
MATH 392 – Seminar in Computational Commutative Algebra
Solutions for Midterm Exam

March 22, 2019

I.
A) (20) Prove that every ideal I in the polynomial ring k[x] (one variable) is principal

(that is, I = 〈g(x)〉 for some single polynomial).

Solution: Let I be an ideal in k[x]. If I = {0}, then we can take g to be the zero
polynomial. If I contains nonzero polynomials, let g(x) be any nonzero element of
I of minimal degree. We must show that every f(x) ∈ I is a multiple of g(x). So
using the division algorithm in k[x], write f(x) = q(x)g(x) + r(x), where either r(x)
is identically zero, or else deg(r(x)) < deg(g(x)). We have r(x) = f(x) − q(x)g(x).
f(x) ∈ I by assumption. g(x) is also in I by construction. I is an ideal, hence closed
under products by arbitrary polynomials, so q(x)g(x) ∈ I. Similarly I is closed under
sums, so r(x) = f(x)− q(x)g(x) ∈ I. But g(x) was a nonzero element of I of minimal
degree and r(x) is either identically zero, or else deg(r(x)) < deg(g(x)). Since the
second alternative is not possible, r(x) = 0, which shows f(x) = q(x)g(x). This shows
I ⊆ 〈g(x)〉. The opposite inclusion is also true because g(x) ∈ I, so 〈g(x)〉 ⊆ I since
I is closed under multiplication by arbitrary polynomials.

B) (10) Find g(x) as in part A for the ideal I = 〈x2 + 7x+ 10, x3 + 2x2 + 4〉 in Q[x].

Solution 1: The polynomial g(x) must be the gcd of the two generators for I. We see
by factoring that x2 + 7x+ 10 = (x+ 2)(x+ 5) and x3 + x2 +4 = (x+ 2)(x2 − x+2)
and x2−x+2 does not factor farther in Q[x] because this polynomial has no rational
(or even real) roots. Hence the gcd is x+ 2.

Solution 2: We can also find the gcd using the Euclidean Algorithm in Q[x]. Dividing:

x3 + 2x2 + 4 = (x− 6)(x2 + 7x+ 10) + 32x+ 64

x2 + 7x+ 10 =

(

x

32
+

5

32

)

(32x+ 64) + 0

The last nonzero remainder is the gcd, up to a constant multiple. Note 32x + 64 =
32(x+ 2) so the monic gcd is x+ 2 as in the first solution.

II.
A) (15) Define: G is a Gröbner basis for an ideal I ⊂ k[x1, . . . , xn] with respect to a

monomial order >.

Solution: A Gröbner basis for I with respect to > is a finite collection of polyno-
mials G = {g1, . . . , gt} ⊂ I such that the monomial ideal 〈LT>(I)〉 is generated by
LT>(g1), . . . , LT>(gt). (Equivalently you could also say it is a finite collection of poly-
nomials G as above such that for every nonzero f ∈ I, LT>(f) is divisible by LT>(gi)
for some i.)
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B) (10) Assuming the statement of Dickson’s Lemma, prove that Gröbner bases exist for
every ideal I in k[x1, . . . , xn] and with respect to every monomial order.

Solution: We may assume that I 6= {0}, since in that case we can take G = ∅.
Dickson’s Lemma is the statement that every monomial ideal in k[x1, . . . , xn] is gen-
erated by a finite set of monomials. We apply that result to the monomial ideal
〈LT>(I)〉 = 〈LT>(f) | f ∈ I〉. This says 〈LT>(I)〉 is generated by some finite collec-
tion of monomials xα(1), . . . , xα(t). Moreover, by definition each of those is equal to
the leading term of some element in I:

xα(i) = LT>(gi),

for some gi ∈ I. By the definition (part A), this says {g1, . . . , gt} is a Gröbner basis
for I.

C) (5) What else do you need to know in order for the result from part B to give a proof
of the Hilbert Basis Theorem? (You don’t need to give the proof, just say what else
must be proved.)

Solution: The other fact that must be proved to get a proof of the Hilbert Basis
Theorem (the statement that every ideal in k[x1, . . . , xn] has a finite basis) is that a
Gröbner basis for I is also an ideal basis for I, or equivalently that if G is a Gröbner

basis for I and f ∈ I, then the remainder on division of f by G is zero: f
G

= 0.
This follows from the definition of a Gröbner basis and the properties of the Division
Algorithm.

III.
A) (20) State and prove the Elimination Theorem.

Solution: Let I be an ideal in k[x1, . . . , xn] and let Iℓ = I ∩ k[xℓ+1, . . . , xn] be the
elimination ideals for ℓ = 1, . . . , n− 1. The Elimination Theorem states that if G is a
Gröbner basis for I with respect to the lexicographic order with x1 > x2 > . . . > xn,
then Gℓ = G∩ k[xℓ+1, . . . , xn] is a Gröbner basis of Iℓ, for all ℓ = 1, . . . , n− 1. Proof:
We must show that if f is any element of Iℓ, then LTlex(f) is divisible by one of
the leading terms of the elements of Gℓ. But if f ∈ Iℓ, then f depends only on the
variables xℓ+1, . . . , xn, and the same is true for LTlex(f). Since G is a Gröbner basis
for I, LTlex(f) is divisible by LTlex(g) for some g ∈ G. But this means that LTlex(g)
can only depend on the variables xℓ+1, . . . , xn. By the properties of the lex order with

x1 > x2 > · · · > xℓ > xℓ+1 > · · ·xn,

any monomial containing any of the variables x1, . . . , xℓ is greater than all monomials
containing only the variables xℓ+1, . . . , xn. This means that no term in g can contain
any of the variables x1, . . . , xℓ. Hence by definition g ∈ Gℓ. We have shown that for
every nonzero f ∈ Iℓ, LTlex(f) is divisible by LTlex(g) for some g ∈ Gℓ. This shows
that Gℓ is a Gröbner basis for Iℓ by the definition.
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B) (10) A certain ideal J ⊂ Q[x, y, z] has a Gröbner basis

B = {x3 − 3x2 + 2x, x2y − xy, y2 − y, z − xy}

with respect to the lexicographic order with z > y > x. What are bases for the
elimination ideals

J1 = J ∩Q[y, x] and J2 = J ∩Q[x]?

Solution: J1 = 〈x3 − 3x2 + 2x, x2y − xy, y2 − y〉 and J2 = 〈x3 − 3x2 + 2x〉.

C) (10) Use the information in part B to determine all of the points in V (J).

Solution: We begin by setting the generator of J2 equal to zero and by factoring we
find x(x− 1)(x− 2) = 0, so x = 0, x = 1, or x = 2. If we substitute x = 0 in the rest
of the Gröbner basis, we find:

B|x=0 = {0, 0, y2 − y, z}

From this we see y(y − 1) = 0 so y = 0 or y = 1. And then with either of those
y-values, z = 0. So we have two points with x = 0, namely (0, 0, 0) and (0, 1, 0). If we
substitute x = 1 in the rest of the Gröbner basis, we find:

B|x=1 = {0, 0, y2 − y, z − y}

Hence we find two more points (1, 0, 0) and (1, 1, 1). Finally, if we substitute x = 2
into the rest of the Gröbner basis, we find

B|x=2 = {0, 2y, y2 − y, z − 2y}

The only solution is (2, 0, 0). This means that V (J) consists of five points in all:

V (J) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), (2, 0, 0)}.
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