
MATH 392 – Seminar in Computational Commutative Algebra
Fourth Computer Laboratory Day and Problem Set 9

April 8, 2019

Background and Goals

Today’s lab, which incorporates Problem Set 9 due on Friday, April 12, will introduce
you, via some examples, to:

• Bruno Buchberger’s original motivation for the developing the theory of Gröbner
bases, and

• Some very interesting connections between linear algebra and the algebra of polyno-
mial rings, solving systems of polynomial equations, and related questions.

Lab Questions (With Further Background As Needed)

A. Consider the ideal

J = 〈x2 + y + z2 − 4, x− y2 + z2 + 3, x2 − yz〉.

(1) Compute two reduced Gröbner bases for J :
(a) First, with respect to the plex(x,y,z) order in Maple. Call this one Blex.
(b) Second, with respect to the tdeg(x,y,z) order in Maple (this is graded reverse

lex with x > y > z). Call this one Bgrevlex.
(2) If you take any polynomial f ∈ Q[x, y, z] and compute its remainder on division by

Blex, using the plex(x,y,z) monomial order, what monomials will appear in the
remainder? (You can see this by listing out the leading terms of each of the basis
polynomials, then thinking: what monomials are not divisible by any of those leading
terms.) How many such monomials are there?

(3) Same questions as in (2) for the remainder on division of f by Bgrevlex using the
tdeg(x,y,z) order.

Your answers for the numbers of monomials in parts (2) and (3) of question A should be
the same, but the monomials themselves should be different depending on which monomial
order you are using. This is no accident because both collections of monomials give bases
for vector spaces over Q that are isomorphic because both are different representations of
the same algebraic structure, a new example of a ring called the quotient ring Q[x, y, z]/J
(careful: even though the same word is used, this is not directly related to the quotient or
colon ideals that we discussed last week!) Buchberger’s original motivation for developing
Gröbner bases was to give a concrete way to do computations in these quotient rings. To
be more precise about what these structures are:

• Pick either of the two Gröbner bases above.
• The elements of the quotient ring can be thought of as all the linear combinations of
the monomials that are not in 〈LT>(J)〉: that is, all possible remainders on division
by the Gröbner basis with respect to that monomial order >.
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• The sum operation in the quotient ring is just the ordinary sum of the linear combi-
nations of monomials or remainders as in the previous bullet.

• The product operation is defined like this: To multiply two linear combinations of
the set of monomials, by the distributive law, it suffices to know how to multiply
all pairs of the basis monomials. (See Chapter 5 in the text for more details about
how this works.) If the product of two of the basis monomials is another of the basis
monomials, then that is the product in the quotient ring. On the other hand, if the
product is not one of the basis monomials (if it is divisible by one of the leading terms
of the elements of G), then to find the product in the quotient ring, you compute the
remainder of the product with respect to the Gröbner basis. In either case you can
phrase the definition of the product operation like this: in Q[x, y, z]/J ,

xaybzc · xdyezf = xa+dyb+ezc+f
G

where G is the appropriate Gröbner basis, depending on which monomial order and
which set of monomials you are looking at.

B. Compute the “multiplication tables” for both sets of basis monomials from question A
using the product operation defined above. Put nicely formatted versions in your solution,
either by entering everything into a text region in your Maple worksheet, or by writing
out the tables by hand on paper.

One of the amazing things about these quotient rings is how they encode information about
the variety V (J) in linear algebraic form! Here is some information about computations
with linear algebra in Maple. The commands you will need are all in the LinearAlgebra

package. Load this using the with command as we have seen for other packages. You
define matrices in Maple with commands like this:

A := Matrix([[1,2],[3,4]]);

The output will show you exactly what is happening here and how you will enter other
square matrices. If A is a square matrix, then

CharacteristicPolynomial(A,t);

computes the characteristic polynomial det(A− tI) as a polynomial in the variable t. The
roots of the characteristic polynomial are the eigenvalues of the matrix A. You can find
them by either using fsolve on the characteristic polynomial, or by using

evalf(Eigenvalues(A));

(Note: The evalf converts the output of Eigenvalues to decimal form. The results here
can be slightly different because the fsolve command and the Eigenvalues command are
using different sorts of numerical approximation algorithms.)
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C. Use the lex Gröbner basis Blex to find all of the points of V (J), real and complex.

D. List the basis monomials for the quotient ring in any one order and use that consistently.
Now, using the grevlex Gröbner basis Bgrevlex, multiply each of the basis monomials for
the quotient ring by x and take the remainder on division by Bgrevlex. Pick off the
coefficients of the remainders and put them into the columns of a square matrix in the
order corresponding to your ordering on the basis monomials (one column for the product
of x and each basis monomial). As you will probably recognize from Linear Algebra, the
matrix you are computing here is the matrix [Mx] of a linear mapping Mx on Q[x, y, z]/J
defined by

Mx : Q[x, y, z]/J → Q[x, y, z]/J

f 7→ x · f,

using the product operation in the quotient ring described above, and with respect to the
(ordered) monomial basis for the quotient ring (in the domain and the target space of the
linear mapping). Now do the same for the products by y and z and derive the matrices of
the corresponding My and Mz multiplication mappings.

E. Find the eigenvalues of each of the matrices of [Mx], [My], [Mz]. Compare with your
results from question C. What can you say here?

What you are seeing in this example is how (one form of) a general result known as
Stickelberger’s Theorem applies to this ideal J . If you want to see a proof why this works,
consult Chapter 2 of the book Using Algebraic Geometry by the same team of authors who
brought you Ideals, Varieties, and Algorithms!
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