
Mathematics 392 – Seminar in Computational Commutative Algebra
Final Projects – Topics and Schedule

February 25, 2019

General Information

Recall from the course syllabus that one of the assignments for this seminar will be
a final project leading to a paper of about 15 pages and an oral presentation of about 25
minutes duration to the class. Several suggested topics are given below. All of them take
material we have learned in this course and extend it in new directions.

I will also be happy entertain any ideas you might have about designing a project topic of
your own. If there is some subject you are interested in where solving polynomial equations
or Gröbner basis techniques might come up, please do not hesitate to discuss it with me
and see if there is a possible project there.

You will work in pairs, or individually if you prefer, on these projects. If you need help
putting a group together, be sure to talk to me well before March 15. Once you identify
which topic you want to work, please immediately set to work to identify sources, starting
from the suggestions below. Ms. Merolli, our Science Librarian will be happy to help you
obtain materials through inter-library loan if you need that.

In working on this paper, you should follow the same procedures you would follow
in preparing a research paper for any other course, and of course the College Policy on
Academic Honesty applies here, as it does to all of your work. Your grade will depend on
the thoroughness of your research, the degree of independent thought about the subject
revealed through your work, the organization of the paper, and the quality of your writing
and oral presentation.

Your papers should use one side only of the sheet, double-spaced. Equations can be
entered by hand if necessary. You can also use the TeX/LaTeX mathematical typesetting
system (which is what I use for the handouts). See me for a tutorial on its use. Your paper
should include a bibliography listing all the sources you consulted. Direct quotations
should be identified with foot- or end-notes.

Schedule

Here are some important dates for the projects:

1. Friday, March 15 (or before) — Please inform me which topic you have chosen to
work on and who you will be working with. You can do this by sending me a short
email message, or by talking to me in person.

2. April 12 - April 19 — During this stretch of the semester, I would like to meet with
each group (during office hours, or whenever is convenient for you) to discuss your
progress on the project. Of course, you’re always welcome at other times too if you
need help.

3. April 29, May 1, May 3, May 6 — Oral presentations. We will schedule who goes
which day later in the semester.

4. Monday, May 6 — Final project papers due.
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Possible Project Topics

Important Note: I would prefer that only one group works on any one of the following
topics, unless the groups end up specializing in really different aspects of a topic with
several different possible directions.

1. Buchberger’s Criterion and Improvements to Buchberger’s Algorithm

For this project, the main goals would be:

• To learn and present the proof of Buchberger’s Criterion for Gröbner bases – that is
the statement that G is a Gröbner basis if and only if

S(gi, gj)
G
= 0

for all pairs gi, gj ∈ G with i 6= j.
• Then, to study some of the strategies that people have used to improve the rudimen-
tary form of the Buchberger algorithm that we discussed in class.

Some of the improvements that people have developed include strategies for ordering the
list of polynomials so that S-polynomials are more likely to reduce to zero, criteria for
detecting when remainder calculations are unnecessary (which can be a big time saver
– the most computationally intensive part of Buchberger’s algorithm is the remainder
calculations), and other types of “tweaks” and modifications.

If you want to delve even more deeply into this circle of ideas, another possible topic to
consider would be the recent work of other mathematicians such as Jean-Charles Faugère,
who have developed entirely different ways of computing Gröbner bases that can outper-
form any form of Buchberger (the “F4” and “F5” algorithms).

References

a) Start with Sections 2.6 and 2.9 of Ideals, Varieties, and Algorithms for the basics. A
number of references to original articles are given in Section 2.9

b) J.-C. Faugère, “A new efficient algorithm for computing Grobner bases (F4).” Journal
of Pure and Applied Algebra, 139 (1999), 61–88 (in Science Library)

c) The F4 algorithm is also discussed in Chapter 10 of Ideals, Varieties, and Algorithms.

2. The FGLM Gröbner Basis Conversion Algorithm

Because lex Gröbner bases are so useful for elimination of variables, having efficient
methods to compute them is a topic of major interest. Unfortunately, the very properties
that make lex Gröbner bases so useful also make them very difficult to compute in many
cases. So, instead of trying to compute them directly via Buchberger’s algorithm, an
alternate strategy is to compute a Gröbner basis with respect to some “easier” order first
(usually grevlex), then convert the the grevlexGröbner basis to the desired lex Gröbner basis
by some other transformations. The first published Gröbner basis conversion algorithm
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was described by Faugère, Gianni, Lazard, and Mora and described in a joint paper by
those four authors. As a result, it is called the “FGLM” algorithm. Mathematicians always
name things after their inventors (or is it discoverers?).

The basic form of the algorithm works for a zero-dimensional ideal I. For ideals I in
Q[x1, . . . , xn], for example, this condition means that the set of points in V(I) is finite,
even if we allow solutions that have components in the algebraically closed field C. If you
choose this project, you would learn how and why this method works, and present some
examples. Then, you could either:
a) Implement the FGLM algorithm (converting to a lex order) in the Maple programming

language, test it on examples, see how your implementation performs relative to the
fglm command in the Groebner package, etc. or

b) Think about whether FGLM can be extended to ideals that are more general than
0-dimensional ideals - for instance, might there be some additional information about
the monomial order or the ideal that would allow the same kind of approach to be
used, even if the ideal is not 0-dimensional?

References

a) Chapter 5, section 3 of “IVA” for background about what it means for an ideal to be
zero-dimensional.

b) (“straight from the horse’s mouth”) Faugère, J.C., Gianni, P., Lazard, D., and Mora,
T. “Efficient Computation of Zero-dimensional Gröbner Bases by Change of Order-
ing,” Journal of Symbolic Computation 16 (1993), 329-344 (in Science Library).

c) Chapter 2, §3 of Cox, Little, O’Shea Using Algebraic Geometry
d) Becker, T. and Weispfenning, V. Gröbner Bases, Chapter 9, §1.

3. The Gröbner Fan of an Ideal

This topic would be best for a group who wanted to gain a deeper theoretical un-
derstanding of the different Gröbner bases for a given ideal (i.e. what happens when you
change the monomial ordering, and what all of the possibilities are). One way to make this
precise is to consider the “weight orders” >u,σ from Problem 10 in Section 2.4 of “IVA.”
Given a vector u and another monomial order >σ to break ties, we can define

xα >u,σ xβ ⇔

{

u · α > u · β or
u · α = u · β and xα >σ xβ

In fact, given an ideal I, every possible Gröbner basis can be obtained using one of these(!)
Suppose we are interested in studying a particular ideal I and all of its different possible
Gröbner bases. The basic idea here is that “most” weight vectors u will pick out a unique
leading term of highest weight in each of the elements of the given ideal I. The set of
weight vectors that select the same leading terms (for all elements of I) forms a polyhedral
cone in Rn – a set closed under positive scalar multiples, and with boundary defined by a
finite collection of hyperplanes. The collection of all these cones is called the Gröbner fan
of the ideal. The first main goal of this project would be to work through and present a
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proof that the Gröbner fan of every ideal consists of a finite number of these cones. Then
you could consider one or more of the following open-ended questions: What does the
Gröbner fan of the ideal of the twisted cubic in k3 look like? What about the ideals of the
parametric curves α(t) = (t, tn, tm) for m > n ≥ 2? How do you determine the Gröbner
fan of an ideal I in general? Is it possible to find a finite set of polynomials that is a
Gröbner basis for an ideal I with respect to all monomial orders simultaneously? How?

References

a) (“straight from the horse’s mouth” again) Mora, T. and Robbiano, L. “The Gröbner
Fan of an Ideal”, in: Computational Aspects of Commutative Algebra, L. Robbiano,
ed. (in Science Library)

b) Also see Chapter 8, section 4 of Cox, Little, O’Shea, Using Algebraic Geometry, 2nd
ed.

4. An Application – Conformations of Cyclic Molecules

This topic would introduce you to an application of Gröbner bases, resultants, etc. in
the area of computational chemistry. A simplified model for cyclic molecules like cyclohex-
ane: C6H12 (and “cyclo-n-ane” CnH2n more generally) is to ignore the hydrogen atoms
attacted to the cyclic “backbone” of the molecule and translate the minimum energy con-
straints that would describe the physically observable forms of the molecule into geometric
constraints on the lengths of the bonds between the carbons and the bond angles at each
carbon atom. This leads to a system of algebraic equations that describe the possible con-
formations or geometric forms for molecules of the given type. (For example, cyclohexane
comes in both “boat” and “chair” conformations; the difference between these is described
by different values for two angles between planes formed by triples of carbon atoms.) So
no specific knowledge of chemistry is necessary to work on this topic – the chemistry is
converted into questions in pure geometry and algebra!

The equations are sufficiently complicated, though, that some clever Gröbner tech-
niques are necessary to solve them. For this project, you would first work through the
geometry of the cyclic 6-atom molecules, investigate their possible conformations using
“whatever methods work” to solve the systems of equations. Then the main focus of the
project would be to study the analogous questions for 7-atom cyclic molecules (cyclohep-
tane, for instance).

Reference

a) Emiris, I. and Mourrain, B. “Computer Algebra Methods for Studying and Computing
Molecular Conformations” Algorithmica, Special Issue on Algorithms for Computa-
tional Biology, 25 (1999).

b) also see: von zur Gathen, J. and Gerhard, J. Modern Computer Algebra, section 24.4.

5. A “Pure” Topic – Invariant Theory of Finite Groups and Molien’s Theorem
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Note: This topic is suitable only for people who have taken or are taking Modern
Algebra 1.

A finite matrix group is a finite subgroup of the group GL(n, k) of invertible n × n

matrices with entries in the field k. Each element A of a matrix group G also acts on the
polynomial ring k[x1, . . . , xn] via f(x) 7→ f(A · x). We say that f ∈ k[x1, . . . , xn] is an
invariant of G if f(A · x) = f(x) for all A ∈ G. For example, the 6 matrices

I =





1 0 0
0 1 0
0 0 1



 , S =





0 0 1
1 0 0
0 1 0



 , S2 =





0 1 0
0 0 1
1 0 0





T12 =





0 1 0
1 0 0
0 0 1



 , T13 =





0 0 1
0 1 0
1 0 0



 , T23 =





1 0 0
0 0 1
0 1 0



 .

form a subgroup G of GL(3,Q) (isomorphic to the symmetric group on 3 letters). The
polynomials

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3

are invariants of G, and indeed, every polynomial invariant of G can be expressed as a
polynomial expression g(σ1, σ2, σ3). Invariant theory is the study of the structure of the
invariants of matrix groups such as this. It was a very “hot topic” in 19th century math-
ematics and it has a number of important applications. But eventually the computations
that people wanted to carry out essentially became too difficult to do by hand, and at the
same time mathematics as a whole moved in a much more abstract direction. Gröbner
basis methods (and other techniques from computational algebra) have made possible a
resurgence of interest and renewed progress in invariant theory.

For this topic, you would learn about the basic ideas involved (topics: Gröbner basis
test for subring membership, the Reynolds operator and Noether’s theorem which shows
finite generation of rings of invariants, Molien’s theorem) and study the rings of invariants
in some interesting cases. The goal would be to present a proof of Molien’s theorem, which
gives a truly beautiful and wonderful formula for computing the dimension of the vector
space of invariants ofG in the homogeneous polynomials of degree t, for all t simultaneously.
We write SG

t for this space of invariants (S = k[x1, . . . , xn] is the polynomial ring G acts
on; St is the vector subspace of homogeneous polynomials of degree t). Then Molien’s
theorem says:

∞
∑

t=0

dimC(S
G
t )ut =

1

|G|

∑

g∈G

1

det(I − ug)
.

References

a) IVA, Chapter 7.
b) Sturmfels, Algorithms in Invariant Theory, Chapters 1 and 2.
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c) Cox, Little, O’Shea, Using Algebraic Geometry, Chapter 6 for background needed for
Molien’s Theorem.

6. A More Applied Topic – Mechanical Linkages

In mechanical engineering, robotics, etc. an important area of the study is the motions
of mechanical linkages – collections of rigid segments joined by joints of various types.
(For example, simple planar linkages would have rigid segments of fixed length, joined by
revolute joints.) We will have looked at a few examples of how varieties and Gröbner bases
can be used to study questions about linkages already in the seminar. Several further
questions could form the basis of interesting projects here.

A) To start, the students would work out the trajectory of a marked point on a general
“four-bar” linkage (these are called Watt curves, after James Watt, the inventor of the
steam engine – see below) to investigate questions like: What kinds of curves can you get
here by changing the lengths of the segments in the linkage, etc.? Then, a 3-RPR parallel
manipulator is a planar robot linkage consisting of three “arms” each fixed at one end with
a revolute joint; each containing a prismatic joint, and each attached via a second revolute
joint to one common end-effector. A question for which no really good general answer is
known at present is: How can we determine the maximal workspace of the robot – the set
of all points reachable by the end-effector, given the locations of the fixed ends of the arms,
the minimum and maximum lengths of the prismatic joints, etc.? This is a good problem,
and it can be attacked by Gröbner basis methods!

B) Another, more mathematically-oriented, question here is as follows. The original in-
terest in linkages started in the 19th century with the invention of steam engines for farm
implements, manufacturing, locomotives, etc. One of the early questions in the subject
was: How can a linkage be constructed to “turn circular motion into straight-line motion”?
This was eventually solved by a French engineer named Peaucellier. Another well-known
mathematician of the time, A. Kempe, studied linkages in great detail. (He also published
an incorrect proof of the 4-color theorem!) Kempe sketched a proof of a theorem that
says that every bounded portion of every variety V(f(x, y)) in R2 can be “drawn” by
following the trajectory of some point in a suitable1 mechanical linkage (!) For this topic,
the students would learn the ideas behind Kempe’s proof, which gives (in principle) a
method to synthesize a linkage to draw an arc of any given variety, given the polynomial
equation f(x, y) = 0. One unfortunate aspect of Kempe’s approach is that the linkages
he would find to construct even simple curves like ellipses are extremely complicated. Try
one to see what I mean! His approach yields an existence proof for the linkage. It is far
from a practical construction of a minimal (or close-to-minimal) linkage for a given curve.
Another possible part of the project would be to try to address the following questions:
Are there simplifications that are possible here? Are there better upper bounds for the
number of segments in a linkage one would need to draw a general curve of a given degree.

References
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1) IVA, Chapter 6 for general information on applications of Gröbner bases to questions
in geometry of robots, etc.

For Topic A:
2) Merlet, J.-P. “Some Algebraic geometry problems arising in the field of mechanism

theory, in: Algorithms in Algebraic Geometry and Applications Birkhäuser Progress
in Mathematics 143.

For Topic B (unfortunately, neither of these are especially easy to read):
3) King, H. “Planar Linkages and Algebraic Sets”, preprint 1998
4) Kapovich, M. and Millson, J. “Universality Theorems for configuration spaces of pla-

nar linkages”, Topology 41 (2002), 1051–1107.

Very brief introductions to the general ideas can be found in:
5) Courant, R. and Robins H. What is Mathematics?
6) Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination.

7. A More Applied Topic – Algebraic Statistics

The rapidly developing field of algebraic statistics is based on the idea that many statistical
models (i.e. families of probability distributions) for discrete data can be seen as algebraic
varieties. Moreover the geometry of those varieties determines the behavior of parameter
estimation and statistical inference procedures. A typical example is the family of binomial
distributions. The probability that a binomial random variable X (based on n trials with
success probability θ on each trial) takes value k ∈ {0, 1, . . . , n} is

pk = P (X = k) =

(

n

k

)

θk(1− θ)n−k.

Viewing these as components of a curve parametrized by real θ satisfying 0 ≤ θ ≤ 1, we
have a subset of the real points of a rescaled rational normal curve (the natural general-
ization of a twisted cubic curve to higher dimensions) of degree n lying in the hyperplane
defined by the equation p0 + · · ·+ pn = 1. The recent book by Seth Sullivant, Algebraic
Statistics (AMS, 2018) is a good general reference. There are several possible ways to think
about pursuing this topic:

(A) Given some number of observations we might want to estimate θ using maximum like-
lihood estimation, and this leads to a constrained optimization problem involving polyno-
mial equations. Thinking about practical methods for doing this leads to some interesting
questions. A good introduction to the basics of model construction and experimental de-
sign can be found in Pistone 2001 (see the bibliography of IVA starting on page 627 for
this and the other references here). A discussion of algebraic techniques for maximum
likelihood estimation appears in Chapter 2 of Drton 2009.

(B) One of the main applications of these ideas so far has been in genomics and bioinformatics—
the study of the information contained in DNA sequences. For students with the requisite
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background (a basic familiarity with DNA structure and some elementary genetics would
suffice), the Jukes-Cantor models studied in Part I of Pachter 2005 could form the basis
of a more extensive project.

(C) A different sort of application to design of experiments can be found in Chapter 4 by
Kehrein, Kreuzer, and Robbiano in Dickenstein 2005. This draws on material on border
bases as well (see p. 625 in IVA) – a sort of complement to the theory of Gröbner bases
for zero-dimensional ideals.
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