leads to interesting en-
oding and de
oding methods.

20



Algebrai
 translationDe�ne ' : Fnq ! Fq[t℄=htn � 1i(
0; : : : ; 
n�1) 7! 
0+ 
1t+ � � �+ 
n�1tn�1(right hand side mod tn � 1.)Proposition 3 If C is a 
y
li
 
ode, then '(C)is an ideal in the ring Fq[t℄=htn � 1i, and 
on-versely.Proof: '(C) is a ve
tor subspa
e, sin
e ' isthe standard linear isomorphism between Fnqand the quotient ring.
21



Proof, 
ontinuedSo, we only need show '(C) 
losed under prod-u
ts by elements of Fq[t℄=htn � 1i. First notethat if 
 2 C is a ve
tor as above,t � '(
) = 
0t+ 
1t2+ � � �+ 
n�1tn� 
n�1+ 
0t+ � � �+ 
n�2tn�1 mod tn � 1= '(�(
))
This is in '(C) be
ause C is invariant under �.But now by distributivity, '(C) is 
losed underarbitrary produ
ts. //Note: Can also view R = Fq[t℄=htn � 1i as thegroup algebra of the 
y
li
 group of order n:Fq[Zn℄.

22



More on the stru
ture of 
y
li

odes
� Easy to see that the ring R = Fq[t℄=htn�1iis a prin
ipal ideal ring, sin
e Fq[t℄ is.
� Every ideal in R is generated by the 
osetof some g(t) of degree n� 1 or less.
� Also, 
an take g(t)jtn � 1 in Fq[t℄.
� Call g(t) a generator polynomial for the
y
li
 
ode.
� Can always normalize g(t) to make itmoni
.

23



Some Examples
� In F2[t℄, the polynomial t15�1 = t15+1 hasirredu
ible fa
tors: (t+1); (t2+t+1); (t4+t+1); (t4+ t3+1); (t4+ t3+ t2+ t+1)
� ) 25 = 32 di�erent divisors, ea
h of whi
h
an be taken as the generator polynomialfor a binary 
y
li
 
ode with n = 15.
� For example, 
ode with g(t) =(t+1)(t4+ t+1) = t5+ t4+ t2+1has n= 15; k = 10; d = 4.
� One generator matrix is formed from 
y
li
shifts of:(0;0;0;0;0;0;0;0;0;1;1;0;1;0;1)24



A First GeneralizationThe algebrai
 interpretation of 
y
li
 
odes givenabove suggests several generalizations. The�rst is relatively straightforward.
� Repla
e Fq[t℄=htn�1i by a �nite-dimensionalquotient of a polynomial ring in more thanone variable, of the formR = Fq[t1; : : : ; tm℄=htn11 � 1; : : : ; tnmm � 1i
� Consider ideals I � R.

The resulting 
odes are 
alled abelian 
odes,and m-dimensional 
y
li
 
odes in the litera-ture.
25



2-D Cy
li
 Codes
� For example, with m = 2, the 
odewords
ould be viewed as either as polynomials intwo variables (linear 
ombinations of mono-mials te11 te22 , with 0 � ei � ni), or as re
t-angular arrays.
� Closure under multipli
ation by t1 means
ode is invariant under simultaneous row-wise 
y
li
 shifts.
� Similarly, 
losure under multipli
ation by t2means the 
ode is invariant under simulta-neous 
olumn-wise 
y
li
 shifts.
� Could also study these 
odes as ideals inthe group algebra Fq[Zn1 � Zn2℄. 26



An ExampleFor instan
e, we 
an ask: What is the smallest2D-
y
li
 
ode C of size n1 � n2 = 3 � 3 overF2 
ontaining the 
odeword:
X = 0B�1 0 10 1 01 0 1

1CA?X 
orresponds to the polynomial:pX = 1+ t21+ t1t2+ t22+ t21t22(or, better, the 
oset of this polynomial in R =F2[t1; t2℄=ht31+1; t32+1i).
27



Example, 
ontinuedWe 
laim that the ideal generated by pX in R isequal to the ideal generated by p1 = t21+ t1+1and p2 = t22+ t2+1. This is equivalent to the
laim that I = hpX ; t31+1; t32+1iequals J = hp1; p2iin F2[t1; t2℄. We see:pX = p1p2+ t2p1+ t1p2t3i +1 = (ti+1)pi) I � J. Similarly, 
an see p1; p2 2 I (Exer-
ise!), so I = J.(Gr�obner bases give a ni
e way to test equalityof ideals. Can also dedu
e I = J here fromproperties of the Galois �eld F4 { next le
ture!)28



Example, 
on
ludedFrom the des
ription of the 
ode as the idealJ above, 
an see:n = 9; k = 5; d � 3(Estimate on d 
omes from the weight of the
odewords 
orresponding to p1 and p2.)We have a basis for the 
ode 
onsisting of thewords 
orresponding to:p1; t2p1; t22p1; t1p2; t21p2
29



Looking AheadThe algebra of ideals I � R is more interestingthan in the 
ase m = 1.Not every ideal is prin
ipal, for instan
e, as wesee already in the example done before!For all m � 1, the theory of Groebner bases 
anbe applied, for instan
e, to 
onstru
t en
odingand de
oding algorithms. We will study thesefor 
y
li
 and abelian 
odes in x4 and x6.
30



Finite FieldsTo des
ribe our next examples, we need tointrodu
e expli
it �elds larger than F2 = f0;1gor the \prime �elds" Fp (integers mod p) tobe used as 
ode alphabets.To see idea, we might want set of strings of0;1's of a �xed length r to be the alphabet.r = 4 would give 24 distin
t symbols:0000;0001; 0010;0011;0100;0101;0110; 0111;1000;1001; 1010;1011;1100;1101;1110; 1111:In order to work with the set-up of linear 
odes,though, this set must be given the stru
ture ofa �eld.
31



A Field With 16 ElementsWe 
an interpret a string �3�2�1�0 (�i 2 F2)as a polynomial in a new variable �:�3�3+ �2�2+ �1�+ �0The set of all 16 su
h expressions will be de-noted by F16.Addition operation: usual polynomial addition(same as ve
tor addition in F42 ).Multipli
ation operation: we know how to mul-tiply polynomials:(�3+1)(�2+1) = �5+ �3+ �2+1:But of 
ourse the degree of the produ
t is toolarge here. To redu
e to the proper range ofdegrees, we divide by some polynomial of de-gree 4 in � and take the remainder of the prod-u
t.Of 
ourse, we are working in the quotient ringF2[�℄=hh(�)i. 32



A Field with 16 Elements, 
on-tinuedThis mu
h works for any divisor polynomialh(�) of degree 4. But, do we always get a�eld this way?The answer is no, sin
e h(�) must be irre-du
ible in order for the hh(�)i to be a maximalideal and the quotient ring to be a �eld.For instan
e, it 
an be 
he
ked that both h(�) =�4+�+1 and h(�) = �4+�3+1 are irredu
iblein F2[�℄.
33



A Field with 16 Elements, 
on-
ludedAnother more elementary way to see that wehave a �eld is to 
he
k 1; �; �2; : : : ; �14 are alldistin
t, and �15 = 1. Hen
e
� The powers of � give all the nonzero ele-ments of F16, and
� Ea
h element �k has a multipli
ative in-verse �15�k. (That is, the multipli
ativegroup F �16 is a 
y
li
 group of order 15.)

� is 
alled a primitive element for F16.
34



Finite (Galois) FieldsTheorem 1 Let p be prime in Z.
1. The set of integers mod p is a �eld denotedFp (a prime �eld).
2. For all p and all r � 1, there are irredu
ibleh(�) of degree r in Fp[�℄.
3. Let h(�) be irredu
ible of degree r. ThenFp[�℄=hh(�)i is an extension �eld of theprime �eld Fp with pr elements.
4. Di�erent 
hoi
es of irredu
ible h of thesame degree yield isomorphi
 �elds, 
alledFpr.
5. Every �eld Fpr has a primitive element.35



x3. Appli
ations: Reed-Solomonand BCH CodesSuppose we want to 
onstru
t 
odes attainingthe Singleton bound. (These are 
alled MDS,or \maximum distan
e separable," 
odes).Restri
ting to 
odes of length n � q, here is away if the 
ode alphabet is Fq. Fix an integerk � q. Polynomials of degree < k have at mostk�1 roots in Fq, and some have pre
isely thatmany roots.Write Lk for the set of all polynomials in Fq[x℄of degree < k. We will always assume k < qhere.
36



Appli
ation, 
ontinuedLk is a ve
tor spa
e over Fq of dimension k.For ea
h polynomial f 2 Lk, we 
onstru
t aword in F qq by evaluating f at the elements ofFq, to get a q-tuple (letting � be a primitiveelement),(f(0); f(1); f(�); : : : ; f(�q�2))(re
all �q�1 = 1). When we do this, we get aword with
� at most k � 1 zero entries, hen
e
� at least q � (k � 1) = q � k + 1 = n � k +1 nonzero entries (and some have exa
tlyk � 1 zero entries).

37



Appli
ation, 
ontinuedThe set of all su
h words is a linear 
ode sin
e:
� Lk is a ve
tor spa
e, and
� the evaluation mapping is linear.

Hen
e the resulting 
ode will have
� dimension k and
� minimum distan
e d = n�k+1 when k < q.

38



Appli
ation, 
on
luded
� Using all q elements of Fq, we get extendedReed-Solomon 
odes.
� Standard Reed-Solomon 
odes 
ome fromevaluating only at the nonzero elements ofthe �eld (omitting the f(0) entry to get aword in F q�1q ).
� Can also take the polynomials vanishingat some �xed subset of nonzero elements,evaluate them, and delete the zeroes toform evaluation ve
tors of length n < q�1 {yields the shortened Reed-Solomon 
odes.(The a
tual 
odes used in the CD audiosystem are examples of these.)

39



In Summary ...Theorem 2 Pi
k a primitive element � for Fq,and write the nonzero elements of Fq as1; �; : : : ; �q�2Let k < q and Lk = ff 2 Fq[x℄ : deg f < kg.Writeev : Lk ! F q�1qf 7! (f(1); f(�); : : : ; f(�q�2)):Then Im(ev) is a linear 
ode with n = q � 1,dimension k, and minimum distan
e d = n �k + 1 = q � k, 
alled a Reed-Solomon 
ode,RS(k; q). All Reed-Solomon 
odes are MDS
odes with d = n� k+1.
40



An RS ExampleFor example, using the standard monomial ba-sis f1; x; x2; x3; : : : ; xk�1gfor Lk, the Reed-Solomon 
ode RS(3;16) (pa-rameters: n = 15; k = 3; d = 13 over F16, so163 = 4096 distin
t 
odewords) has generatormatrixG = 0B�1 1 1 � � � 1 1 � � � 11 � �2 � � � �7 �8 � � � �141 �2 �4 � � � �14 � � � � �13
1CA :

41



How RS Codes are UsedReed-Solomon 
odes are 
ommonly used in sit-uations where errors tend to o

ur in \bursts"rather than randomly.This in
ludes 
ommuni
ation to and from deep-spa
e exploration 
raft, the CD digital audiosystem, and many other appli
ations.Reed-Solomon and other blo
k 
odes over F2r
an 
orre
t relatively long bursts of errors onthe bit level, even if d is relatively small.
42



Burst Error Corre
tionCan \go ba
k" and think of �r�1�r�1+ � � �+�1�+�0 in F2r as the ve
tor (�r�1; : : : ; �1; �0) 2F r2.Then a Reed-Solomon 
odeword is representedby a string of (2r � 1)r bits.A burst of s � r 
onse
utive bit errors, for in-stan
e, will 
hange at most s+1 of the entriesof the 
odeword, as elements of F2r.Hen
e, RS(3;16) above 
an 
orre
t burst er-rors of bit length up to 20 = 5 �4. Random er-rors of weight � 6 are 
orre
table sin
e d = 13.
43



More on Stru
ture of RS CodesReed-Solomon 
odes also have additional al-gebrai
 stru
ture as in x2.This greatly fa
ilitates the en
oding and de-
oding operations. To see the idea, 
onsiderthe generator matrix G for the Reed-Solomon
ode RS(k; q) 
onstru
ted by evaluating themonomials f1; x; x2; : : : ; xk�1g at the �` 2 F �q .The ith row of G has the form((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1):Cy
li
ally permuting this row, we obtain((�q�2)i�1; (1)i�1; (�)i�1; : : : ; (�q�3)i�1);whi
h is equal to�(i�1)(q�2)�((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1)be
ause �q�1 = 1. 44



RS Codes are Cy
li
Thus, a 
y
li
 permutation of the ith row yieldsa s
alar multiple of the same row|it is alsoone of the Reed-Solomon 
odewords!The 
y
li
 permutation is a linear mapping Son F q�1q , and we have just seen that there is abasis of RS(k; q) 
onsisting of eigenve
tors forS.It follows that the Reed-Solomon 
ode RS(k; q)is invariant under S, sin
e all the 
odewords arelinear 
ombinations of the rows of G. Theseobservations give the proof of the followingfa
t.Theorem 3 For all q and all k < q, the Reed-Solomon 
ode RS(k; q) is 
y
li
. 45



To the Generator PolynomialConsider the mapping : RS(k; q) ! Fq[t℄=htq�1 � 1i(
0; 
1; : : : ; 
q�2) 7! 
0+ 
1t+ � � �+ 
q�2tq�2as in x2.Caution: that there are two rings of polynomi-als \in play" now. The �rst is the ring Fq[x℄
ontaining the polynomials that are evaluatedto form the Reed-Solomon 
odewords. These
ond is the ring Fq[t℄ (or Fq[t℄=htq�1�1i) 
on-taining the polynomial forms  (
) of the Reed-Solomon 
odewords. Care should be taken notto 
onfuse these(!)
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To the Generator Polynomial, 
on-tinuedEvery element of  (C) has the form (
) = 
0+ 
1t+ � � �+ 
q�2tq�2where we obtain the 
oeÆ
ients
i = k�1Xj=0 aj(�i)jby evaluating some �xed f(x) = Pk�1j=0 ajxj atx = �i for i = 0; : : : ; q � 2.Substituting these expressions for 
i, inter
hang-ing the order of summation: (
) = q�2Xi=00�k�1Xj=0 aj(�i)j1A ti= k�1Xj=0 aj 0�q�2Xi=0(�jt)i1A 47



The Generator Polynomial, Fi-nallyIn Fq, roots of 0 = 1+ z+ z2+ � � �+ zq�2 areall z 6= 0;1. Hen
e the inner sum in previous isequal to zero provided that ajt 6= 0;1.The whole sum = 0 if �jt 6= 0;1 for all j =0; : : : ; k � 1, , t 2 f�;�2; : : : ; �q�k�1g. Conse-quently, every  (
) is divisible byg(t) = (t� �)(t� �2) � � � (t� �q�k�1):In fa
t, by 
omparing dimensions, we have:Theorem 4 The polynomialg(t) = (t� �)(t� �2) � � � (t� �q�k�1)is the generator polynomial for RS(k; q).
48



An Alternate FormSin
e the minimum distan
e of a Reed-Solomon
ode satis�es d = q � k, the generator polyno-mial 
an also be written asg(t) = (t� �)(t� �2) � � � (t� �d�1):
For example, the Reed-Solomon 
ode RS(3;16)from above hasg(t) = (t� �)(t� �2)(t� �3) � � � (t� �12)sin
e d = 15� 3+ 1 = 13.
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The BCH CodesThe se
ond 
lass of 
odes we will 
onsider weredis
overed at almost the same time as theReed-Solomon 
odes, independently by Boseand also by Chaudhuri and Ho
quenghem.They are known as BCH 
odes, and they are ofinterest be
ause they give examples of 
odesof general blo
k length over Fq (not just n � qas for the Reed-Solomon examples) that 
anbe designed to satisfy d � Æ, for a given Æ.They are also 
y
li
, so they 
an be des
ribedmost simply by giving a method for 
onstru
t-ing their generator polynomials. As we will see,they are also very 
losely 
onne
ted to Reed-Solomon 
odes.
50



Motivation for the Constru
tionBCH 
onstru
tion uses a smidgen of Galoistheory to 
onstru
t 
odes over Fq with goodd. If g
d(n; q) = 1, then the nth roots of unityin Fq are distin
t.Theorem 5 (The BCH Bound) Let � be aprimitive nth root of unity in an extension �eldFqr=Fq, and assume that g(t) 2 Fq[t℄ is the gen-erator polynomial of a 
y
li
 
ode C of lengthn over Fq. Consider the set of powers �j su
hthat g(�j) = 0. Assume this 
ontains a stringof 
onse
utive powers:�i0; �i0+1; : : : ; �i0+Æ�2of length Æ � 1. Then the minimum distan
eof C satis�es d � Æ.In RS 
ase, n = q � 1, so a primitive nth rootof unity is just a primitive element of Fq, andthere is no �eld extension involved. 51



The Constru
tionBCH 
odes in general are 
onstru
ted by \
ook-ing up" generator polynomials that are guar-anteed to have 
onse
utive strings of powersof a primitive nth root of unity among theirroots.From Galois theory for �nite �elds, we knowthat Gal(Fqr=Fq) is 
y
li
 of order r, generatedby the Frobenius automorphism F(x) = xq.If g(t) 2 Fq[t℄ and � is a root of g, then sin
eF �xes the 
oeÆ
ients in g, F(�) = �q is alsoa root of g. This observation 
an be used tosimplify the des
ription of the desired g(t).
52



BCH Codes over F2The binary BCH 
odes (i.e. BCH 
odes overF2) are the most 
ommonly en
ountered ones,and make the idea 
lear.Take n odd. To get a 
y
li
 
ode with min-imum distan
e d � Æ = 2s + 1, take � anyprimitive nth root of 1 in an extension F2r=F2(with r as small as possible, of 
ourse).Let m�k(t) be the minimal polynomial of �k inF2[t℄. Then full set of roots of m�(t) is�k; F(�) = �2k; F(F(�)) = �4k; : : : ; �2r�1k(all exponents mod n sin
e �n = 1). So ifg(t) = l
m(m�;m�3;m�5; : : : ;m�2s�1)then all the �j for 1 � j � 2s will be amongthe roots. Hen
e the BCH bound will implyd � Æ = 2s+ 1. There is a similar statementfor all q. 53



Con
lusionIt is not too diÆ
ult to �nd examples wherethe a
tual minimum distan
e of a BCH 
odeis stri
tly larger than the \designed distan
e"Æ.Example: take n= 31; Æ = 9 over F2.Other more re�ned lower bounds on d for 
y
li

odes are also known, but this is an area whereresear
h 
ontinues and our understanding isnot 
omplete yet.
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x4. En
oding and De
oding viaGr�obner BasesThe extra symmetry of a 
y
li
 
ode meansthat less information is required to spe
ify asystemati
 en
oder than for a general linear
ode of the same dimension.In fa
t all we need to know is the n � k 
oef-�
ients in a moni
 generator polynomial g(t).(Note: if dimC = k, then the degree of g(t)will be n� k.)Moreover, the en
oding pro
ess 
an be de-s
ribed very su

in
tly using a standard alge-brai
 algorithm { polynomial division!
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Systemati
 En
oding via DivisionFor this des
ription of systemati
 en
oding,
� CoeÆ
ients of tn�k; : : : ; tn�1 are the he in-formation positions, and
� CoeÆ
ients of 1; : : : ; tn�k�1 are the parity
he
ks.
Input : g(t); generator polyinformation symbols 
1; :::; 
kOutput : y;a 
odewordp := 
1tn�k + :::+ 
ktn�1;y := p�Rem(p; g; t);Sin
e g has degree n � k, the remainder will
ontain only 1; t; : : : ; tn�k�1. The other termswill be the same as in p. 56



Generalization to m-dimensionalCy
li
 CodesThe method here generalizes immediately tom-dimensional 
y
li
 
odes (viewed as ideals Iin Fq[t1; : : : ; tm℄=htn11 � 1; : : : ; tnm�1m i).Generator polynomial g(t) is repla
ed by anyGr�obner basis G for I.Univariate polynomial division repla
ed by mul-tivariate division w.r.t. G.
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RS De
odingSeveral di�erent but related extremely eÆ
ientde
oding algorithms for Reed-Solomon and BCH
odes have been developed { one major reasonfor the Reed-Solomon 
odes' popularity.
� Berlekamp-Massey algorithm, very 
ommonlyused in pra
ti
e
� Another algorithm paralleling the Eu
lideanalgorithm for the GCD of two polynomialsis also known

We'll study the �rst approa
h here.
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The SetupFor simpli
ity, assume Reed-Solomon 
ode Csatis�es d = 2s + 1. Then by Proposition 1,any s or fewer errors in a re
eived word shouldbe 
orre
table.Let 
 = Pq�2j=0 
jtj be a 
odeword of C.In Fq[t℄, 
 is divisible byg = (t� �)(t� �2) � � � (t� �d�1):Suppose that 
 is transmitted, but some er-rors are introdu
ed, so that the re
eived wordis r = 
+ e for some e = Pi2L eiti. L = errorlo
ations, and we assume jLj � s. The 
oeÆ-
ients ei are the error values.
59



The De
oding ProblemGiven the re
eived word r, determine the setof error lo
ations L and the error values ei forthe error polynomial e with s or fewer nonzeroterms (if su
h a polynomial exists).First, we 
ompute sj = r(�j) for all j = 1; : : : ; d�1, 
alled the syndromes of the re
eived word.
� If these are all zero, then r is divisible byg, and assuming wt(e) � s, r must be the
odeword we sent.
� If some syndromes are nonzero,sj = r(�j) = 
(�j) + e(�j) = e(�j);sin
e 
 is a multiple of g.
� Hen
e we 
an try to use the information in-
luded in the syndromes to determine e(t).60



The Syndrome PolynomialThe syndromes may be used as the 
oeÆ
ientsin a polynomialS(u) = d�1Xj=1 sjuj�1;
alled the syndrome polynomial for the re
eivedword r. Its degree is d� 2 or less.By extending the de�nition of sj = e(�j) to allexponents j we 
an also 
onsider the formalpower series bS(u) = 1Xj=1 sjuj�1:
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Another form for 
SSuppose we knew e(t) for a re
eived word withwt(e) � s. Then, sj = Pi2L ei(�j)i = Pi2L ei(�i)j:Ex
hanging the order of summation, then sum-ming formal geometri
 series,bS(u) = 1Xj=1 sjuj�1= Xi2L ei0� 1Xj=1(�i)juj�11A= Xi2L ei�i(1� �iu)= w(u)`(u) ;where`= Yi2L(1� �iu); w = Xi2L ei�i Yj 6=ij2L(1� �ju):
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The Error Lo
atorThe roots of ` are pre
isely the ��i for i 2 L.Sin
e the error lo
ations 
an be determinedeasily from these roots, ` is 
alled the errorlo
ator polynomial.Turning to the numerator w, we see thatdegw � deg `� 1:
In addition, if i 2 L,w(��i) = ei�i Yj 6=i;j2L(1� �j��i) 6= 0:Hen
e w has no roots in 
ommon with `. Fromthis we dedu
e the important observation thatthe polynomials w and ` must be relativelyprime. 63



The Key EquationSimilarly, if we 
onsider the \tail"bS(u)� S(u) = 1Xj=d0�Xi2L ei(�i)j1Auj�1= ud�1 � g(u)`(u) ;where g = Xi2L ei�id Yj 6=ij2L(1� �ju):
The degree of g is also at most deg `� 1.Combining these, and writing d � 1 = 2s weobtain the relation(KE) w = `S+ u2sg:This is the key equation for de
oding. 64



A \Key" ObservationThe derivation of (KE) assumed the error poly-nomial e was known. But now 
onsider thea
tual situation. Given the re
eived word r, Sis 
omputed. We 
onsider (KE) as a relationbetween the known polynomials S; u2s, and un-knowns 
;�;�:(KE0) 
 = �S+ u2s�:
Suppose a solution (
;�;�) of (KE') is found,whi
h satis�es the degree 
onditions: deg� �s, and deg
 < deg�,and in whi
h 
;� are relatively prime. We
laim that in su
h a solution � must be a fa
torof uq�1 � 1, and its roots give the inverses ofthe error lo
ations. 65



A Uniqueness StatementThe last 
laim is a 
onsequen
e of:Proposition 4 Suppose wt(e) � s, and let Sbe the 
orresponding syndrome polynomial. Upto a 
onstant multiple, there exists a uniquesolution (
;�;�) of (KE') that satis�es thedegree 
onditions above, and for whi
h 
 and� are relatively prime.Proof: The a
tual error lo
ator ` and the 
or-responding w; g give one solution. Let (
;�;�)be any other. Start withw = `S+ u2sg
 = �S+ u2s�;
multiply the se
ond by `, the �rst by � andsubtra
t. We obtainw� = 
`+ u2s(g�� `�): 66



Proof, 
ontinuedBy the degree 
onditions, w� and 
` are a
-tually polynomials of degree at most 2s�1, soit follows that w� = 
`(and g� = `�). Sin
e both pairs (w; `) and(
;�) are relatively prime, they 
an di�er onlyby a 
onstant multiple.//Any solution of (KE') for whi
h the degree
onditions are satis�ed 
an be used to de
ode:
� Solve �(u) = 0 in Fqnf0g, and get the errorlo
ations.
� Then �nd the error values as follows.67



The Forney FormulaLet (w; `; g) be the solution of (KE') in whi
hthe a
tual error lo
ator ` (with 
onstant term1) appears. If i 2 L, thenw(��i) = �iei�i(��i)where �i = Qj 6=i(1 � �ju). (This is 
alled theForney formula.) Hen
e we 
an solve for ei,on
e we know the error lo
ations.The pre
eding dis
ussion shows that solvingthe de
oding problem 
an be a

omplished bysolving the key equation (KE').
68



Re
asting the Key EquationFrom now on, for our purposes, it will be more
onvenient to regard (KE) as a 
ongruen
e:
 � �S mod u2s:Congruen
es of the same form are studied innumeri
al analysis in the 
ontext of Pad�e ap-proximation.We will now follow Fitzpatri
k and see how
omputational 
ommutative algebra 
an be usedto solve the key equation.Given the integer s and S 2 Fq[u℄, 
onsider setof all pairs (
;�) 2 Fq[u℄2 satisfying:K = f(
;�) : 
 � �S mod u2sg:
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Module of SolutionsK is an Fq[u℄-submodule of Fq[u℄2. In addition,every element of K 
an be written as a 
om-bination (with polynomial 
oeÆ
ients) of thetwo generators (u2s;0) and (S;1) for K, whi
hinvolve only known polynomials.We use the theory of Gr�obner bases in modulesover a polynomial ring.Monomials in Fq[u℄2 are simply monomials in utimes one of the standard basis ve
tors e1 ore2.Let r 2 Z, and de�ne an order >r by the fol-lowing rules. First, umei >r unei if m > n andi = 1 or 2. Se
ond, ume2 >r une1 if and onlyif m+ r � n. 70



An Example; Some General Ob-servationsFor example, with r = 2, the monomials inFq[u℄2 are ordered by >2 as follows:e1 <2 ue1 <2 u2e1 <2 e2 <2 u3e1 <2 ue2 <2 � � � :Gr�obner bases for submodules of Fq[u℄2 withrespe
t to the >r orders have very spe
ial forms.Proposition 5 Let M be a submodule of thefree module Fq[u℄2, and �x r 2 Z. AssumehLT>r(M)i is generated by uae1 = (ua;0) andube2 = (0; ub) for some a; b � 0. Then a sub-set G � M is a redu
ed Gr�obner basis of Mwith respe
t to >r if and only if G = fg1 =(g11; g12); g2 = (g21; g22)g, satisfying the fol-lowing two properties:a) LT(g1) = uae1 (in g11), and LT(g2) = ube2(in g22) for a; b as above.b) deg(g21) < a and deg(g12) < b. 71



A Corollary; Minimal ElementsProposition 6 Let G = f(S;1); (u2s;0)g be thegenerators for the module K. Then G is aGr�obner basis for K with respe
t the order>deg(S). Note that LT>deg(S)((S;1)) = (0;1) =e2.A minimal element of a moduleM with respe
tto > is a g 2 M su
h that LT(g) is minimalwith respe
t to >. For instan
e, the moduleelement (S;1) is minimal with respe
t to theorder >deg(S) in K = h(S;1); (u2s;0)i sin
ee2 = LT((S; 1)) <deg(S) LT((u2s;0)) = u2se1:Minimal elements of M � Fq[u℄2 are unique,up to a (nonzero) 
onstant multiple.Proposition 7 Fix any >r order on Fq[u℄2, andlet M be a submodule. Every Gr�obner basisfor M with respe
t to >r 
ontains a minimalelement of M with respe
t to >r. 72



The Parti
ular Solution WeWantProposition 8 Ea
h solution (
;�) of the keyequation and the degree 
onditions deg
 �deg��1 with relatively prime 
omponents is aminimal element of K under the >�1 ordering.The Berlekamp-Massey approa
h builds up theminimal element iteratively by solving the 
on-gruen
es 
 � �S mod um for m = 0; : : : ;2s.
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The Iterative StepProposition 9 Let Km be the module of so-lutions of 
 � �S mod um, and letB = f(a1; b1); (a2; b2)gbe a >r Gr�obner basis of Km, with the �rstelement minimal. Let S = S mod um+1 and let
i be the 
oeÆ
ient of um in biS � ai. De�neB0 = f(a01; b01); (a02; b02)g: If 
1 = 0, then(a01; b01) = (a1; b1)(a02; b02) = (ua2; ub2):If 
1 6= 0, then(a01; b01) = (ua1; ub1)(a02; b02) = (a2; b2)� 
2
1(a1; b1):Then B0 is a >r Gr�obner basis for Km+1.Apply the Proposition repeatedly with r = �1,starting from the >�1 Gr�obner basis for K0:f(0;1); (1;0)g . 74



An ExampleThe �nal values (a1(u); b1(u)) are (g(u); `(u))from (KE), up to a 
onstant multiple. So theroots of b1(u) are the inverses of the error lo-
ations.We demonstrate this with an example. Usethe �eld F8 (with h(�) = �3 + � + 1), andthe Reed-Solomon 
ode RS(3;8), whi
h hasd = n � k + 1 = 7 � 3 + 1 = 5, so s = 2.Suppose the 
odeword
 = ev(1) = (1;1;1;1;1;1;1)is sent, but it is 
orrupted by errors to yieldr = (1; �;1;1;1;1; �2+1);or in polynomial formr = 1+ �t+ t2+ t3+ t4+ t5+ (�2+1)t6:75



Example, 
ontinuedThe �rst step is to 
ompute the syndromes andthe 
orresponding syndrome polynomial S(u).For instan
e,s1 = r(�)= 1+ �2+ �2+ �3+ �4+ �5+ �6(�2+1)= 1+ (�+1)+ (�2+ �) + (�2+ �+1)+(�2+ �+1)= �2
Similarly, s2 = �4; s3 = 0; s4 = �4;So S(u) = �2+ �4u+ �4u3(note the shift in indexing, as in the de�nitionof S above). 76



Example, 
ontinuedStart with K0 = f(0;1); (1;0)g
Step 1: S = �2
1 = �2 � 1 + 0 = �2 6= 0
2 = �2 � 0 + 1 = 1K1 = f(1; �5); (0; u)g(with the >�1-minimal element �rst).Step 2:S = �2+ �4u
1 = h(�2+ �4u) � �5+1iu = �2
2 = h(�2+ �4u) � u+0iu = �2K2 = f(1; u+ �5); (u; �5u)g(with the >�1-minimal element �rst). 77



De
oding, 
ontinuedStep 3:S = �2+ �4u+0u2
1 = h(�2+ �4u) � (u+ �5) + 1iu2 = �4
2 = h(�2+ �4u) � �5u+ uiu2 = �2K3 = f(u+ �5; �3); (u; u2+ �5u)g(with the >�1-minimal element �rst).Step 4: S = �2+ �4u+ a4u3
1 = 1
2 = �4
So (u; u; u2+ �5u) + �4(u+ �5; �3)= (�5u+ �2; u2+ �5u+1)is the minimal element of K4. 78



Error Lo
ations and ValuesThe minimal element in K4 has 
onstant 
o-eÆ
ient 1 and gives (w; `) exa
tly (not just upto a s
alar multiple).The roots of the error lo
ator are u = a; �6,so the errors o

urred in lo
ations �1 � 6 and�6 � 1 (mod 7).The error values are found with the Forneyformula:(�5�6+�2) = �e1(1+�6�6)) e1 = �3 = �+1and (�5�+ �2) = �6e1(1 + ��)) e6 = �2
(Compare with the 
odeword and re
eived word!)79



x5. Codes From Order DomainsAround 1980 { a big new development in 
od-ing theory:
� Start with a smooth 
urve X de�ned overFq. Let G and D be e�e
tive divisors onX, sums of Fq-rational points, w/ disjointsupports.
� Take L(G) = ff 2 Fq(X) : (f) + G � 0g [f0g, an Fq-ve
tor subspa
e of Fq(X).
� De�ne for D = P1+ � � �+ Pn,ev : L(G) ! Fnqf 7! (f(P1); : : : ; f(Pn))
� Let C = CL(D;G) = im(ev) � Fnq . (Note:ev is linear so C is a linear 
ode.) 80



An ExampleCalled AG Goppa 
odes.Let q = 4, F4 = F2[�℄=h�2+ �+1i (� is prim-itive).Take X to be the Hermitian 
urve over F4:X = V (x3 + y2z + yz2) � P2. X is smooth,genus g = 1. There are 9 F4-rational pointson X: Q = (0 : 1 : 0), and 8 aÆne points.(Note: This is the maximum possible for a
urve of genus 1 over F4, by the Hasse-Weilbound: jX(Fq)j � 1+ q+2gpq:)Want X to have \many" Fq-rational points inthis 
onstru
tion.) 81
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A Goppa Code from XTake G = mQ, D = P8i=1 Pi.It 
an be seen easily that x 2 L(2Q) and y 2L(3Q). In fa
t L(3Q) = Spanf1; x; yg.The Goppa 
ode CL(D;3Q) is the span of therows of the matrix:
0B�1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �2

1CA
By B�ezout's theorem, this 
ode has param-eters [8;3;5℄ over F4 (any � 2 errors in a re-
eived word 
an be 
orre
ted by nearest neigh-bor de
oding). 83



To \Order Domains"
� We took G = mQ and D = sum of all otherFq-rational points to maximize n (gives the
lass of \one-point Goppa 
odes")
� Also, X in a \spe
ial position" (only onepoint at in�nity) ) polynomials in aÆne
oords give elements of L(mQ), m � 1.The pole orders of the aÆne 
oord funsgenerate the Weierstrass semigroup of Xat Q. (Can always a
hieve this by reem-bedding X by jkQj, k � 2g � 1 if we want.)
� Can 
ompletely des
ribe 
onstru
tion of 
odesand a good de
oding algorithm (Berlekamp-Massey-Sakata) via algebra of the ring R =L(1Q) = [1m=0L(mQ), and the dis
retevaluation vQ on Fq(X). 84



A GeneralizationH�holdt, van Lint, and Pellikaan (building ona lot of previous work) re
ently introdu
ed thefollowing idea:Def. Let R be a Fq-algebra. Let (�;+;�)be a well-ordered semigroup. An order, orweight, fun
tion is a surje
tive mapping � :R! f�1g [ � satisfying:
1. �(f) = �1, f = 0
2. �(
f) = �(f) for all f 2 R, all 
 6= 0 in Fq3. �(f + g) �max�f�(f); �(g)g4. if �(f) = �(g) 6= �1, then 9 
 6= 0 in Fqsu
h that �(f � 
g) � �(f)
5. �(fg) = �(f) + �(g) 85



First Properties
� Axioms 1 and 5 imply that R must be adomain; a ring with an order fun
tion is
alled an order domain.
� Let K = QF(R).
� From now on, restri
t to 
ase � a sub-semigroup of Zr�0, some r � 1, so �nitelygenerated.
� Then WLOG, may assume r = tr:deg:Fq(K).
� \order" refers to the ordered Fq basis of Rwith distin
t �-values guaranteed by axiom4 86



Some Examples
� As above, R = L(1Q) is an order domainfor any point Q 2 X, a smooth 
urve. � =Weierstrass semigroup of X at Q, �(f) =�vQ(f). (Goppa)
� R = Fq[X1; : : : ; Xr℄ is an order domain tak-ing � = Zr�0, � a monomial order, �(f) = �if LT�(f) = X� for f 6= 0. (Reed-Muller)
� Can 
onstru
t all order domains with a given�, as in following example. Take r = 2,� = h(0;2); (1;1); (3;0)i � Z2�0 ordered bygraded lex (for example).
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Examples, 
ont.
� 3 generators for � ) there is a surje
tivering homomorphism:� : Fq[X; Y;Z℄! R;where if �(X) = x, �(Y ) = y, et
. �(x) =(0;2), �(y) = (1;1), �(z) = (3;0).
� Easy to see that all relations between �(x),�(y),�(z) are generated by �(x3z2) = �(y6)
� For axioms to hold, must have �(y6�
x2z3)< �(y6) for some 
 6= 0. ) R �= Fq[X; Y; Z℄=I,where I = hF i,F = Y 6 � 
X2Z3+ lower order terms
� Can 
he
k all su
h R are order domains(and all deformations of the monomial al-gebra Fq[�℄ = Fq[v2; uv; u3℄). 88



An \Extrinsi
" Chara
terizationTheorem 6 (Geil-Pellikaan) Let R be an orderdomain with a given �nitely-generated valuesemigroup � � Zr�0. LetR� = Fq[�℄ �= Fq[X1; : : : ; Xs℄=I�be the monomial (or tori
) algebra asso
iatedto �. Then R has a 
at deformation to R�(
oming from a presentation of R similar toour last example above).
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Order Domains and ValuationsOn the other hand, there is a 
lose 
onne
-tion between order domains and valuations onfun
tion �elds (re
all the Goppa 
ode 
ase!)
� If R is an order domain with �eld of fra
-tions K, thenS� = ff=g 2 K : �(g) � �(f)gis a valuation ring in K (that is, for allh 6= 0 in K, either h 2 S�, or 1=h 2 S�).
� S� is a lo
al ring with maximal ideal M� =ff=g 2 K : �(g) > �(f)g.
� R is in a spe
ial \Fq-
omplementary posi-tion to S�" in K: S� \ R = Fq and S� =S� \R+M�. 90



Order Domains and Valuations,
ont.
� Conversely, using results of Mosteig andSweedler, 
an showTheorem 7 Any valuation on a fun
tion�eld, with rational rank equal to the tran-s
enden
e degree, with 
enter a point \atin�nity" on a proje
tive model yields a 
or-responding order domain in the fun
tion�eld.
� see arXiv:math.AC/0304292 for more details.
� In parti
ular, applies to varieties of interestin 
oding theory (Hermitian hypersurfa
es,Grassmannians, 
ag varieties, ... ) 91



Codes From Order DomainsTo 
onstru
t 
odes from an order domain R =Fq[x1; : : : ; xt℄=I, generalize Goppa's 
onstru
-tion:
� Let � be the ordered basis of R (orderedby � value, or equiv. w-weight) given bythe monomials in 
omplement of LT>(I)
� Let X = V (I), and X(Fq) = fP1; : : : ; Pngbe the set of Fq-rational points on X
� Let V` be the span of the �rst ` elementsof �
� Let ev : R! Fnq : ev(f) = (f(P1); : : : ; f(Pn))
� Get 
odes E` = ev(V`), C` = Ev?̀. 92



Codes From Order Domains, 
ont.
� Results of O'Sullivan ) many features ofone-point Goppa 
odes generalize to these
odes from all order domains: Good boundson minimum distan
e of C` 
odes (Feng-Rao-Duursma) tied to an eÆ
ient de
od-ing algorithm (B-M-S)
� Constru
tion of good 
odes by this methodstill requires �nding X with many Fq-rationalpoints, good minimum distan
e properties,...
� On the other hand, there is the possibil-ity of exploiting known higher-dimensionalvarieties of interest.
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Final ExampleConsider the Hermitian surfa
e:H = V (Xq+10 +Xq+11 +Xq+12 �Xq+13 )in P3 over the �eld Fq2.
� V1 = V (X0) is a smooth Hermitian 
urveon H
� V2 = f(0 : 1 : Æ : 0)g is a point on V1 ifÆq+1 = �1.
� From standard 
onstru
tion of 
ompositedivisorial valuations 
orresponding to 
agsof subvarieties, we get an order domainstru
ture on the ring L(1V1) on H (thesubring of the fun
tion �eld 
onsisting offun
tions with poles only along V1 (arbi-trary order). 94



Hermitian Surfa
e Codes
� Can also derive expli
it presentation as de-formation of the tori
 algebra for� = h(1; q); (1; q+1); (1;0)i
� H has (q2+1)(q3+1) Fq2-rational points,of whi
h q3+1 lie on the plane se
tion V1.) we get generalized Goppa 
odes from Hwith n= q2(q3+1) = q5+ q2.
� With `= 4, for instan
e, evaluating 1; X1; X2; X3yields E4 
ode with k = 4 and d = q5 � q3(maximum number of zeroes is (q+1)q2 =q3+ q2).
� With q = 2, d = 25 � 23 = 24. (Bestknown 
ode with n = 36; k = 4 over F4has d = 25.) 95



Con
lusion
� Ironi
ally, when order domains were intro-du
ed by H�holdt, van Lint, and Pellikaan,their goal was to \take the (hard) alge-brai
 geometry out of the theory of Goppa
odes" (!)
� As it turns out, their synthesis of that the-ory has made it possible to use even more
ommutative algebra and algebrai
 geome-try to 
onstru
t new examples of error 
on-trol 
odes, generalize the existing de
odingalgorithms, et
.
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x6. The BMS De
oding Algo-rithmBerlekamp-Massey-Sakata algorithm applies toduals of evaluation 
odes from order domains(and similar m-dimensional 
y
li
 
odes).Can formulate it
� \internally" in R �= Fq[x1; : : : ; xt℄=I (approa
hin le
ture notes), or
� \externally" in polynomial ring Fq[x1; : : : ; xt℄.

We'll take se
ond approa
h here (and 
onsidera very idealized version of the de
oding prob-lem that puts some of the 
ompli
ating fea-tures in the ba
kground { indi
ate how thoseare addressed at end.) 97



Set-upIn x5, the evaluation 
ode E` was de�ned tobe the image ofevS : L` ! Fnqf 7! (f(P1); : : : ; f(Pn));where S = fP1; : : : ; Png= the Fq-rational pointsof V(I) and L` is the Fq-span of the �rst ` el-ements of the ordered basis � for R.The dual 
ode is Ca = E?a . Codewords of Eafurnish parity 
he
k equations for the 
ode-words of Ca: For y 2 Fnq ,y 2 Ca , hy; ev(f)i = nXj=1 yjf(Pj) = 0; all f 2 L`:
98



SyndromesAnalogs of the syndromes used in x4 for de
od-ing Reed-Solomon 
odes. One way to pa
k-age: syndrome mapping asso
iated to y 2 Fnq .Sy : Fq[x1; : : : ; xt℄ ! Fqf 7! nXj=1 yjf(Pj)
If x 2 Ca is sent and y = x+ e is re
eived, 
anuse Se(f) to 
orre
t.Sy(f) = Sx(f) + Se(f) = Se(f)for all f 2 La.
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De
oding
� Components of ve
tors 
; e; y are indexedby the Fq-rational points of X, in parti
ulare = (eP : P 2 X(Fq)) (X = V(I) frompresentation of R).
� The error ve
tor e is determined by lo
a-tions of the nonzero entries $ a subset ofX(Fq), and the error values eP 6= 0.
� Strategy: Determine the error-lo
ator idealIe =ff 2 Fq[x1; : : : ; xt℄ : f(P) = 0 if eP 6= 0g
� In fa
t, BMS produ
es a Gr�obner basis G=fg1; : : : ; gkg for Ie with respe
t to the order> used for the presentation of R. 100



Syndrome SeriesAnother way to pa
kage the syndromes: Givene, and u 2 Zt�0 (t from pres'n of R as a quotientof a polynomial ring), we letEu = he; ev(xu)i =XP ePxu(P)be the syndromes of the error ve
tor.De�ne: Se = Xu�0Eux�uin T = Fq[[x�11 ; : : : ; x�1s ℄℄.Also let S = Fq[x1; : : : ; xt℄.
101



Algebrai
 ContextElements of T a
t as linear fun
tionals on S.Let A = Pu aux�u 2 T and B = Pv bvxv 2 S.Then A(B) 2 Fq is the degree 0 part of theprodu
t: A(B) =Xu aubu:
T also has the stru
ture of S-module a

ord-ing to the following produ
t operation: if A;Babove and C = Pw 
wxw, then (C � A)(B) =A(CB).For monomials: x� 2 S, x�� 2 T , thenx� � x�� = (x��� if in T0 otherwise(extend by linearity).(Same as one version of the theory of dualityand Ma
aulay inverse systems. In fa
t T isthe linear dual spa
e of S, under the pairingde�ned above.) 102



The Key Equation for C`Theorem 8 Let Se be as above. Then f 2 Ieif and only if(KE) f � Se = 0:
proof: Let f = Pm fmxm. Then

f � Se = (Xm fmxm) � (Xu�0Eux�u)= Xr�0(Xm fmEm+r)x�r
Hen
e f � Se = 0 , Pm fmEm+r = 0 for allr � 0.
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Proof, 
ont.By the de�nition of the Eu,
Xm fmEm+r = Xm 0�fmXP ePxm+r(P)1A

= XP ePxr(P) Xm fmxm(P)!= XP ePxr(P)f(P)
If f 2 Ie, then sum is zero for all r � 0, sof � Se = 0. Conversely, if f � Se = 0, thenXP ePf(P)xr(P) = 0for all r � 0. Hen
e ePf(P) = 0 for all P , sof 2 Ie.// 104



Idealized Version of De
odingSuppose we (somehow) knew the full syndromeseries Se.Note: in a
tual de
oding, we only know thetrun
ation 
ontaining terms Euxu 
orrespond-ing to basis xu of L`. But be
ause of equationsxqi � xi = 0 over Fq, a �nite initial segment de-termines the rest (in fa
t Se represents a ratio-nal fun
tion of the xi as was true in RS 
asein x4).From duality setup, the S-submodule of T gen-erated by Se 
ontains all the information neededto re
over Ie, and here's one way to do it!Same approa
h 
ould also be used for RS de-
oding (gives version of Berlekamp-Massey).105



De
oding algorithm, (VERY) rudi-mentary versionAlgorithm.Input: Se, monomial order > on S
ompatible with order fun
tion in ROutput: G = Gr�obner basis for Ie,B = monomial basis for S=Ie.Initialize: G := fg;B := f1g;List := fL0 := x0 � Segfor monomials x� in > order doL� := x� � Seif fL�g [ List linearly dependent thenG := G [ fx�+P� 
�x�gelseB := B [ fx�g;List := List [ fx�Seg
106



Comments
� Reason this works: (P 
�x�) � Se = 0 2 Tis equivalent to P 
�x� 2 Ie by theorem on(KE)
� Experien
ed \Gr�obnerians" will re
ognizethe outline of Bu
hberger-M�oller, or FGLMhere. BMS is in same family of algorithms,as Teo Mora has observed(!)
� Deliberately vague about stopping 
riteria.After a �nite number of steps B will stabi-lize at size wt(e)
� \Real" BMS algorithm is more e
onomi-
al in that it only stores a set of maximalelements for B and minimal elements for
omplement of B, updates those as it pro-
eeds 107



Further Comments� But, main simpli�
ation here is a
tually theassumption that full Se is known (not justthe trun
ation).� In \real" BMS algorithm, this is handledby an ingenious idea of Feng and Rao.
� Additional terms in Se are 
omputed asneeded
� Uses a \majority voting" idea to determinesyndrome values not known dire
tly fromre
eived word. See referen
es for the de-tails here(!)
� Also means that elements of the Gr�obnerbasis \in progress" might be modi�ed asthe algorithm pro
eeds and more terms addedto Se. 108



Final ExampleFor our �nal example we take the 
ode C5 =E?5 from the order domainR �= F4[x; y℄=hx3+ y2+ yias in x5 (the Hermitian 
urve over F4). C5 hasparameters [n; k; d℄ = [8;3;5℄.As above we will assume the full Se is knownfor some error of weight � 2. Writing � for aprimitive element of F4, supposeSe = �+ �2x�1+ x�2+ �y�2+�x�3+ �2x�1y�2+ �y�3+x�2y�2+ �2x�1y�3+�x�3y�2+ x�2y�3+ �x�3y�3+ � � �
(Rest is determined from this via relations x4�x = y4 � y = 0.) 109



Example, 
ontinuedWe will use the >(2;3);lex order (x > y for thelex), so monomials will be pro
essed in the or-der:1 < x < y < x2 < xy < y2 < x3 < x2y < � � �
Already with 1 � Se and x � Se, we �nd a lineardependen
e:x � Se+ � � Se = 0 2 TSo we add x+ � to G.Next, y � Se and Se are linearly independent, sowe add y to B.With the next two monomials that are pro-
essed: x2 and xy, we �nd 
onsequen
es ofthe �rst relation added to G: x2+�2 (in 
har-a
teristi
 2!), and xy+ �y. 110



Example, 
ontinuedThese are added to G in the basi
 form of thealgorithm, though of 
ourse they are unne
es-sary (will not be a part of a redu
ed Gr�obnerbasis for Ie). Could avoid this by only usingmonomials that are not multiples of leadingterms of elements of G already found.With y2, we �nd a new relation:(y2+ y+1) � Se = 0 2 TSo y2+ y+1 is also inserted in G.In fa
t, we have found the Gr�obner basis of Ieat this point: fx+ �; y2+ y+1gError lo
ations are the solutions of these:P = (�;�); (�;�2)Then determine error values by generalized For-ney formulas! 111


