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Plan for the Workshop
� x1 { Error - Correting Codes (\applied al-gebra")
� x2 { Codes with \extra struture": yliand multiyli odes
� x3 { More on struture of �nite �elds, Reed-Solomon and BCH odes
� x4 { Enoding and deoding algorithms viaGr�obner bases
� x5 { Algebri-geometri Goppa odes andodes from order domains
� x6 { The Berlekamp-Massey-Sakata deod-ing algorithm 1



x1. Error-Correting CodesShemati piture of ommuniation:message#enoder#transmitter#noise ! hannel#reeiver#deoder#message� A main goal of oding theory is the de-sign of oding shemes whih ahieve errorontrol: use to detet and orret errors inreeived messages. 2



An Example\If you en rebd this, then yop're dojng error-orredtion."In natural languages like English, words areusually \far enough apart" that even if someof a message is orrupted, it is still intelligible.In the systems used for other types of ommu-niation, similar robustness in the presene of\noise" is a very desirable feature.
3



Mathematial SettingMessages
� are divided into \words" or bloks of a �xedlength, k,
� use symbols from a �nite alphabet A withq symbols

Simplest ase (also best adapted to eletronihardware) is an alphabet with two symbols:A = f0;1g, identi�ed with the �nite �eld F2(addition and multipliation modulo 2 { for in-stane 1 + 1 = 0), but we will see others in afew moments also.Usually, all strings or k-tuples in Ak are on-sidered as possible words that an appear in amessage. 4



Enoding and DeodingTo orret errors, some redundany must bebuilt into the enoded form of the message.One way is to make the enoded message on-sist of strings or n-tuples of length n > k overthe same alphabet. Then enoding and deod-ing operations are funtions:E : Ak ! Anand D : An ! Akwhere E is 1-1, and D Æ E = I on Ak. (Dmight also take a \fail" or \not deoded" valueon some words in the omplement of Im(E)ontaining too many errors to be deodable.)We all C = Im(E) the set of odewords, orjust \the ode." Any C of this form is alleda blok ode of length n. 5



ErrorsWhen an error is introdued in a word sent overthe hannel, the e�et is to replae a odewordx by a reeived word x0 6= x.If the alphabet A has a sum operation satisfy-ing usual algebrai rules (ommutativity, asso-iativity, existene of a 0 element and additiveinverses), then we an think of x0 as a vetorsum x0 = x+ e, where e 2 An is the error ve-tor. wt(e) determines how many entries of xare orrupted, and deoding is the same as de-termining e, then subtrating it o� to reoverx.We will restrit to this ase from now on, andin partiular assume A is a �nite �eld with qelements for some q. The ase q = 2 is thebinary �eld F2 = f0;1g with addition modulo2: 0 + 0 = 0;1 + 0 = 0+ 1 = 1;1+ 1 = 0:6



Hamming DistaneFor errors to be orretable, odewords mustbe widely enough \separated" using:De�nition. (Hamming Distane) Let x; y 2Fnq . Thend(x; y) = jfi 2 f1; : : : ; ng : xi 6= yigj= number of non-zero entries in x� y:
Example: d(11000111; 10100101) = 3d(x; y) is a metri or distane funtion (on the�nite set Fnq ). In partiular, the triangle in-equality : d(x; y) � d(x; z) + d(z; y)holds for all x; y; z 2 Fnq .The weight of a word x is wt(x) = d(x;0) =number of nonzero entries. For instane, wehave wt(11000111) = 5. 7



Error-Correting CapaityThe Hamming distane measures a ode's er-ror deteting and error orreting apaity:Proposition 1 If a ode C � Fnq satis�esd(u; v) � s+1for all distint u; v 2 C, then all error vetorsof weight s less an be deteted. If d(u; v) �2t+1, all error vetors of weight t or less will beorreted by the \nearest-neighbor" deodingfuntion:D(x) = E�1( 2 C : d(x; ) is minimal):
We writeB(u; s) = fy 2 Fnq : d(u; y) � sg:(the losed ball with enter u, radius s for theHamming distane) 8



The ProofProof: If d(u; v) � s + 1 for all u 6= v in C,then hanging s entries in a odeword neverprodues another odeword.Assume d(u; v) � 2t+ 1 for all u; v 2 C. Thelosed Hamming balls of radius t about theodewords u; v must be disjoint. For if not,and y 2 B(u; t) \B(v; t), we would haved(u; v) � d(u; y) + d(y; v) � 2tby the triangle inequality. But this ontraditsour assumption.Shows: If u is sent, weight of error e is � t, thenu+e is still loser to u than any other odeword{ nearest neighbor deoding will orret error!
9



Coding Pratie
� Nearest neighbor deoding an fail if errorvetor has weight > t.
� In most reasonable situations, errors of smallerweight are more likely than errors of largerweight, though.
� Based on type of information to be trans-mitted, properties of hannel, energy \bud-get" available et. an engineer would se-let a ode where the probability of thathappening was aeptably small.
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Important Parameters of Codes
� R = k=n, the information rate
� d = minx6=y2C d(x; y), the minimum dis-tane (or d=n the relative minimum dis-tane).

There are many known theoretial bounds onthese parameters. One suh:Proposition 2 (Singleton Bound) For eah �xedd, the parameters n; k of odes of minimumdistane d satisfyd � n� k+1 :
11



Good Codes\Good" odes are ones for whih R = k=n isnot too small (so the ode is not extremelyredundant), but for whih d is relatively large.There is a famous theorem of Claude Shannon(father of this theory) that says very roughly\good odes exist" but gives no expliit wayto onstrut them.One of the main researh diretions in odingtheory has been to �nd onstrutions of \goododes".Tools: Algebra of polynomials, �nite �elds, ge-ometry, et.
12



Codes with more algebrai stru-tureAll examples we study will be linear blok odes:
� The alphabet Fq is a �nite �eld,
� The set of odewords C is a k-dimensionalvetor subspae of Fnq .� For E, an take any linear mapping withimage C { matrix is alled a generator ma-trix for C.
� Writing all k- and n-tuples as row vetors,an take G to be an k � n matrix whoserows span C, and E(x) = xG:

Note: to desribe a linear ode we need onlyk elements in a basis, rather than all qk ode-words! 13



An ExampleIn F72 onsider the ode C given by the gener-ator matrix
G = 0BBBB�1 0 0 0 1 1 00 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 1

1CCCCAParameters n= 7; k = 4; d = 3.Sine 3 = 2 � 1 + 1, this ode an orret anysingle bit error in word of length 7.How we an tell: For linear odes, if x; y 2 C,then x� y 2 C too. Heneminx6=y2C d(x; y) = minx6=y2C d(x�y;0) = minz 6=02C d(z;0)In other words: For linear odes, the minimumdistane is the same as the minimum weightof a nonzero odeword. 14



Example, ontinuedThere are 24 = 16 di�erent odewords for thisode (all linear ombinations of the rows of G):
� one: (0;0;0;0;0;0;0) has weight zero,
� seven have weight 3:(1;0;0;0;1;1;0) (1;0;0;1;0;0;1)(1;1;1;0;0;0;0) (0;1;0;1;0;1;0)(0;1;0;0;1;0;1) (0;0;1;0;0;1;1)(0;0;1;1;1;0;0)
� seven have weight 4
� one has weight 7: (1;1;1;1;1;1;1)

(Words of weight 4 are \omplements" of thewords of weight 3.) 15



More On This ExampleThe ode given by G above has another in-teresting property: every word in F72 is eithera odeword, or Hamming distane 1 from aunique odeword. (Reason: 16�(1+7) = 128.)A rudimentary deoder would use a \hek ma-trix" H for C suh as
H =

0BBBBBBBBBBBB�
1 1 01 0 10 1 11 1 11 0 00 1 00 0 1

1CCCCCCCCCCCCAfor whih the odewords x 2 C (written asolumns) are the solutions of xH = 0.
16



DeodingAssuming error has weight � 1,
� Given reeived y ompute s = yH;
� If s = 0, then y 2 C;
� If not, then repeat x0 := y with one bittoggled until x0H = 0. Then x0 is a ode-word within Hamming distane 1 of y, andthat was the transmitted word, assumingno more than 1 bit in the odeword wasorrupted.

As before, this method may not orretly de-ode a reeived word y if weight of error is toolarge. 17



Hamming Codes
� The [7;4;3℄ binary ode in this example isan example of a Hamming ode.
� The general binary Hamming ode Cr hasparameters [n; k; d℄ = [2r � 1;2r � r � 1;3℄.
� Parity hek matrix Hr is the 2r � 1 � rmatrix whose rows are the 2r � 1 nonzerovetors of length r over F2.
� x 2 Cr , xHr = 0, or equivalently the en-tries of x are oeÆients in a linear depen-dene between rows of Hr
� ) d = 3. 18



Some Other Famous Codes
� The Golay ode { a remarkable [23;12;7℄binary ode. The Hamming balls of radius3 about 212 odewords ompletely �ll outF232 :212 � (1 + �231 �+ �232 �+ �233 �) = 223
� BCH odes { give a way to onstrut binaryodes of length 2s � 1 with any designedminimum distane Æ; atual minimum dis-tane satis�es d � Æ. Constrution usesmuh of the same algebra as the Reed-Solomon odes we will study in x3.
� Low-Density Parity-Chek odes { inten-sively studied reently. 19



x2. Cyli and Multi-yli odes,Finite Fields
� A linear ode C � Fnq is said to be yli if itis invariant under the yli shift mapping�(0; 1; 2; : : : ; n�1) = (n�1; 0; 1; : : : ; n�2)
� Often assume n is relatively prime to q hereto avoid some algebraially \interesting"behavior; not neessary, though.
� This property has another nie algebraiinterpretation and leads to interesting en-oding and deoding methods.

20



Algebrai translationDe�ne ' : Fnq ! Fq[t℄=htn � 1i(0; : : : ; n�1) 7! 0+ 1t+ � � �+ n�1tn�1(right hand side mod tn � 1.)Proposition 3 If C is a yli ode, then '(C)is an ideal in the ring Fq[t℄=htn � 1i, and on-versely.Proof: '(C) is a vetor subspae, sine ' isthe standard linear isomorphism between Fnqand the quotient ring.
21



Proof, ontinuedSo, we only need show '(C) losed under prod-uts by elements of Fq[t℄=htn � 1i. First notethat if  2 C is a vetor as above,t � '() = 0t+ 1t2+ � � �+ n�1tn� n�1+ 0t+ � � �+ n�2tn�1 mod tn � 1= '(�())
This is in '(C) beause C is invariant under �.But now by distributivity, '(C) is losed underarbitrary produts. //Note: Can also view R = Fq[t℄=htn � 1i as thegroup algebra of the yli group of order n:Fq[Zn℄.

22



More on the struture of yliodes
� Easy to see that the ring R = Fq[t℄=htn�1iis a prinipal ideal ring, sine Fq[t℄ is.
� Every ideal in R is generated by the osetof some g(t) of degree n� 1 or less.
� Also, an take g(t)jtn � 1 in Fq[t℄.
� Call g(t) a generator polynomial for theyli ode.
� Can always normalize g(t) to make itmoni.

23



Some Examples
� In F2[t℄, the polynomial t15�1 = t15+1 hasirreduible fators: (t+1); (t2+t+1); (t4+t+1); (t4+ t3+1); (t4+ t3+ t2+ t+1)
� ) 25 = 32 di�erent divisors, eah of whihan be taken as the generator polynomialfor a binary yli ode with n = 15.
� For example, ode with g(t) =(t+1)(t4+ t+1) = t5+ t4+ t2+1has n= 15; k = 10; d = 4.
� One generator matrix is formed from ylishifts of:(0;0;0;0;0;0;0;0;0;1;1;0;1;0;1)24



A First GeneralizationThe algebrai interpretation of yli odes givenabove suggests several generalizations. The�rst is relatively straightforward.
� Replae Fq[t℄=htn�1i by a �nite-dimensionalquotient of a polynomial ring in more thanone variable, of the formR = Fq[t1; : : : ; tm℄=htn11 � 1; : : : ; tnmm � 1i
� Consider ideals I � R.

The resulting odes are alled abelian odes,and m-dimensional yli odes in the litera-ture.
25



2-D Cyli Codes
� For example, with m = 2, the odewordsould be viewed as either as polynomials intwo variables (linear ombinations of mono-mials te11 te22 , with 0 � ei � ni), or as ret-angular arrays.
� Closure under multipliation by t1 meansode is invariant under simultaneous row-wise yli shifts.
� Similarly, losure under multipliation by t2means the ode is invariant under simulta-neous olumn-wise yli shifts.
� Could also study these odes as ideals inthe group algebra Fq[Zn1 � Zn2℄. 26



An ExampleFor instane, we an ask: What is the smallest2D-yli ode C of size n1 � n2 = 3 � 3 overF2 ontaining the odeword:
X = 0B�1 0 10 1 01 0 1

1CA?X orresponds to the polynomial:pX = 1+ t21+ t1t2+ t22+ t21t22(or, better, the oset of this polynomial in R =F2[t1; t2℄=ht31+1; t32+1i).
27



Example, ontinuedWe laim that the ideal generated by pX in R isequal to the ideal generated by p1 = t21+ t1+1and p2 = t22+ t2+1. This is equivalent to thelaim that I = hpX ; t31+1; t32+1iequals J = hp1; p2iin F2[t1; t2℄. We see:pX = p1p2+ t2p1+ t1p2t3i +1 = (ti+1)pi) I � J. Similarly, an see p1; p2 2 I (Exer-ise!), so I = J.(Gr�obner bases give a nie way to test equalityof ideals. Can also dedue I = J here fromproperties of the Galois �eld F4 { next leture!)28



Example, onludedFrom the desription of the ode as the idealJ above, an see:n = 9; k = 5; d � 3(Estimate on d omes from the weight of theodewords orresponding to p1 and p2.)We have a basis for the ode onsisting of thewords orresponding to:p1; t2p1; t22p1; t1p2; t21p2
29



Looking AheadThe algebra of ideals I � R is more interestingthan in the ase m = 1.Not every ideal is prinipal, for instane, as wesee already in the example done before!For all m � 1, the theory of Groebner bases anbe applied, for instane, to onstrut enodingand deoding algorithms. We will study thesefor yli and abelian odes in x4 and x6.
30



Finite FieldsTo desribe our next examples, we need tointrodue expliit �elds larger than F2 = f0;1gor the \prime �elds" Fp (integers mod p) tobe used as ode alphabets.To see idea, we might want set of strings of0;1's of a �xed length r to be the alphabet.r = 4 would give 24 distint symbols:0000;0001; 0010;0011;0100;0101;0110; 0111;1000;1001; 1010;1011;1100;1101;1110; 1111:In order to work with the set-up of linear odes,though, this set must be given the struture ofa �eld.
31



A Field With 16 ElementsWe an interpret a string �3�2�1�0 (�i 2 F2)as a polynomial in a new variable �:�3�3+ �2�2+ �1�+ �0The set of all 16 suh expressions will be de-noted by F16.Addition operation: usual polynomial addition(same as vetor addition in F42 ).Multipliation operation: we know how to mul-tiply polynomials:(�3+1)(�2+1) = �5+ �3+ �2+1:But of ourse the degree of the produt is toolarge here. To redue to the proper range ofdegrees, we divide by some polynomial of de-gree 4 in � and take the remainder of the prod-ut.Of ourse, we are working in the quotient ringF2[�℄=hh(�)i. 32



A Field with 16 Elements, on-tinuedThis muh works for any divisor polynomialh(�) of degree 4. But, do we always get a�eld this way?The answer is no, sine h(�) must be irre-duible in order for the hh(�)i to be a maximalideal and the quotient ring to be a �eld.For instane, it an be heked that both h(�) =�4+�+1 and h(�) = �4+�3+1 are irreduiblein F2[�℄.
33



A Field with 16 Elements, on-ludedAnother more elementary way to see that wehave a �eld is to hek 1; �; �2; : : : ; �14 are alldistint, and �15 = 1. Hene
� The powers of � give all the nonzero ele-ments of F16, and
� Eah element �k has a multipliative in-verse �15�k. (That is, the multipliativegroup F �16 is a yli group of order 15.)

� is alled a primitive element for F16.
34



Finite (Galois) FieldsTheorem 1 Let p be prime in Z.
1. The set of integers mod p is a �eld denotedFp (a prime �eld).
2. For all p and all r � 1, there are irreduibleh(�) of degree r in Fp[�℄.
3. Let h(�) be irreduible of degree r. ThenFp[�℄=hh(�)i is an extension �eld of theprime �eld Fp with pr elements.
4. Di�erent hoies of irreduible h of thesame degree yield isomorphi �elds, alledFpr.
5. Every �eld Fpr has a primitive element.35



x3. Appliations: Reed-Solomonand BCH CodesSuppose we want to onstrut odes attainingthe Singleton bound. (These are alled MDS,or \maximum distane separable," odes).Restriting to odes of length n � q, here is away if the ode alphabet is Fq. Fix an integerk � q. Polynomials of degree < k have at mostk�1 roots in Fq, and some have preisely thatmany roots.Write Lk for the set of all polynomials in Fq[x℄of degree < k. We will always assume k < qhere.
36



Appliation, ontinuedLk is a vetor spae over Fq of dimension k.For eah polynomial f 2 Lk, we onstrut aword in F qq by evaluating f at the elements ofFq, to get a q-tuple (letting � be a primitiveelement),(f(0); f(1); f(�); : : : ; f(�q�2))(reall �q�1 = 1). When we do this, we get aword with
� at most k � 1 zero entries, hene
� at least q � (k � 1) = q � k + 1 = n � k +1 nonzero entries (and some have exatlyk � 1 zero entries).
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Appliation, ontinuedThe set of all suh words is a linear ode sine:
� Lk is a vetor spae, and
� the evaluation mapping is linear.

Hene the resulting ode will have
� dimension k and
� minimum distane d = n�k+1 when k < q.

38



Appliation, onluded
� Using all q elements of Fq, we get extendedReed-Solomon odes.
� Standard Reed-Solomon odes ome fromevaluating only at the nonzero elements ofthe �eld (omitting the f(0) entry to get aword in F q�1q ).
� Can also take the polynomials vanishingat some �xed subset of nonzero elements,evaluate them, and delete the zeroes toform evaluation vetors of length n < q�1 {yields the shortened Reed-Solomon odes.(The atual odes used in the CD audiosystem are examples of these.)
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In Summary ...Theorem 2 Pik a primitive element � for Fq,and write the nonzero elements of Fq as1; �; : : : ; �q�2Let k < q and Lk = ff 2 Fq[x℄ : deg f < kg.Writeev : Lk ! F q�1qf 7! (f(1); f(�); : : : ; f(�q�2)):Then Im(ev) is a linear ode with n = q � 1,dimension k, and minimum distane d = n �k + 1 = q � k, alled a Reed-Solomon ode,RS(k; q). All Reed-Solomon odes are MDSodes with d = n� k+1.
40



An RS ExampleFor example, using the standard monomial ba-sis f1; x; x2; x3; : : : ; xk�1gfor Lk, the Reed-Solomon ode RS(3;16) (pa-rameters: n = 15; k = 3; d = 13 over F16, so163 = 4096 distint odewords) has generatormatrixG = 0B�1 1 1 � � � 1 1 � � � 11 � �2 � � � �7 �8 � � � �141 �2 �4 � � � �14 � � � � �13
1CA :

41



How RS Codes are UsedReed-Solomon odes are ommonly used in sit-uations where errors tend to our in \bursts"rather than randomly.This inludes ommuniation to and from deep-spae exploration raft, the CD digital audiosystem, and many other appliations.Reed-Solomon and other blok odes over F2ran orret relatively long bursts of errors onthe bit level, even if d is relatively small.
42



Burst Error CorretionCan \go bak" and think of �r�1�r�1+ � � �+�1�+�0 in F2r as the vetor (�r�1; : : : ; �1; �0) 2F r2.Then a Reed-Solomon odeword is representedby a string of (2r � 1)r bits.A burst of s � r onseutive bit errors, for in-stane, will hange at most s+1 of the entriesof the odeword, as elements of F2r.Hene, RS(3;16) above an orret burst er-rors of bit length up to 20 = 5 �4. Random er-rors of weight � 6 are orretable sine d = 13.
43



More on Struture of RS CodesReed-Solomon odes also have additional al-gebrai struture as in x2.This greatly failitates the enoding and de-oding operations. To see the idea, onsiderthe generator matrix G for the Reed-Solomonode RS(k; q) onstruted by evaluating themonomials f1; x; x2; : : : ; xk�1g at the �` 2 F �q .The ith row of G has the form((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1):Cylially permuting this row, we obtain((�q�2)i�1; (1)i�1; (�)i�1; : : : ; (�q�3)i�1);whih is equal to�(i�1)(q�2)�((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1)beause �q�1 = 1. 44



RS Codes are CyliThus, a yli permutation of the ith row yieldsa salar multiple of the same row|it is alsoone of the Reed-Solomon odewords!The yli permutation is a linear mapping Son F q�1q , and we have just seen that there is abasis of RS(k; q) onsisting of eigenvetors forS.It follows that the Reed-Solomon ode RS(k; q)is invariant under S, sine all the odewords arelinear ombinations of the rows of G. Theseobservations give the proof of the followingfat.Theorem 3 For all q and all k < q, the Reed-Solomon ode RS(k; q) is yli. 45



To the Generator PolynomialConsider the mapping : RS(k; q) ! Fq[t℄=htq�1 � 1i(0; 1; : : : ; q�2) 7! 0+ 1t+ � � �+ q�2tq�2as in x2.Caution: that there are two rings of polynomi-als \in play" now. The �rst is the ring Fq[x℄ontaining the polynomials that are evaluatedto form the Reed-Solomon odewords. Theseond is the ring Fq[t℄ (or Fq[t℄=htq�1�1i) on-taining the polynomial forms  () of the Reed-Solomon odewords. Care should be taken notto onfuse these(!)
46



To the Generator Polynomial, on-tinuedEvery element of  (C) has the form () = 0+ 1t+ � � �+ q�2tq�2where we obtain the oeÆientsi = k�1Xj=0 aj(�i)jby evaluating some �xed f(x) = Pk�1j=0 ajxj atx = �i for i = 0; : : : ; q � 2.Substituting these expressions for i, interhang-ing the order of summation: () = q�2Xi=00�k�1Xj=0 aj(�i)j1A ti= k�1Xj=0 aj 0�q�2Xi=0(�jt)i1A 47



The Generator Polynomial, Fi-nallyIn Fq, roots of 0 = 1+ z+ z2+ � � �+ zq�2 areall z 6= 0;1. Hene the inner sum in previous isequal to zero provided that ajt 6= 0;1.The whole sum = 0 if �jt 6= 0;1 for all j =0; : : : ; k � 1, , t 2 f�;�2; : : : ; �q�k�1g. Conse-quently, every  () is divisible byg(t) = (t� �)(t� �2) � � � (t� �q�k�1):In fat, by omparing dimensions, we have:Theorem 4 The polynomialg(t) = (t� �)(t� �2) � � � (t� �q�k�1)is the generator polynomial for RS(k; q).
48



An Alternate FormSine the minimum distane of a Reed-Solomonode satis�es d = q � k, the generator polyno-mial an also be written asg(t) = (t� �)(t� �2) � � � (t� �d�1):
For example, the Reed-Solomon ode RS(3;16)from above hasg(t) = (t� �)(t� �2)(t� �3) � � � (t� �12)sine d = 15� 3+ 1 = 13.

49



The BCH CodesThe seond lass of odes we will onsider weredisovered at almost the same time as theReed-Solomon odes, independently by Boseand also by Chaudhuri and Hoquenghem.They are known as BCH odes, and they are ofinterest beause they give examples of odesof general blok length over Fq (not just n � qas for the Reed-Solomon examples) that anbe designed to satisfy d � Æ, for a given Æ.They are also yli, so they an be desribedmost simply by giving a method for onstrut-ing their generator polynomials. As we will see,they are also very losely onneted to Reed-Solomon odes.
50



Motivation for the ConstrutionBCH onstrution uses a smidgen of Galoistheory to onstrut odes over Fq with goodd. If gd(n; q) = 1, then the nth roots of unityin Fq are distint.Theorem 5 (The BCH Bound) Let � be aprimitive nth root of unity in an extension �eldFqr=Fq, and assume that g(t) 2 Fq[t℄ is the gen-erator polynomial of a yli ode C of lengthn over Fq. Consider the set of powers �j suhthat g(�j) = 0. Assume this ontains a stringof onseutive powers:�i0; �i0+1; : : : ; �i0+Æ�2of length Æ � 1. Then the minimum distaneof C satis�es d � Æ.In RS ase, n = q � 1, so a primitive nth rootof unity is just a primitive element of Fq, andthere is no �eld extension involved. 51



The ConstrutionBCH odes in general are onstruted by \ook-ing up" generator polynomials that are guar-anteed to have onseutive strings of powersof a primitive nth root of unity among theirroots.From Galois theory for �nite �elds, we knowthat Gal(Fqr=Fq) is yli of order r, generatedby the Frobenius automorphism F(x) = xq.If g(t) 2 Fq[t℄ and � is a root of g, then sineF �xes the oeÆients in g, F(�) = �q is alsoa root of g. This observation an be used tosimplify the desription of the desired g(t).
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BCH Codes over F2The binary BCH odes (i.e. BCH odes overF2) are the most ommonly enountered ones,and make the idea lear.Take n odd. To get a yli ode with min-imum distane d � Æ = 2s + 1, take � anyprimitive nth root of 1 in an extension F2r=F2(with r as small as possible, of ourse).Let m�k(t) be the minimal polynomial of �k inF2[t℄. Then full set of roots of m�(t) is�k; F(�) = �2k; F(F(�)) = �4k; : : : ; �2r�1k(all exponents mod n sine �n = 1). So ifg(t) = lm(m�;m�3;m�5; : : : ;m�2s�1)then all the �j for 1 � j � 2s will be amongthe roots. Hene the BCH bound will implyd � Æ = 2s+ 1. There is a similar statementfor all q. 53



ConlusionIt is not too diÆult to �nd examples wherethe atual minimum distane of a BCH odeis stritly larger than the \designed distane"Æ.Example: take n= 31; Æ = 9 over F2.Other more re�ned lower bounds on d for yliodes are also known, but this is an area whereresearh ontinues and our understanding isnot omplete yet.
54



x4. Enoding and Deoding viaGr�obner BasesThe extra symmetry of a yli ode meansthat less information is required to speify asystemati enoder than for a general linearode of the same dimension.In fat all we need to know is the n � k oef-�ients in a moni generator polynomial g(t).(Note: if dimC = k, then the degree of g(t)will be n� k.)Moreover, the enoding proess an be de-sribed very suintly using a standard alge-brai algorithm { polynomial division!
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Systemati Enoding via DivisionFor this desription of systemati enoding,
� CoeÆients of tn�k; : : : ; tn�1 are the he in-formation positions, and
� CoeÆients of 1; : : : ; tn�k�1 are the parityheks.
Input : g(t); generator polyinformation symbols 1; :::; kOutput : y;a odewordp := 1tn�k + :::+ ktn�1;y := p�Rem(p; g; t);Sine g has degree n � k, the remainder willontain only 1; t; : : : ; tn�k�1. The other termswill be the same as in p. 56



Generalization to m-dimensionalCyli CodesThe method here generalizes immediately tom-dimensional yli odes (viewed as ideals Iin Fq[t1; : : : ; tm℄=htn11 � 1; : : : ; tnm�1m i).Generator polynomial g(t) is replaed by anyGr�obner basis G for I.Univariate polynomial division replaed by mul-tivariate division w.r.t. G.
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RS DeodingSeveral di�erent but related extremely eÆientdeoding algorithms for Reed-Solomon and BCHodes have been developed { one major reasonfor the Reed-Solomon odes' popularity.
� Berlekamp-Massey algorithm, very ommonlyused in pratie
� Another algorithm paralleling the Eulideanalgorithm for the GCD of two polynomialsis also known

We'll study the �rst approah here.
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The SetupFor simpliity, assume Reed-Solomon ode Csatis�es d = 2s + 1. Then by Proposition 1,any s or fewer errors in a reeived word shouldbe orretable.Let  = Pq�2j=0 jtj be a odeword of C.In Fq[t℄,  is divisible byg = (t� �)(t� �2) � � � (t� �d�1):Suppose that  is transmitted, but some er-rors are introdued, so that the reeived wordis r = + e for some e = Pi2L eiti. L = errorloations, and we assume jLj � s. The oeÆ-ients ei are the error values.
59



The Deoding ProblemGiven the reeived word r, determine the setof error loations L and the error values ei forthe error polynomial e with s or fewer nonzeroterms (if suh a polynomial exists).First, we ompute sj = r(�j) for all j = 1; : : : ; d�1, alled the syndromes of the reeived word.
� If these are all zero, then r is divisible byg, and assuming wt(e) � s, r must be theodeword we sent.
� If some syndromes are nonzero,sj = r(�j) = (�j) + e(�j) = e(�j);sine  is a multiple of g.
� Hene we an try to use the information in-luded in the syndromes to determine e(t).60



The Syndrome PolynomialThe syndromes may be used as the oeÆientsin a polynomialS(u) = d�1Xj=1 sjuj�1;alled the syndrome polynomial for the reeivedword r. Its degree is d� 2 or less.By extending the de�nition of sj = e(�j) to allexponents j we an also onsider the formalpower series bS(u) = 1Xj=1 sjuj�1:
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Another form for SSuppose we knew e(t) for a reeived word withwt(e) � s. Then, sj = Pi2L ei(�j)i = Pi2L ei(�i)j:Exhanging the order of summation, then sum-ming formal geometri series,bS(u) = 1Xj=1 sjuj�1= Xi2L ei0� 1Xj=1(�i)juj�11A= Xi2L ei�i(1� �iu)= w(u)`(u) ;where`= Yi2L(1� �iu); w = Xi2L ei�i Yj 6=ij2L(1� �ju):
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The Error LoatorThe roots of ` are preisely the ��i for i 2 L.Sine the error loations an be determinedeasily from these roots, ` is alled the errorloator polynomial.Turning to the numerator w, we see thatdegw � deg `� 1:
In addition, if i 2 L,w(��i) = ei�i Yj 6=i;j2L(1� �j��i) 6= 0:Hene w has no roots in ommon with `. Fromthis we dedue the important observation thatthe polynomials w and ` must be relativelyprime. 63



The Key EquationSimilarly, if we onsider the \tail"bS(u)� S(u) = 1Xj=d0�Xi2L ei(�i)j1Auj�1= ud�1 � g(u)`(u) ;where g = Xi2L ei�id Yj 6=ij2L(1� �ju):
The degree of g is also at most deg `� 1.Combining these, and writing d � 1 = 2s weobtain the relation(KE) w = `S+ u2sg:This is the key equation for deoding. 64



A \Key" ObservationThe derivation of (KE) assumed the error poly-nomial e was known. But now onsider theatual situation. Given the reeived word r, Sis omputed. We onsider (KE) as a relationbetween the known polynomials S; u2s, and un-knowns 
;�;�:(KE0) 
 = �S+ u2s�:
Suppose a solution (
;�;�) of (KE') is found,whih satis�es the degree onditions: deg� �s, and deg
 < deg�,and in whih 
;� are relatively prime. Welaim that in suh a solution � must be a fatorof uq�1 � 1, and its roots give the inverses ofthe error loations. 65



A Uniqueness StatementThe last laim is a onsequene of:Proposition 4 Suppose wt(e) � s, and let Sbe the orresponding syndrome polynomial. Upto a onstant multiple, there exists a uniquesolution (
;�;�) of (KE') that satis�es thedegree onditions above, and for whih 
 and� are relatively prime.Proof: The atual error loator ` and the or-responding w; g give one solution. Let (
;�;�)be any other. Start withw = `S+ u2sg
 = �S+ u2s�;
multiply the seond by `, the �rst by � andsubtrat. We obtainw� = 
`+ u2s(g�� `�): 66



Proof, ontinuedBy the degree onditions, w� and 
` are a-tually polynomials of degree at most 2s�1, soit follows that w� = 
`(and g� = `�). Sine both pairs (w; `) and(
;�) are relatively prime, they an di�er onlyby a onstant multiple.//Any solution of (KE') for whih the degreeonditions are satis�ed an be used to deode:
� Solve �(u) = 0 in Fqnf0g, and get the errorloations.
� Then �nd the error values as follows.67



The Forney FormulaLet (w; `; g) be the solution of (KE') in whihthe atual error loator ` (with onstant term1) appears. If i 2 L, thenw(��i) = �iei�i(��i)where �i = Qj 6=i(1 � �ju). (This is alled theForney formula.) Hene we an solve for ei,one we know the error loations.The preeding disussion shows that solvingthe deoding problem an be aomplished bysolving the key equation (KE').
68



Reasting the Key EquationFrom now on, for our purposes, it will be moreonvenient to regard (KE) as a ongruene:
 � �S mod u2s:Congruenes of the same form are studied innumerial analysis in the ontext of Pad�e ap-proximation.We will now follow Fitzpatrik and see howomputational ommutative algebra an be usedto solve the key equation.Given the integer s and S 2 Fq[u℄, onsider setof all pairs (
;�) 2 Fq[u℄2 satisfying:K = f(
;�) : 
 � �S mod u2sg:
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Module of SolutionsK is an Fq[u℄-submodule of Fq[u℄2. In addition,every element of K an be written as a om-bination (with polynomial oeÆients) of thetwo generators (u2s;0) and (S;1) for K, whihinvolve only known polynomials.We use the theory of Gr�obner bases in modulesover a polynomial ring.Monomials in Fq[u℄2 are simply monomials in utimes one of the standard basis vetors e1 ore2.Let r 2 Z, and de�ne an order >r by the fol-lowing rules. First, umei >r unei if m > n andi = 1 or 2. Seond, ume2 >r une1 if and onlyif m+ r � n. 70



An Example; Some General Ob-servationsFor example, with r = 2, the monomials inFq[u℄2 are ordered by >2 as follows:e1 <2 ue1 <2 u2e1 <2 e2 <2 u3e1 <2 ue2 <2 � � � :Gr�obner bases for submodules of Fq[u℄2 withrespet to the >r orders have very speial forms.Proposition 5 Let M be a submodule of thefree module Fq[u℄2, and �x r 2 Z. AssumehLT>r(M)i is generated by uae1 = (ua;0) andube2 = (0; ub) for some a; b � 0. Then a sub-set G � M is a redued Gr�obner basis of Mwith respet to >r if and only if G = fg1 =(g11; g12); g2 = (g21; g22)g, satisfying the fol-lowing two properties:a) LT(g1) = uae1 (in g11), and LT(g2) = ube2(in g22) for a; b as above.b) deg(g21) < a and deg(g12) < b. 71



A Corollary; Minimal ElementsProposition 6 Let G = f(S;1); (u2s;0)g be thegenerators for the module K. Then G is aGr�obner basis for K with respet the order>deg(S). Note that LT>deg(S)((S;1)) = (0;1) =e2.A minimal element of a moduleM with respetto > is a g 2 M suh that LT(g) is minimalwith respet to >. For instane, the moduleelement (S;1) is minimal with respet to theorder >deg(S) in K = h(S;1); (u2s;0)i sinee2 = LT((S; 1)) <deg(S) LT((u2s;0)) = u2se1:Minimal elements of M � Fq[u℄2 are unique,up to a (nonzero) onstant multiple.Proposition 7 Fix any >r order on Fq[u℄2, andlet M be a submodule. Every Gr�obner basisfor M with respet to >r ontains a minimalelement of M with respet to >r. 72



The Partiular Solution WeWantProposition 8 Eah solution (
;�) of the keyequation and the degree onditions deg
 �deg��1 with relatively prime omponents is aminimal element of K under the >�1 ordering.The Berlekamp-Massey approah builds up theminimal element iteratively by solving the on-gruenes 
 � �S mod um for m = 0; : : : ;2s.
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The Iterative StepProposition 9 Let Km be the module of so-lutions of 
 � �S mod um, and letB = f(a1; b1); (a2; b2)gbe a >r Gr�obner basis of Km, with the �rstelement minimal. Let S = S mod um+1 and leti be the oeÆient of um in biS � ai. De�neB0 = f(a01; b01); (a02; b02)g: If 1 = 0, then(a01; b01) = (a1; b1)(a02; b02) = (ua2; ub2):If 1 6= 0, then(a01; b01) = (ua1; ub1)(a02; b02) = (a2; b2)� 21(a1; b1):Then B0 is a >r Gr�obner basis for Km+1.Apply the Proposition repeatedly with r = �1,starting from the >�1 Gr�obner basis for K0:f(0;1); (1;0)g . 74



An ExampleThe �nal values (a1(u); b1(u)) are (g(u); `(u))from (KE), up to a onstant multiple. So theroots of b1(u) are the inverses of the error lo-ations.We demonstrate this with an example. Usethe �eld F8 (with h(�) = �3 + � + 1), andthe Reed-Solomon ode RS(3;8), whih hasd = n � k + 1 = 7 � 3 + 1 = 5, so s = 2.Suppose the odeword = ev(1) = (1;1;1;1;1;1;1)is sent, but it is orrupted by errors to yieldr = (1; �;1;1;1;1; �2+1);or in polynomial formr = 1+ �t+ t2+ t3+ t4+ t5+ (�2+1)t6:75



Example, ontinuedThe �rst step is to ompute the syndromes andthe orresponding syndrome polynomial S(u).For instane,s1 = r(�)= 1+ �2+ �2+ �3+ �4+ �5+ �6(�2+1)= 1+ (�+1)+ (�2+ �) + (�2+ �+1)+(�2+ �+1)= �2
Similarly, s2 = �4; s3 = 0; s4 = �4;So S(u) = �2+ �4u+ �4u3(note the shift in indexing, as in the de�nitionof S above). 76



Example, ontinuedStart with K0 = f(0;1); (1;0)g
Step 1: S = �21 = �2 � 1 + 0 = �2 6= 02 = �2 � 0 + 1 = 1K1 = f(1; �5); (0; u)g(with the >�1-minimal element �rst).Step 2:S = �2+ �4u1 = h(�2+ �4u) � �5+1iu = �22 = h(�2+ �4u) � u+0iu = �2K2 = f(1; u+ �5); (u; �5u)g(with the >�1-minimal element �rst). 77



Deoding, ontinuedStep 3:S = �2+ �4u+0u21 = h(�2+ �4u) � (u+ �5) + 1iu2 = �42 = h(�2+ �4u) � �5u+ uiu2 = �2K3 = f(u+ �5; �3); (u; u2+ �5u)g(with the >�1-minimal element �rst).Step 4: S = �2+ �4u+ a4u31 = 12 = �4
So (u; u; u2+ �5u) + �4(u+ �5; �3)= (�5u+ �2; u2+ �5u+1)is the minimal element of K4. 78



Error Loations and ValuesThe minimal element in K4 has onstant o-eÆient 1 and gives (w; `) exatly (not just upto a salar multiple).The roots of the error loator are u = a; �6,so the errors ourred in loations �1 � 6 and�6 � 1 (mod 7).The error values are found with the Forneyformula:(�5�6+�2) = �e1(1+�6�6)) e1 = �3 = �+1and (�5�+ �2) = �6e1(1 + ��)) e6 = �2
(Compare with the odeword and reeived word!)79



x5. Codes From Order DomainsAround 1980 { a big new development in od-ing theory:
� Start with a smooth urve X de�ned overFq. Let G and D be e�etive divisors onX, sums of Fq-rational points, w/ disjointsupports.
� Take L(G) = ff 2 Fq(X) : (f) + G � 0g [f0g, an Fq-vetor subspae of Fq(X).
� De�ne for D = P1+ � � �+ Pn,ev : L(G) ! Fnqf 7! (f(P1); : : : ; f(Pn))
� Let C = CL(D;G) = im(ev) � Fnq . (Note:ev is linear so C is a linear ode.) 80



An ExampleCalled AG Goppa odes.Let q = 4, F4 = F2[�℄=h�2+ �+1i (� is prim-itive).Take X to be the Hermitian urve over F4:X = V (x3 + y2z + yz2) � P2. X is smooth,genus g = 1. There are 9 F4-rational pointson X: Q = (0 : 1 : 0), and 8 aÆne points.(Note: This is the maximum possible for aurve of genus 1 over F4, by the Hasse-Weilbound: jX(Fq)j � 1+ q+2gpq:)Want X to have \many" Fq-rational points inthis onstrution.) 81
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A Goppa Code from XTake G = mQ, D = P8i=1 Pi.It an be seen easily that x 2 L(2Q) and y 2L(3Q). In fat L(3Q) = Spanf1; x; yg.The Goppa ode CL(D;3Q) is the span of therows of the matrix:
0B�1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �2

1CA
By B�ezout's theorem, this ode has param-eters [8;3;5℄ over F4 (any � 2 errors in a re-eived word an be orreted by nearest neigh-bor deoding). 83



To \Order Domains"
� We took G = mQ and D = sum of all otherFq-rational points to maximize n (gives thelass of \one-point Goppa odes")
� Also, X in a \speial position" (only onepoint at in�nity) ) polynomials in aÆneoords give elements of L(mQ), m � 1.The pole orders of the aÆne oord funsgenerate the Weierstrass semigroup of Xat Q. (Can always ahieve this by reem-bedding X by jkQj, k � 2g � 1 if we want.)
� Can ompletely desribe onstrution of odesand a good deoding algorithm (Berlekamp-Massey-Sakata) via algebra of the ring R =L(1Q) = [1m=0L(mQ), and the disretevaluation vQ on Fq(X). 84



A GeneralizationH�holdt, van Lint, and Pellikaan (building ona lot of previous work) reently introdued thefollowing idea:Def. Let R be a Fq-algebra. Let (�;+;�)be a well-ordered semigroup. An order, orweight, funtion is a surjetive mapping � :R! f�1g [ � satisfying:
1. �(f) = �1, f = 0
2. �(f) = �(f) for all f 2 R, all  6= 0 in Fq3. �(f + g) �max�f�(f); �(g)g4. if �(f) = �(g) 6= �1, then 9  6= 0 in Fqsuh that �(f � g) � �(f)
5. �(fg) = �(f) + �(g) 85



First Properties
� Axioms 1 and 5 imply that R must be adomain; a ring with an order funtion isalled an order domain.
� Let K = QF(R).
� From now on, restrit to ase � a sub-semigroup of Zr�0, some r � 1, so �nitelygenerated.
� Then WLOG, may assume r = tr:deg:Fq(K).
� \order" refers to the ordered Fq basis of Rwith distint �-values guaranteed by axiom4 86



Some Examples
� As above, R = L(1Q) is an order domainfor any point Q 2 X, a smooth urve. � =Weierstrass semigroup of X at Q, �(f) =�vQ(f). (Goppa)
� R = Fq[X1; : : : ; Xr℄ is an order domain tak-ing � = Zr�0, � a monomial order, �(f) = �if LT�(f) = X� for f 6= 0. (Reed-Muller)
� Can onstrut all order domains with a given�, as in following example. Take r = 2,� = h(0;2); (1;1); (3;0)i � Z2�0 ordered bygraded lex (for example).
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Examples, ont.
� 3 generators for � ) there is a surjetivering homomorphism:� : Fq[X; Y;Z℄! R;where if �(X) = x, �(Y ) = y, et. �(x) =(0;2), �(y) = (1;1), �(z) = (3;0).
� Easy to see that all relations between �(x),�(y),�(z) are generated by �(x3z2) = �(y6)
� For axioms to hold, must have �(y6�x2z3)< �(y6) for some  6= 0. ) R �= Fq[X; Y; Z℄=I,where I = hF i,F = Y 6 � X2Z3+ lower order terms
� Can hek all suh R are order domains(and all deformations of the monomial al-gebra Fq[�℄ = Fq[v2; uv; u3℄). 88



An \Extrinsi" CharaterizationTheorem 6 (Geil-Pellikaan) Let R be an orderdomain with a given �nitely-generated valuesemigroup � � Zr�0. LetR� = Fq[�℄ �= Fq[X1; : : : ; Xs℄=I�be the monomial (or tori) algebra assoiatedto �. Then R has a at deformation to R�(oming from a presentation of R similar toour last example above).
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Order Domains and ValuationsOn the other hand, there is a lose onne-tion between order domains and valuations onfuntion �elds (reall the Goppa ode ase!)
� If R is an order domain with �eld of fra-tions K, thenS� = ff=g 2 K : �(g) � �(f)gis a valuation ring in K (that is, for allh 6= 0 in K, either h 2 S�, or 1=h 2 S�).
� S� is a loal ring with maximal ideal M� =ff=g 2 K : �(g) > �(f)g.
� R is in a speial \Fq-omplementary posi-tion to S�" in K: S� \ R = Fq and S� =S� \R+M�. 90



Order Domains and Valuations,ont.
� Conversely, using results of Mosteig andSweedler, an showTheorem 7 Any valuation on a funtion�eld, with rational rank equal to the tran-sendene degree, with enter a point \atin�nity" on a projetive model yields a or-responding order domain in the funtion�eld.
� see arXiv:math.AC/0304292 for more details.
� In partiular, applies to varieties of interestin oding theory (Hermitian hypersurfaes,Grassmannians, ag varieties, ... ) 91



Codes From Order DomainsTo onstrut odes from an order domain R =Fq[x1; : : : ; xt℄=I, generalize Goppa's onstru-tion:
� Let � be the ordered basis of R (orderedby � value, or equiv. w-weight) given bythe monomials in omplement of LT>(I)
� Let X = V (I), and X(Fq) = fP1; : : : ; Pngbe the set of Fq-rational points on X
� Let V` be the span of the �rst ` elementsof �
� Let ev : R! Fnq : ev(f) = (f(P1); : : : ; f(Pn))
� Get odes E` = ev(V`), C` = Ev?̀. 92



Codes From Order Domains, ont.
� Results of O'Sullivan ) many features ofone-point Goppa odes generalize to theseodes from all order domains: Good boundson minimum distane of C` odes (Feng-Rao-Duursma) tied to an eÆient deod-ing algorithm (B-M-S)
� Constrution of good odes by this methodstill requires �nding X with many Fq-rationalpoints, good minimum distane properties,...
� On the other hand, there is the possibil-ity of exploiting known higher-dimensionalvarieties of interest.
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Final ExampleConsider the Hermitian surfae:H = V (Xq+10 +Xq+11 +Xq+12 �Xq+13 )in P3 over the �eld Fq2.
� V1 = V (X0) is a smooth Hermitian urveon H
� V2 = f(0 : 1 : Æ : 0)g is a point on V1 ifÆq+1 = �1.
� From standard onstrution of ompositedivisorial valuations orresponding to agsof subvarieties, we get an order domainstruture on the ring L(1V1) on H (thesubring of the funtion �eld onsisting offuntions with poles only along V1 (arbi-trary order). 94



Hermitian Surfae Codes
� Can also derive expliit presentation as de-formation of the tori algebra for� = h(1; q); (1; q+1); (1;0)i
� H has (q2+1)(q3+1) Fq2-rational points,of whih q3+1 lie on the plane setion V1.) we get generalized Goppa odes from Hwith n= q2(q3+1) = q5+ q2.
� With `= 4, for instane, evaluating 1; X1; X2; X3yields E4 ode with k = 4 and d = q5 � q3(maximum number of zeroes is (q+1)q2 =q3+ q2).
� With q = 2, d = 25 � 23 = 24. (Bestknown ode with n = 36; k = 4 over F4has d = 25.) 95



Conlusion
� Ironially, when order domains were intro-dued by H�holdt, van Lint, and Pellikaan,their goal was to \take the (hard) alge-brai geometry out of the theory of Goppaodes" (!)
� As it turns out, their synthesis of that the-ory has made it possible to use even moreommutative algebra and algebrai geome-try to onstrut new examples of error on-trol odes, generalize the existing deodingalgorithms, et.
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x6. The BMS Deoding Algo-rithmBerlekamp-Massey-Sakata algorithm applies toduals of evaluation odes from order domains(and similar m-dimensional yli odes).Can formulate it
� \internally" in R �= Fq[x1; : : : ; xt℄=I (approahin leture notes), or
� \externally" in polynomial ring Fq[x1; : : : ; xt℄.

We'll take seond approah here (and onsidera very idealized version of the deoding prob-lem that puts some of the ompliating fea-tures in the bakground { indiate how thoseare addressed at end.) 97



Set-upIn x5, the evaluation ode E` was de�ned tobe the image ofevS : L` ! Fnqf 7! (f(P1); : : : ; f(Pn));where S = fP1; : : : ; Png= the Fq-rational pointsof V(I) and L` is the Fq-span of the �rst ` el-ements of the ordered basis � for R.The dual ode is Ca = E?a . Codewords of Eafurnish parity hek equations for the ode-words of Ca: For y 2 Fnq ,y 2 Ca , hy; ev(f)i = nXj=1 yjf(Pj) = 0; all f 2 L`:
98



SyndromesAnalogs of the syndromes used in x4 for deod-ing Reed-Solomon odes. One way to pak-age: syndrome mapping assoiated to y 2 Fnq .Sy : Fq[x1; : : : ; xt℄ ! Fqf 7! nXj=1 yjf(Pj)
If x 2 Ca is sent and y = x+ e is reeived, anuse Se(f) to orret.Sy(f) = Sx(f) + Se(f) = Se(f)for all f 2 La.
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Deoding
� Components of vetors ; e; y are indexedby the Fq-rational points of X, in partiulare = (eP : P 2 X(Fq)) (X = V(I) frompresentation of R).
� The error vetor e is determined by loa-tions of the nonzero entries $ a subset ofX(Fq), and the error values eP 6= 0.
� Strategy: Determine the error-loator idealIe =ff 2 Fq[x1; : : : ; xt℄ : f(P) = 0 if eP 6= 0g
� In fat, BMS produes a Gr�obner basis G=fg1; : : : ; gkg for Ie with respet to the order> used for the presentation of R. 100



Syndrome SeriesAnother way to pakage the syndromes: Givene, and u 2 Zt�0 (t from pres'n of R as a quotientof a polynomial ring), we letEu = he; ev(xu)i =XP ePxu(P)be the syndromes of the error vetor.De�ne: Se = Xu�0Eux�uin T = Fq[[x�11 ; : : : ; x�1s ℄℄.Also let S = Fq[x1; : : : ; xt℄.
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Algebrai ContextElements of T at as linear funtionals on S.Let A = Pu aux�u 2 T and B = Pv bvxv 2 S.Then A(B) 2 Fq is the degree 0 part of theprodut: A(B) =Xu aubu:
T also has the struture of S-module aord-ing to the following produt operation: if A;Babove and C = Pw wxw, then (C � A)(B) =A(CB).For monomials: x� 2 S, x�� 2 T , thenx� � x�� = (x��� if in T0 otherwise(extend by linearity).(Same as one version of the theory of dualityand Maaulay inverse systems. In fat T isthe linear dual spae of S, under the pairingde�ned above.) 102



The Key Equation for C`Theorem 8 Let Se be as above. Then f 2 Ieif and only if(KE) f � Se = 0:
proof: Let f = Pm fmxm. Then

f � Se = (Xm fmxm) � (Xu�0Eux�u)= Xr�0(Xm fmEm+r)x�r
Hene f � Se = 0 , Pm fmEm+r = 0 for allr � 0.
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Proof, ont.By the de�nition of the Eu,
Xm fmEm+r = Xm 0�fmXP ePxm+r(P)1A

= XP ePxr(P) Xm fmxm(P)!= XP ePxr(P)f(P)
If f 2 Ie, then sum is zero for all r � 0, sof � Se = 0. Conversely, if f � Se = 0, thenXP ePf(P)xr(P) = 0for all r � 0. Hene ePf(P) = 0 for all P , sof 2 Ie.// 104



Idealized Version of DeodingSuppose we (somehow) knew the full syndromeseries Se.Note: in atual deoding, we only know thetrunation ontaining terms Euxu orrespond-ing to basis xu of L`. But beause of equationsxqi � xi = 0 over Fq, a �nite initial segment de-termines the rest (in fat Se represents a ratio-nal funtion of the xi as was true in RS asein x4).From duality setup, the S-submodule of T gen-erated by Se ontains all the information neededto reover Ie, and here's one way to do it!Same approah ould also be used for RS de-oding (gives version of Berlekamp-Massey).105



Deoding algorithm, (VERY) rudi-mentary versionAlgorithm.Input: Se, monomial order > on Sompatible with order funtion in ROutput: G = Gr�obner basis for Ie,B = monomial basis for S=Ie.Initialize: G := fg;B := f1g;List := fL0 := x0 � Segfor monomials x� in > order doL� := x� � Seif fL�g [ List linearly dependent thenG := G [ fx�+P� �x�gelseB := B [ fx�g;List := List [ fx�Seg
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Comments
� Reason this works: (P �x�) � Se = 0 2 Tis equivalent to P �x� 2 Ie by theorem on(KE)
� Experiened \Gr�obnerians" will reognizethe outline of Buhberger-M�oller, or FGLMhere. BMS is in same family of algorithms,as Teo Mora has observed(!)
� Deliberately vague about stopping riteria.After a �nite number of steps B will stabi-lize at size wt(e)
� \Real" BMS algorithm is more eonomi-al in that it only stores a set of maximalelements for B and minimal elements foromplement of B, updates those as it pro-eeds 107



Further Comments� But, main simpli�ation here is atually theassumption that full Se is known (not justthe trunation).� In \real" BMS algorithm, this is handledby an ingenious idea of Feng and Rao.
� Additional terms in Se are omputed asneeded
� Uses a \majority voting" idea to determinesyndrome values not known diretly fromreeived word. See referenes for the de-tails here(!)
� Also means that elements of the Gr�obnerbasis \in progress" might be modi�ed asthe algorithm proeeds and more terms addedto Se. 108



Final ExampleFor our �nal example we take the ode C5 =E?5 from the order domainR �= F4[x; y℄=hx3+ y2+ yias in x5 (the Hermitian urve over F4). C5 hasparameters [n; k; d℄ = [8;3;5℄.As above we will assume the full Se is knownfor some error of weight � 2. Writing � for aprimitive element of F4, supposeSe = �+ �2x�1+ x�2+ �y�2+�x�3+ �2x�1y�2+ �y�3+x�2y�2+ �2x�1y�3+�x�3y�2+ x�2y�3+ �x�3y�3+ � � �
(Rest is determined from this via relations x4�x = y4 � y = 0.) 109



Example, ontinuedWe will use the >(2;3);lex order (x > y for thelex), so monomials will be proessed in the or-der:1 < x < y < x2 < xy < y2 < x3 < x2y < � � �
Already with 1 � Se and x � Se, we �nd a lineardependene:x � Se+ � � Se = 0 2 TSo we add x+ � to G.Next, y � Se and Se are linearly independent, sowe add y to B.With the next two monomials that are pro-essed: x2 and xy, we �nd onsequenes ofthe �rst relation added to G: x2+�2 (in har-ateristi 2!), and xy+ �y. 110



Example, ontinuedThese are added to G in the basi form of thealgorithm, though of ourse they are unnees-sary (will not be a part of a redued Gr�obnerbasis for Ie). Could avoid this by only usingmonomials that are not multiples of leadingterms of elements of G already found.With y2, we �nd a new relation:(y2+ y+1) � Se = 0 2 TSo y2+ y+1 is also inserted in G.In fat, we have found the Gr�obner basis of Ieat this point: fx+ �; y2+ y+1gError loations are the solutions of these:P = (�;�); (�;�2)Then determine error values by generalized For-ney formulas! 111


