[> with(Groebner) :
 MATH 392 -- Seminar in Computational Commutative Algebra April 15, 2019

From plane Euclidean geometry, recall:
Theorem. The altitudes of a general triangle are concurrent (that is, all three altitudes meet at at one point, called the orthocenter of the triangle).

We can translate the hypotheses and conclusion of the theorem into polynomial equations by introducing coordinates like this:

- Place the vertices of the triangle at $A=(0,0), B=\left(u_{1}, 0\right), C=\left(u_{2}, u_{3}\right)$,
- Then construct the intersection points of the altitudes and the opposite sides:

$$
P=\left(x_{1}, x_{2}\right), Q=\left(x_{3}, x_{4}\right), R=\left(x_{5}, 0\right) .
$$

- Let $\mathrm{O}=\left(x_{6}, x_{7}\right)$ be the intersection of $A P$ and $B Q$.
- The hypotheses are that:
C, B, P are collinear ($\mathrm{h} _1$ below)
$A P$ is perpendicular to $B C$ ($\mathrm{h} _2$ below)
A, Q, C are collinear (h _3 below)
$B Q$ is perpendicular to $A C$ ($\mathrm{h}-4$ below)
$C R$ is perpendicular to $A B$ (h_5 below)
O is collinear with B, Q (h_6 below)
O is collinear with A, P (h_7 below)
- Then the conclusion says that $C O$ is the same as the altitude from C, so it is perpendicular to $A B$ (g below)
[> $h_{1}:=\left(x_{2}-u_{3}\right) \cdot\left(x_{1}-u_{1}\right)-x_{2} \cdot\left(x_{1}-u_{2}\right)$;

$$
\begin{equation*}
h_{1}:=\left(x_{2}-u_{3}\right)\left(x_{1}-u_{1}\right)-x_{2}\left(x_{1}-u_{2}\right) \tag{1}
\end{equation*}
$$

$>h_{2}:=x_{2} \cdot u_{3}-x_{1} \cdot\left(u_{1}-u_{2}\right)$;

$$
\begin{equation*}
h_{2}:=x_{2} u_{3}-x_{1}\left(u_{1}-u_{2}\right) \tag{2}
\end{equation*}
$$

$>h_{3}:=x_{4} \cdot\left(x_{3}-u_{2}\right)-x_{3} \cdot\left(x_{4}-u_{3}\right)$;

$$
\begin{equation*}
h_{3}:=x_{4}\left(x_{3}-u_{2}\right)-x_{3}\left(x_{4}-u_{3}\right) \tag{3}
\end{equation*}
$$

$>h_{4}:=x_{4} \cdot u_{3}-u_{2} \cdot\left(u_{1}-x_{3}\right) ;$

$$
\begin{equation*}
h_{4}:=x_{4} u_{3}-u_{2}\left(u_{1}-x_{3}\right) \tag{4}
\end{equation*}
$$

$>h_{5}:=u_{2}-x_{5} ;$

$$
\begin{equation*}
h_{5}:=u_{2}-x_{5} \tag{5}
\end{equation*}
$$

> $h_{6}:=\left(x_{3}-u_{1}\right) \cdot x_{7}-x_{4} \cdot\left(x_{6}-u_{1}\right)$;
$h_{6}:=\left(x_{3}-u_{1}\right) x_{7}-x_{4}\left(x_{6}-u_{1}\right)$
$\left\lceil>h_{7}:=x_{1} \cdot x_{7}-x_{2} \cdot x_{6} ;\right.$

$$
\begin{equation*}
h_{7}:=x_{1} x_{7}-x_{2} x_{6} \tag{7}
\end{equation*}
$$

$\left[>g:=x_{6}-u_{2} ;\right.$

$$
\begin{equation*}
g:=x_{6}-u_{2} \tag{8}
\end{equation*}
$$

(The conclusion could also be expressed by the same methods as above, but this is equivalent.)

We would say g follows directly from the hypotheses $h_{i} i=1, \ldots, 7$ if $g \in \sqrt{\left\langle h_{1}, \ldots, h_{7}\right\rangle}$
(since then $g \in I\left(V\left(h_{1}, \ldots, h_{7}\right)\right) \quad$ (Over C, these would be equal by the Nullstellensatz.)

Does this work here? We use the radical membership algorithm from p. 185 of (the 4th edition of) "IVA".
$>$ IdRad $:=\left[h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{7}, 1-g \cdot y\right] ;$
IdRad $:=\left[\left(x_{2}-u_{3}\right)\left(x_{1}-u_{1}\right)-x_{2}\left(x_{1}-u_{2}\right), x_{2} u_{3}-x_{1}\left(u_{1}-u_{2}\right), x_{4}\left(x_{3}-u_{2}\right)\right.$
$-x_{3}\left(x_{4}-u_{3}\right), x_{4} u_{3}-u_{2}\left(u_{1}-x_{3}\right), u_{2}-x_{5},\left(x_{3}-u_{1}\right) x_{7}-x_{4}\left(x_{6}-u_{1}\right), x_{1} x_{7}$ $\left.-x_{2} x_{6},-\left(x_{6}-u_{2}\right) y+1\right]$
= $>$ BRad :=Basis(IdRad, $\operatorname{tdeg}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, u[1], u[2], u[3], y\right)$);
BRad : $=\left[x_{5}-u_{2},-y u_{2}+y x_{6}-1, x_{4} u_{2}-x_{3} u_{3},-u_{1} u_{2}+u_{2} x_{3}+x_{4} u_{3},-u_{3} u_{1}\right.$
$+x_{2} u_{1}-x_{2} u_{2}+u_{3} x_{1}, x_{1} u_{1}-x_{1} u_{2}-x_{2} u_{3},-x_{4} u_{1}+u_{1} x_{7}-x_{3} x_{7}+x_{4} x_{6}$,
$-x_{1} x_{7}+x_{2} x_{6},-u_{3} u_{1}-x_{2} u_{2}+u_{3} x_{1}-x_{1} x_{4}+x_{2} x_{3}, y u_{1} x_{4}-y u_{1} x_{7}-y u_{3} x_{3}$
$+y x_{3} x_{7}-x_{4},-y u_{2} x_{2}+y x_{1} x_{7}-x_{2}, u_{1}^{2} u_{3}, u_{1} u_{3}^{2}+u_{1} u_{3} x_{4}+u_{2} u_{3} x_{2}-u_{3}^{2} x_{1}$,
$u_{1} u_{3} x_{3}+u_{2} u_{3} x_{1}+u_{3}^{2} x_{2}, u_{2} u_{3} x_{1}+u_{3}^{2} x_{2}+u_{3} x_{3} x_{6}+u_{3} x_{4} x_{7},-u_{1} u_{3} x_{6}$
$+u_{3} x_{1} x_{6}+u_{3} x_{2} x_{7}, u_{2} u_{3} x_{1}+u_{3}^{2} x_{2}+u_{3} x_{3}^{2}+u_{3} x_{4}^{2}, u_{3} x_{1} x_{3}+u_{3} x_{2} x_{4}$,
$-u_{2} u_{3} x_{1}-u_{3}^{2} x_{2}+u_{3} x_{1}^{2}+u_{3} x_{2}^{2}, y u_{1} u_{2} u_{3}+y u_{2} u_{3} x_{1}+y u_{3}^{2} x_{2}-y u_{3}^{2} x_{4}$
$+y u_{3} x_{4} x_{7}+x_{3} u_{3},-y u_{1} u_{2} u_{3}+y u_{2} u_{3} x_{1}+y u_{3} x_{2} x_{7}-u_{3} u_{1}+u_{3} x_{1}, u_{1} u_{2} u_{3}^{2}$
$+u_{2}^{2} u_{3} x_{2}-2 u_{2} u_{3}^{2} x_{1}-u_{3}^{3} x_{2}, u_{1} u_{3}^{3}+u_{2}^{2} u_{3} x_{1}+2 u_{2} u_{3}^{2} x_{2}-u_{3}^{3} x_{1}, u_{1} u_{2} u_{3} x_{6}$
$+u_{1} u_{3}^{2} x_{7}, u_{1} u_{3}^{3}+u_{2} u_{3}^{2} x_{2}+u_{2} u_{3} x_{2}^{2}-u_{3}^{3} x_{1}-u_{3}^{2} x_{1} x_{2}, u_{2} u_{3} x_{1} x_{2}+u_{3}^{2} x_{2}^{2}, y u_{1}$
$\left.u_{2}^{2} u_{3}+y u_{1} u_{3}^{2} x_{7}+u_{1} u_{2} u_{3}\right]$

Note we do NOT get [1] as we expected (the theorem is true!). What happened?
We can see by looking at a GB for the ideal generated by the hypotheses:

$$
\begin{align*}
& \mid>H B:=\operatorname{Basis}([h[1], h[2], h[3], h[4], h[5], h[6], h[7]], t \operatorname{deg}(x[1], x[2], x[3], x[4], \\
& x[5], x[6], x[7], u[1], u[2], u[3])): \\
& \text { for } i \text { to } \operatorname{nops}(H B) \text { do } \\
& \text { factor (HB[i]); } \\
& \text { end do; } \\
& x_{5}-u_{2} \\
& x_{4} u_{2}-x_{3} u_{3} \\
& -u_{1} u_{2}+u_{2} x_{3}+x_{4} u_{3} \\
& -u_{3} u_{1}+x_{2} u_{1}-x_{2} u_{2}+u_{3} x_{1} \\
& x_{1} u_{1}-x_{1} u_{2}-x_{2} u_{3} \\
& -x_{4} u_{1}+u_{1} x_{7}-x_{3} x_{7}+x_{4} x_{6} \\
& -x_{1} x_{7}+x_{2} x_{6} \\
& -u_{3}\left(u_{1} x_{3}-x_{3} x_{6}-x_{4} x_{7}\right) \\
& -u_{3}\left(u_{1} x_{6}-x_{1} x_{6}-x_{2} x_{7}\right) \\
& -u_{3}\left(u_{1} x_{3}-x_{3}^{2}-x_{4}^{2}\right) \\
& -u_{3}\left(x_{1} u_{2}+x_{2} u_{3}-x_{1}^{2}-x_{2}^{2}\right) \\
& u_{1} u_{3} x_{4}-u_{1} u_{3} x_{7}-u_{2} x_{2} x_{7}-u_{3} x_{1} x_{4}+u_{3} x_{1} x_{7}+u_{3} x_{2} x_{3}-x_{1} x_{4} x_{7}+x_{2} x_{3} x_{7} \\
& -u_{3} u_{1}\left(u_{1} u_{2}-u_{2} x_{6}-u_{3} x_{7}\right) \\
& -u_{1}^{2} u_{3}\left(u_{2}-x_{6}\right) \\
& -u_{3}\left(u_{1}^{2} x_{3}+u_{1} u_{3} x_{4}-u_{1} u_{3} x_{7}-u_{1} x_{4} x_{7}-u_{2}^{2} x_{1}-u_{2} u_{3} x_{2}-u_{2} x_{2} x_{7}+u_{3} x_{1} x_{7}\right) \\
& u_{3}\left(u_{1}^{2} x_{4}-u_{1}^{2} x_{7}-u_{1} u_{2} u_{3}-u_{1} u_{3} x_{3}+u_{1} x_{3} x_{7}-u_{2}^{2} x_{2}+u_{2} u_{3} x_{1}+u_{2} x_{1} x_{7}\right. \\
& \left.+u_{3} x_{2} x_{7}\right) \\
& -u_{3}\left(u_{1} u_{2} u_{3}+u_{1} u_{3} x_{3}+u_{2}^{2} x_{2}-u_{2} u_{3} x_{1}-u_{3} x_{1} x_{3}-u_{3} x_{2} x_{4}-x_{1} x_{3} x_{7}-x_{2} x_{4} x_{7}\right) \\
& -u_{3}\left(u_{1}^{2} u_{2}^{2}-u_{1} u_{2} u_{3}^{2}-u_{1} u_{2} u_{3} x_{7}-u_{2}^{3} x_{1}-2 u_{2}^{2} u_{3} x_{2}-u_{2}^{2} x_{2} x_{7}+u_{2} u_{3}^{2} x_{1}\right. \\
& \left.+2 u_{2} u_{3} x_{1} x_{7}+u_{3}^{2} x_{2} x_{7}\right) \\
& -u_{3}\left(u_{1}^{2} u_{2} u_{3}+u_{1} u_{2}^{2} u_{3}-u_{1} u_{3}^{2} x_{7}+u_{2}^{3} x_{2}-2 u_{2}^{2} u_{3} x_{1}-u_{2}^{2} x_{1} x_{7}-u_{2} u_{3}^{2} x_{2}\right. \\
& \left.-2 u_{2} u_{3} x_{2} x_{7}+u_{3}^{2} x_{1} x_{7}\right) \\
& u_{1}^{2} u_{3}\left(u_{1} u_{2}-u_{2}^{2}-u_{3} x_{7}\right) \\
& -u_{3}\left(u_{1}^{2} u_{2} u_{3}+u_{1} u_{2}^{2} u_{3}-u_{1} u_{3}^{2} x_{7}+u_{2}^{3} x_{2}-2 u_{2}^{2} u_{3} x_{1}-u_{2}^{2} x_{1} x_{2}-u_{2} u_{3}^{2} x_{2}-u_{2} u_{3}\right. \\
& \left.x_{2}^{2}-u_{2} u_{3} x_{2} x_{7}-u_{2} x_{2}^{2} x_{7}+u_{3}^{2} x_{1} x_{7}+u_{3} x_{1} x_{2} x_{7}\right) \\
& -u_{3}\left(u_{1} u_{2} u_{3}^{2}+u_{2}^{2} u_{3} x_{2}+u_{2}^{2} x_{2}^{2}-u_{2} u_{3}^{2} x_{1}-u_{2} u_{3} x_{1} x_{2}-u_{2} x_{1} x_{2} x_{7}-u_{3} x_{2}^{2} x_{7}\right) \tag{11}
\end{align*}
$$

The 11 th element of the GB is $-u_{1}^{2} u_{3}\left(u_{2}-x_{6}\right)$, which is a multiple of the conclusion,
but includes as a factor a monomial in the u-variables. Recall those are the coordinates of the arbitrary
points A, B, C-- the vertices of the triangle. What's going on here is that there are certain"degenerate"
configurations of those points for which we don't have an "honest triangle," but which still give solutions
of the polynomial form of the geometric hypotheses:

- The equation $u_{-} 1=0$ means $B=A$;
- The equation $u_{-} 3=0$ means A, B, and C all lie along the line $y=0$

The idea is that we want to remove those degenerate configurations from consideration! A first thing to do to accomplish that is to treat the u-variables as invertible. In algebraic terms, we do the GB computation over a different coefficient field, namely $<\left(u_{-} 1, u_{-} 2, u_{-} 3\right)$ or $\mathrm{C}\left(u_{-} 1, u_{-} 2, u_{-} 3\right)$ (rational functions) rather than over the field of constants. Here is the computation from the radical membership algorithm done this alternate way:

```
> Basis(IdRad, tdeg(x_1, x_2, \(\left.\left.x_{-} 3, x_{-} 4, x_{-} 5, x_{-} 6, x_{-} 7, y\right)\right)\);

We say in a case like this that the conclusion follows generically from the hypotheses,
since it follows whenever \(u_{-} 1 \neq 0\) and \(u_{-} 3 \neq 0\) (and these conditions are necessary to say we have an actual triangle!)
\(>H B:=\operatorname{Basis}([h[1], h[2], h[3], h[4], h[5], h[6], h[7]], \operatorname{tdeg}(x[1], x[2], x[3], x[4]\), \(x[5], x[6], x[7])):\)
\(>\operatorname{NormalForm}(g, H B, \operatorname{tdeg}(x[1], x[2], x[3], x[4], x[5], x[6], x[7]))\);```

