MATH 392 - Seminar in Computational Commutative Algebra
Problem Set 3
Due: February 15, 2019

1. In the ring $\mathbb{Q}[x]$,
(a) Use the Euclidean algorithm for polynomials to compute the greatest common divisor of $f_{1}(x)=x^{3}+3 x^{2}-2$ and $f_{2}(x)=x^{4}-1$.
(b) Find polynomials $A(x)$ and $B(x)$ such that

$$
\operatorname{gcd}\left(f_{1}(x), f_{2}(x)\right)=A(x) \cdot f_{1}(x)+B(x) \cdot f_{2}(x)
$$

(c) Is $f(x)=x^{6}+7 x+1$ in the ideal $\left\langle f_{1}(x), f_{2}(x)\right\rangle$?
2. In class we mentioned that there is a big analogy between the algebra of the ring of integers \mathbb{Z} and algebra of the polynomial ring $k[x]$ in one variable over a field k because we have similar division algorithms in both. What should the analog of a prime number $p \in \mathbb{Z}$ be in the polynomial ring $\mathbb{Q}[x]$? Try to give a precise definition. One thing to be careful of: Nonzero constants $m / n \in \mathbb{Q}$ are also elements of $\mathbb{Q}[x]$ but they have multiplicative inverses: $(m / n) \cdot(n / m)=1$. This says you can always factor any nonzero constant out of the coefficients of a polynomial, for instance:

$$
3 x^{3}+4 x+1=3 \cdot\left(x^{3}+\frac{4}{3} x+\frac{1}{3}\right)=\frac{1}{7} \cdot\left(21 x^{3}+28 x+7\right),
$$

etc. But those kinds of factorization are not the "interesting" ones. An "interesting" factorization would be something like

$$
x^{2}-1=(x-1)(x+1) .
$$

From the text: Chapter 2, section 2/2, 7, 10, 11; Chapter 2, section 3/1, 9

