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4.3/6. Let I1, . . . , Ir and J be ideals in k[x1, . . . , xn].
a. ⊆: Let f ∈ (I1 + I2)J . Then by definition, f is a sum of terms of the form g · h where

g ∈ I1 + I2 and h ∈ J . Then by definition we have g = g1 + g2 with gi ∈ Ii, i = 1, 2.
By the distributive law, f is a sum of terms of the form g1h + g2h. Regrouping the
terms, we can write this sum as a sum of elements of I1J plus a sum of elements of
I2J . This shows f ∈ I1J + I2J .
⊇: Now assume that f ∈ I1J + I2J . Then f = g + h with g ∈ I1J and h ∈ I2J . But
note that I1 ⊆ I1+ I2 and I2 ⊆ I1+ I2. Hence g ∈ (I1+ I2)J and h ∈ (I1+ I2)J . This
implies f ∈ (I1 + I2)J as well, since this is an ideal, and hence closed under sums.

b. In office hours with a number of you, I suggested using a proof by induction on r ≥ 1
rather than plunging into a direct proof. That is certainly possible, although still
somewhat messy notationally. By far the slickest proof, however, comes by doing an
induction on m(!) taking r as fixed but arbitrary. Here is how it works. The base
case is m = 1, and then there is nothing to prove since I1 · · · Ir = I1 · · · Ir is obviously
true. Now assume that (I1 · · · Ir)m−1 = Im−1

1
· · · Im−1

r
, and consider (I1 · · · Ir)m. By

definition,
(I1 · · · Ir)m = (I1 · · · Ir)m−1(I1 · · · Ir)

= Im−1

1
· · · Im−1

r
I1 · · · Ir

= Im
1

· · · Im
r
.

We used the induction hypothesis to get from the first line to the second, and then
used the fact that the product in the polynomial ring is commutative and hence that
ideal products are also commutative.

Moral here: No one is going to give you a prize in mathematics for working harder than
you need to! A big part of mathematics is actually being lazy in creative ways(!)

8. See Maple worksheet printout attached.

9. First we want to show that
√
IJ =

√
I ∩ J for ideals in k[x1, . . . , xn] with k an arbitrary

field.
⊆: This follows immediately from a fact that we noted in class: IJ ⊆ I ∩ J . The
inclusion is then preserved under taking radicals.
⊇: If f ∈

√
I ∩ J , then there is some integer m ≥ 1 such that fm ∈ I∩J . This implies

fm ∈ I and fm ∈ J . But then f2m = fm · fm ∈ IJ and hence f ∈
√
IJ by definition.

It follows that
√
I ∩ J ⊆

√
IJ .

Then for the last parts of the question, let I = J = 〈x〉. It is easy to see that I, J are
radical ideals, but IJ = 〈x2〉 is not radical (because x ∈

√
IJ , but x /∈ IJ). Similarly,√

IJ =
√

〈x2〉 = 〈x〉. But this is different from
√
I
√
J = 〈x〉〈x〉 = 〈x2〉.

11. By the definition, ideals I, J in k[x1, . . . , xn] are comaximal if I + J = 〈1〉 =
k[x1, . . . , xn].
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a. We need to show that, under the assumption k = C, I, J are comaximal if and only
if V (I) ∩ V (J) = ∅.
⇒: If I, J are comaximal, then 1 ∈ I + J , so V (I + J) = ∅. But we also know
that V (I + J) = V (I) ∩ V (J) for all ideals, so then V (I) ∩ V (J) = ∅. (Note: This
implication did not use the hypothesis that k = C. It is actually true over any field
k.)
⇐: Now assume that V (I) ∩ V (J) = ∅. As in the other implication, this says V (I +
J) = ∅. But now since we are working over C, the Weak Nullstellensatz implies
I + J = C[x1, . . . , xn]. Hence I, J are comaximal.
This statement is not true without the assumption that k is algebraically closed.
For instance, if I = 〈x2 + 1〉 = J in R[x], then V (I) ∩ V (J) = ∅ since actually
V (I) = ∅ = V (J) already. But note that I + J = 〈x2 + 1〉 because ideals are closed
under sums. This is not the whole ring R[x] since, for instance 1, x /∈ 〈x2 + 1〉.

b. Now we assume that I, J are comaximal and we want to show IJ = I ∩ J .
⊆: This is always true as we noted above.
⊇: If I, J are comaximal, then there are f ∈ I and g ∈ J such that f + g = 1. Take
h ∈ I ∩J and multiply both sides of this equation by h: hf +hg = h. Since finI and
h ∈ J , the term hf ∈ IJ . Similarly since h ∈ I and g ∈ J , the term hg ∈ IJ . Since
IJ is an ideal, it is closed under sums, and this shows h ∈ IJ .
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