MATH 392 - Seminar in Computational Commutative Algebra Solutions for Midterm Exam

March 22, 2019
I.
A) (20) Prove that every ideal I in the polynomial ring $k[x]$ (one variable) is principal (that is, $I=\langle g(x)\rangle$ for some single polynomial).

Solution: Let I be an ideal in $k[x]$. If $I=\{0\}$, then we can take g to be the zero polynomial. If I contains nonzero polynomials, let $g(x)$ be any nonzero element of I of minimal degree. We must show that every $f(x) \in I$ is a multiple of $g(x)$. So using the division algorithm in $k[x]$, write $f(x)=q(x) g(x)+r(x)$, where either $r(x)$ is identically zero, or else $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$. We have $r(x)=f(x)-q(x) g(x)$. $f(x) \in I$ by assumption. $g(x)$ is also in I by construction. I is an ideal, hence closed under products by arbitrary polynomials, so $q(x) g(x) \in I$. Similarly I is closed under sums, so $r(x)=f(x)-q(x) g(x) \in I$. But $g(x)$ was a nonzero element of I of minimal degree and $r(x)$ is either identically zero, or else $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$. Since the second alternative is not possible, $r(x)=0$, which shows $f(x)=q(x) g(x)$. This shows $I \subseteq\langle g(x)\rangle$. The opposite inclusion is also true because $g(x) \in I$, so $\langle g(x)\rangle \subseteq I$ since I is closed under multiplication by arbitrary polynomials.
B) (10) Find $g(x)$ as in part A for the ideal $I=\left\langle x^{2}+7 x+10, x^{3}+2 x^{2}+4\right\rangle$ in $\mathbf{Q}[x]$.

Solution 1: The polynomial $g(x)$ must be the gcd of the two generators for I. We see by factoring that $x^{2}+7 x+10=(x+2)(x+5)$ and $x^{3}+x^{2}+4=(x+2)\left(x^{2}-x+2\right)$ and $x^{2}-x+2$ does not factor farther in $\mathbf{Q}[x]$ because this polynomial has no rational (or even real) roots. Hence the gcd is $x+2$.

Solution 2: We can also find the gcd using the Euclidean Algorithm in $\mathbf{Q}[x]$. Dividing:

$$
\begin{aligned}
x^{3}+2 x^{2}+4 & =(x-6)\left(x^{2}+7 x+10\right)+32 x+64 \\
x^{2}+7 x+10 & =\left(\frac{x}{32}+\frac{5}{32}\right)(32 x+64)+0
\end{aligned}
$$

The last nonzero remainder is the gcd, up to a constant multiple. Note $32 x+64=$ $32(x+2)$ so the monic gcd is $x+2$ as in the first solution.
II.
A) (15) Define: G is a Gröbner basis for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to a monomial order $>$.

Solution: A Gröbner basis for I with respect to $>$ is a finite collection of polynomials $G=\left\{g_{1}, \ldots, g_{t}\right\} \subset I$ such that the monomial ideal $\left\langle L T_{>}(I)\right\rangle$ is generated by $L T_{>}\left(g_{1}\right), \ldots, L T_{>}\left(g_{t}\right)$. (Equivalently you could also say it is a finite collection of polynomials G as above such that for every nonzero $f \in I, L T_{>}(f)$ is divisible by $L T_{>}\left(g_{i}\right)$ for some i.)
B) (10) Assuming the statement of Dickson's Lemma, prove that Gröbner bases exist for every ideal I in $k\left[x_{1}, \ldots, x_{n}\right]$ and with respect to every monomial order.

Solution: We may assume that $I \neq\{0\}$, since in that case we can take $G=\emptyset$. Dickson's Lemma is the statement that every monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is generated by a finite set of monomials. We apply that result to the monomial ideal $\left\langle L T_{>}(I)\right\rangle=\left\langle L T_{>}(f) \mid f \in I\right\rangle$. This says $\left\langle L T_{>}(I)\right\rangle$ is generated by some finite collection of monomials $x^{\alpha(1)}, \ldots, x^{\alpha(t)}$. Moreover, by definition each of those is equal to the leading term of some element in I :

$$
x^{\alpha(i)}=L T_{>}\left(g_{i}\right),
$$

for some $g_{i} \in I$. By the definition (part A), this says $\left\{g_{1}, \ldots, g_{t}\right\}$ is a Gröbner basis for I.
C) (5) What else do you need to know in order for the result from part B to give a proof of the Hilbert Basis Theorem? (You don't need to give the proof, just say what else must be proved.)

Solution: The other fact that must be proved to get a proof of the Hilbert Basis Theorem (the statement that every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ has a finite basis) is that a Gröbner basis for I is also an ideal basis for I, or equivalently that if G is a Gröbner basis for I and $f \in I$, then the remainder on division of f by G is zero: $\bar{f}^{G}=0$. This follows from the definition of a Gröbner basis and the properties of the Division Algorithm.
III.
A) (20) State and prove the Elimination Theorem.

Solution: Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $I_{\ell}=I \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]$ be the elimination ideals for $\ell=1, \ldots, n-1$. The Elimination Theorem states that if G is a Gröbner basis for I with respect to the lexicographic order with $x_{1}>x_{2}>\ldots>x_{n}$, then $G_{\ell}=G \cap k\left[x_{\ell+1}, \ldots, x_{n}\right]$ is a Gröbner basis of I_{ℓ}, for all $\ell=1, \ldots, n-1$. Proof: We must show that if f is any element of I_{ℓ}, then $L T_{l e x}(f)$ is divisible by one of the leading terms of the elements of G_{ℓ}. But if $f \in I_{\ell}$, then f depends only on the variables $x_{\ell+1}, \ldots, x_{n}$, and the same is true for $L T_{\text {lex }}(f)$. Since G is a Gröbner basis for $I, L T_{\text {lex }}(f)$ is divisible by $L T_{\text {lex }}(g)$ for some $g \in G$. But this means that $L T_{\text {lex }}(g)$ can only depend on the variables $x_{\ell+1}, \ldots, x_{n}$. By the properties of the lex order with

$$
x_{1}>x_{2}>\cdots>x_{\ell}>x_{\ell+1}>\cdots x_{n}
$$

any monomial containing any of the variables x_{1}, \ldots, x_{ℓ} is greater than all monomials containing only the variables $x_{\ell+1}, \ldots, x_{n}$. This means that no term in g can contain any of the variables x_{1}, \ldots, x_{ℓ}. Hence by definition $g \in G_{\ell}$. We have shown that for every nonzero $f \in I_{\ell}, L T_{\text {lex }}(f)$ is divisible by $L T_{\text {lex }}(g)$ for some $g \in G_{\ell}$. This shows that G_{ℓ} is a Gröbner basis for I_{ℓ} by the definition.
B) (10) A certain ideal $J \subset \mathbf{Q}[x, y, z]$ has a Gröbner basis

$$
B=\left\{x^{3}-3 x^{2}+2 x, x^{2} y-x y, y^{2}-y, z-x y\right\}
$$

with respect to the lexicographic order with $z>y>x$. What are bases for the elimination ideals

$$
J_{1}=J \cap \mathbf{Q}[y, x] \quad \text { and } \quad J_{2}=J \cap \mathbf{Q}[x] ?
$$

Solution: $J_{1}=\left\langle x^{3}-3 x^{2}+2 x, x^{2} y-x y, y^{2}-y\right\rangle$ and $J_{2}=\left\langle x^{3}-3 x^{2}+2 x\right\rangle$.
C) (10) Use the information in part B to determine all of the points in $V(J)$.

Solution: We begin by setting the generator of J_{2} equal to zero and by factoring we find $x(x-1)(x-2)=0$, so $x=0, x=1$, or $x=2$. If we substitute $x=0$ in the rest of the Gröbner basis, we find:

$$
\left.B\right|_{x=0}=\left\{0,0, y^{2}-y, z\right\}
$$

From this we see $y(y-1)=0$ so $y=0$ or $y=1$. And then with either of those y-values, $z=0$. So we have two points with $x=0$, namely $(0,0,0)$ and $(0,1,0)$. If we substitute $x=1$ in the rest of the Gröbner basis, we find:

$$
\left.B\right|_{x=1}=\left\{0,0, y^{2}-y, z-y\right\}
$$

Hence we find two more points $(1,0,0)$ and $(1,1,1)$. Finally, if we substitute $x=2$ into the rest of the Gröbner basis, we find

$$
\left.B\right|_{x=2}=\left\{0,2 y, y^{2}-y, z-2 y\right\}
$$

The only solution is $(2,0,0)$. This means that $V(J)$ consists of five points in all:

$$
V(J)=\{(0,0,0),(0,1,0),(1,0,0),(1,1,1),(2,0,0)\}
$$

