MATH 392 - - Seminar in Computational Commutative Algebra
Computing Ideal Intersections
March 29, 2019
Let's compute the intersection of the ideals
$I=\left\langle x^{2} \cdot y-z, x^{2}+y^{2}+z^{2}-1\right\rangle$ and $J=\left\langle y-x^{2}, z-x^{3}\right\rangle$
We set up the ideal $t \cdot I+(1-t) \cdot J$ and eliminate the variable t by computing a lexicographic Gr"obner basis:
with(Groebner) :
BIntersection : $=\operatorname{Basis}\left(\left[t \cdot\left(x^{2} \cdot y-z\right), t \cdot\left(x^{2}+y^{2}+z^{2}-1\right),(1-t) \cdot\left(y-x^{2}\right),(1-t) \cdot(z\right.\right.$ $\left.\left.-x^{3}\right)\right], p l e x(t, x, y, z)$);
BIntersection : $=\left[y^{6}+y^{4} z^{2}-y^{3} z^{2}-y z^{4}-y^{4}+y^{3} z+y z^{2}-z^{3}, x y^{3} z+x y z^{3}-y^{5}\right.$
$-y^{3} z^{2}-x y z+x z^{2}+y^{3}-y^{2} z, x y^{4}+x y^{2} z^{2}-y^{3} z-y z^{3}-x y^{2}+x y z+y z$
$-z^{2},-y^{5} z^{3}-y^{3} z^{5}+x^{2} z^{5}+2 y^{5} z^{2}+2 y^{3} z^{4}+y^{2} z^{5}+z^{7}-2 x^{2} z^{4}+y^{4} z^{2}$
$-2 y^{2} z^{4}-y z^{5}-2 z^{6}+x^{2} z^{3}-3 y^{5}-3 y^{4} z-4 y^{3} z^{2}+y z^{4}+3 x^{2} z^{2}+x y^{3}$
$+x y z^{2}+y^{4}+3 y^{2} z^{2}+2 y z^{3}+4 z^{4}-x^{2} z+3 y^{3}-y^{2} z-4 y z^{2}-z^{3}-x y+x z$
$-y^{2}+y z-3 z^{2}+z, y^{5} z^{2}+y^{3} z^{4}-x^{2} z^{4}-y^{5} z-y^{3} z^{3}-y^{2} z^{4}-z^{6}+x^{2} z^{3}-y^{5}$
$-y^{4} z-y^{3} z^{2}+y^{2} z^{3}+y z^{4}+z^{5}+x^{2} y z+x y^{3}+x y z^{2}+2 y^{4}+y^{3} z+y^{2} z^{2}+z^{4}$
$+x^{2} y-2 x^{2} z+y^{3}-2 y^{2} z-2 y z^{2}-2 z^{3}-x y+x z-2 y^{2}+2 y z-z^{2}+z$,
$x^{2} y^{3}+y^{5}+y^{3} z^{2}-x^{2} z^{2}-y^{2} z^{2}-z^{4}-y^{3}+z^{2}, x^{3} z-x^{2} y^{2}+x y^{2} z+x z^{3}-y^{4}$
$-y^{2} z^{2}-x z+y^{2}, y x^{3}+x y^{3}+x y z^{2}-x^{2} z-y^{2} z-z^{3}-x y+z, x^{4}+x^{2} y^{2}$
$+x^{2} z^{2}-x^{2} y-y^{3}-y z^{2}-x^{2}+y, 8 y^{5} z^{2}+8 y^{3} z^{4}-8 x^{2} z^{4}-13 y^{5} z-13 y^{3} z^{3}$
$-8 y^{2} z^{4}-8 z^{6}+13 x^{2} z^{3}-5 y^{5}-8 y^{4} z-5 y^{3} z^{2}+13 y^{2} z^{3}+8 y z^{4}+13 z^{5}$ $+x^{2} y^{2}-3 x^{2} z^{2}+22 x y^{3}+22 x y z^{2}+21 y^{4}+8 y^{3} z+5 y^{2} z^{2}-5 y z^{3}+5 z^{4}$ $+x^{2} y-25 x^{2} z+3 y^{3}-22 y^{2} z-18 y z^{2}-30 z^{3}-2 x^{2}-22 x y+22 x z-23 y^{2}$ $\left.+25 y z-4 z^{2}+2 t+2 y+22 z\right]$
seq(has(BIntersection[i], t), $i=1$..nops(BIntersection));
false, false, false, false, false, false, false, false, false, true
(2)

This shows that only the last element of the Gr"obner basis contains t. The first 9 polynomials give a basis for $I \cap J$.
for ito nops(BIntersection) - 1 do BIntersection[i] end do;

$$
\begin{gathered}
y^{6}+y^{4} z^{2}-y^{3} z^{2}-y z^{4}-y^{4}+y^{3} z+y z^{2}-z^{3} \\
x y^{3} z+x y z^{3}-y^{5}-y^{3} z^{2}-x y z+x z^{2}+y^{3}-y^{2} z \\
x y^{4}+x y^{2} z^{2}-y^{3} z-y z^{3}-x y^{2}+x y z+y z-z^{2} \\
-y^{5} z^{3}-y^{3} z^{5}+x^{2} z^{5}+2 y^{5} z^{2}+2 y^{3} z^{4}+y^{2} z^{5}+z^{7}-2 x^{2} z^{4}+y^{4} z^{2}-2 y^{2} z^{4}-y z^{5}
\end{gathered}
$$

$$
\begin{gather*}
-2 z^{6}+x^{2} z^{3}-3 y^{5}-3 y^{4} z-4 y^{3} z^{2}+y z^{4}+3 x^{2} z^{2}+x y^{3}+x y z^{2}+y^{4} \\
+3 y^{2} z^{2}+2 y z^{3}+4 z^{4}-x^{2} z+3 y^{3}-y^{2} z-4 y z^{2}-z^{3}-x y+x z-y^{2}+y z \\
-3 z^{2}+z \\
y^{5} z^{2}+y^{3} z^{4}-x^{2} z^{4}-y^{5} z-y^{3} z^{3}-y^{2} z^{4}-z^{6}+x^{2} z^{3}-y^{5}-y^{4} z-y^{3} z^{2}+y^{2} z^{3}+y z^{4} \\
+z^{5}+x^{2} y z+x y^{3}+x y z^{2}+2 y^{4}+y^{3} z+y^{2} z^{2}+z^{4}+x^{2} y-2 x^{2} z+y^{3}-2 y^{2} z \\
-2 y z^{2}-2 z^{3}-x y+x z-2 y^{2}+2 y z-z^{2}+z \\
x^{2} y^{3}+y^{5}+y^{3} z^{2}-x^{2} z^{2}-y^{2} z^{2}-z^{4}-y^{3}+z^{2} \\
x^{3} z-x^{2} y^{2}+x y^{2} z+x z^{3}-y^{4}-y^{2} z^{2}-x z+y^{2} \\
y x^{3}+x y^{3}+x y z^{2}-x^{2} z-y^{2} z-z^{3}-x y+z \\
x^{4}+x^{2} y^{2}+x^{2} z^{2}-x^{2} y-y^{3}-y z^{2}-x^{2}+y \tag{3}
\end{gather*}
$$

factor(BIntersection[1]);

$$
\begin{equation*}
\left(y^{3}-z^{2}\right)\left(y^{3}+y z^{2}-y+z\right) \tag{4}
\end{equation*}
$$

What does this tell us??

