MATH 392 -- Seminar in Computational Commutative Algebra

Pappus' Theorem -- April 17, 2019
Theorem. Let A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ be two collinear triples of points in the plane, then the three points

$$
P=A B^{\prime} \cap A^{\prime} B, Q=A C^{\prime} \cap A^{\prime} C, R=B C^{\prime} \cap B^{\prime} C
$$

are collinear.

To translate this to polynomial equations, we introduce coordinates as follows. Let's make the line containing the points A, B, C the line $V(y)$. Then we can take A^{\prime}, B^{\prime} arbitrary and add a hypothesis to make C^{\prime} lie on the line containing A^{\prime} and B^{\prime} :

$$
\begin{aligned}
& A=(0,0), B=\left(u_{1}, 0\right), C=\left(u_{2}, 0\right), \\
& A^{\prime}=\left(u_{3}, u_{4}\right), B^{\prime}=\left(u_{5}, u_{6}\right), C^{\prime}=\left(x_{1}, x_{2}\right)
\end{aligned}
$$

The hypotheses are first, C^{\prime} is collinear with A^{\prime} and B^{\prime} :

$$
\left[\begin{array}{l}
>h_{1}:=\left(x_{1}-u_{3}\right) \cdot\left(x_{2}-u_{6}\right)-\left(x_{1}-u_{5}\right) \cdot\left(x_{2}-u_{4}\right) \\
h_{1}:=\left(x_{1}-u_{3}\right)\left(x_{2}-u_{6}\right)-\left(x_{1}-u_{5}\right)\left(x_{2}-u_{4}\right) \tag{1}
\end{array}\right.
$$

Then we introduce the intersection points P, Q, R as above

$$
P=\left(x_{3}, x_{4}\right), Q=\left(x_{5}, x_{6}\right), R=\left(x_{7}, x_{8}\right) .
$$

So $P \in A B^{\prime}$ and $P \in A^{\prime} B$:

$$
\begin{align*}
& {\left[>h_{2}:=x_{4} \cdot u_{5}-x_{3} \cdot u_{6} ;\right.} \\
& {\left[\begin{array}{rr}
\\
> & h_{3}:=\left(x_{4}-u_{4}\right) \cdot\left(x_{3}-u_{1}\right)-u_{6} x_{3} \cdot\left(x_{3}-u_{3}\right) ; \\
& h_{3}:=\left(x_{4}-u_{4}\right)\left(x_{3}-u_{1}\right)-x_{4}\left(x_{3}-u_{3}\right)
\end{array}\right.} \tag{2}
\end{align*}
$$

[Then $Q \in A C^{\prime}$ and $Q \in A^{\prime} C$:

$$
\begin{align*}
& >h_{4}:=\left(x_{6}-x_{2}\right) \cdot x_{5}-\left(x_{5}-x_{1}\right) \cdot x_{6} ; \\
& h_{4}:=\left(x_{6}-x_{2}\right) x_{5}-\left(x_{5}-x_{1}\right) x_{6} \tag{4}\\
& {\left[\begin{array}{rr}
> & h_{5}:=\left(x_{6}-u_{4}\right) \cdot\left(x_{5}-u_{2}\right)-x_{6} \cdot\left(x_{5}-u_{3}\right) ; \\
h_{5}:=\left(x_{6}-u_{4}\right)\left(x_{5}-u_{2}\right)-x_{6}\left(x_{5}-u_{3}\right)
\end{array}\right.}
\end{align*}
$$

[Finally, $R \in B C^{\prime}$ and $R \in B^{\prime} C$:
「> $h_{6}:=x_{8} \cdot\left(x_{7}-x_{1}\right)-\left(x_{8}-x_{2}\right) \cdot\left(x_{7}-u_{1}\right)$;
[The conclusion is that P, Q, R are collinear

$$
\left[\begin{array}{r}
>g:=\left(x_{8}-x_{6}\right) \cdot\left(x_{7}-x_{3}\right)-\left(x_{8}-x_{4}\right) \cdot\left(x_{7}-x_{5}\right) ; \\
g:=\left(x_{8}-x_{6}\right)\left(x_{7}-x_{3}\right)-\left(x_{8}-x_{4}\right)\left(x_{7}-x_{5}\right) \tag{8}
\end{array}\right.
$$

[> with(Groebner) :
> Htilde $:=\left[\operatorname{seq}\left(h_{i}, i=1 . .7\right), 1-g \cdot y\right]$;
Htilde $:=\left[\left(x_{1}-u_{3}\right)\left(x_{2}-u_{6}\right)-\left(x_{1}-u_{5}\right)\left(x_{2}-u_{4}\right), u_{5} x_{4}-u_{6} x_{3},\left(x_{4}-u_{4}\right)\left(x_{3}\right.\right.$
$\left.-u_{1}\right)-x_{4}\left(x_{3}-u_{3}\right),\left(x_{6}-x_{2}\right) x_{5}-\left(x_{5}-x_{1}\right) x_{6},\left(x_{6}-u_{4}\right)\left(x_{5}-u_{2}\right)-x_{6}\left(x_{5}\right.$
$\left.-u_{3}\right), x_{8}\left(x_{7}-x_{1}\right)-\left(x_{8}-x_{2}\right)\left(x_{7}-u_{1}\right), x_{8}\left(x_{7}-u_{5}\right)-\left(x_{8}-u_{6}\right)\left(x_{7}-u_{2}\right)$,
$\left.-\left(\left(x_{8}-x_{6}\right)\left(x_{7}-x_{3}\right)-\left(x_{8}-x_{4}\right)\left(x_{7}-x_{5}\right)\right) y+1\right]$
$\left[>\right.$ xvars $:=\left[\operatorname{seq}\left(x_{j}, j=1 . .8\right), y\right]$;

$$
\begin{equation*}
\text { xvars }:=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, y\right] \tag{10}
\end{equation*}
$$

[> Basis(Htilde, tdeg(op(xvars)));
[Note the u-variables are omitted here in the specification of the grevlex order. Hence the conclusion follows generically from the hypotheses over C in this case. We have the same sort of behavior that we saw previously.

The conclusion is "almost" in the ideal generated by the hypotheses in the polynomial ring in both x - and u-variables, but there are "degenerate" configurations too introducing reducibility(!)
[> $H:=\left[\operatorname{seg}\left(h_{i}, i=1 . .7\right)\right]$;
$H:=\left[\left(x_{1}-u_{3}\right)\left(x_{2}-u_{6}\right)-\left(x_{1}-u_{5}\right)\left(x_{2}-u_{4}\right), u_{5} x_{4}-u_{6} x_{3},\left(x_{4}-u_{4}\right)\left(x_{3}-u_{1}\right)\right.$
$-x_{4}\left(x_{3}-u_{3}\right),\left(x_{6}-x_{2}\right) x_{5}-\left(x_{5}-x_{1}\right) x_{6},\left(x_{6}-u_{4}\right)\left(x_{5}-u_{2}\right)-x_{6}\left(x_{5}\right.$
$\left.\left.-u_{3}\right), x_{8}\left(x_{7}-x_{1}\right)-\left(x_{8}-x_{2}\right)\left(x_{7}-u_{1}\right), x_{8}\left(x_{7}-u_{5}\right)-\left(x_{8}-u_{6}\right)\left(x_{7}-u_{2}\right)\right]$
(13)
[
[Here is one of the Grobner basis, in factored form, and the conclusion:
[> factor (HBasis[30]);

$$
-u_{4} u_{6}\left(x_{3} x_{6}-x_{3} x_{8}-x_{4} x_{5}+x_{4} x_{7}+x_{5} x_{8}-x_{6} x_{7}\right)\left(x_{4} u_{3}-u_{4} x_{3}\right)
$$

[> expand (g);

$$
\begin{equation*}
x_{3} x_{6}-x_{3} x_{8}-x_{4} x_{5}+x_{4} x_{7}+x_{5} x_{8}-x_{6} x_{7} \tag{15}
\end{equation*}
$$

$\bar{\Gamma}>\operatorname{GenHBasis}:=\operatorname{Basis}(H, \operatorname{tdeg}(\operatorname{seq}(x[j], j=1 . .8)))$;

$$
\left.\begin{array}{|c}
\text { GenHBasis }:=\left[u_{6} x_{7}+\left(u_{2}-u_{5}\right) x_{8}-u_{2} u_{6}, u_{4} x_{5}+\left(u_{2}-u_{3}\right) x_{6}-u_{4} u_{2},\left(u_{1} u_{6}\right.\right. \\
\left.\quad-u_{3} u_{6}+u_{5} u_{4}\right) x_{4}-u_{1} u_{4} u_{6},\left(u_{1} u_{6}-u_{3} u_{6}+u_{5} u_{4}\right) x_{3}-u_{1} u_{4} u_{5}, x_{1}\left(u_{4}\right. \\
\left.-u_{6}\right)+\left(-u_{3}+u_{5}\right) x_{2}+u_{3} u_{6}-u_{5} u_{4}, x_{6} x_{8}\left(u_{1} u_{2} u_{4} u_{6}-u_{1} u_{2} u_{6}^{2}+u_{1} u_{3} u_{6}^{2}\right. \\
-u_{1} u_{4} u_{5} u_{6}-u_{2} u_{3} u_{4} u_{6}+u_{2} u_{3} u_{6}^{2}+u_{2} u_{4}^{2} u_{5}-u_{2} u_{4} u_{5} u_{6}-u_{3}^{2} u_{6}^{2} \\
\left.+2 u_{3} u_{4} u_{5} u_{6}-u_{4}^{2} u_{5}^{2}\right)+\left(-u_{1} u_{3} u_{4} u_{6}^{2}+u_{1} u_{4}^{2} u_{5} u_{6}+u_{2} u_{3} u_{4} u_{6}^{2}-u_{2}\right. \\
\left.u_{4}^{2} u_{5} u_{6}\right) x_{6}+\left(-u_{1} u_{2} u_{4}^{2} u_{6}+u_{1} u_{2} u_{4} u_{6}^{2}-u_{2} u_{3} u_{4} u_{6}^{2}+u_{2} u_{4}^{2} u_{5} u_{6}\right) x_{8}, \\
x_{2} x_{8}\left(u_{4} u_{2}-u_{2} u_{6}+u_{3} u_{6}-u_{5} u_{4}\right)+\left(u_{1} u_{4} u_{6}-u_{1} u_{6}^{2}-u_{4} u_{2} u_{6}+u_{2} u_{6}^{2}\right) x_{2} \\
+\left(-u_{1} u_{4} u_{6}+u_{1} u_{6}^{2}-u_{3}^{2} u_{6}^{2}+u_{5} u_{4} u_{6}\right) x_{8}, x_{2} x_{6}\left(u_{4} u_{2}-u_{2} u_{6}+u_{3} u_{6}\right. \\
\left.-u_{5} u_{4}\right)+\left(-u_{2} u_{4}^{2}+u_{4} u_{2} u_{6}\right) x_{2}+\left(-u_{3} u_{4} u_{6}+u_{4}^{2} u_{5}\right) x_{6}
\end{array}\right]
$$

