
ERROR CONTROL CODES FROM ALGEBRA ANDGEOMETRY { NOTES FOR SACNAS MINICOURSEJohn B. LittleCollege of the Holy CrossEdward MosteigLoyola Marymount UniversitySeptember 25, 2004Abstrat. Communiation of information often takes plae over noisy hannels.For reliability, it is often neessary to enode the transmitted information in suh away that errors an be deteted and/or orreted when they our. Designing shemesthat ahieve error ontrol without introduing undue redundany, and that admiteÆient enoding and deoding, are the main goals of oding theory. Tehniquesfrom algebra and geometry have ome to play an important role both in designingodes and in developing enoding and deoding algorithms. This miniourse willintrodue the basi theory of error ontrol odes, illustrate this with the example ofthe Reed-Solomon odes, then introdue an important reent idea { the onstrutionof odes from order domains.x1. Basis on Error Control CodesCoding theory and information theory are relatively new subjets; their foun-dations were laid by Claude Shannon in a seminal paper [S℄ in 1948. Starting inthe early 1950's many workers in ommuniations and eletrial engineering havedeveloped oding shemes to ensure reliability of information transmission in areassuh as(1) ommuniations with deep-spae exploration raft,(2) design of omputer memory systems,(3) the CD audio and DVD video systems,(4) wireless telephony,and many others.As oding theory has grown, more and more tools from algebra have ome tobe useful for �nding odes with good properties and for implementing enodingand deoding proedures. In this setion, we will review some basi de�nitions.The referenes [HP℄, [MWS℄, and [vLi℄ are exellent soures for more detailedpresentations of this basi material.We will always onsider a ommuniations environment in whih all messages aredivided into \words" or bloks of a �xed length, k, formed using a �nite alphabetwith q symbols. The simplest ase (also the one best adapted to eletroni hard-ware) is an alphabet with two symbols, the binary digits 0; 1. And indeed in most1



2 SACNAS MINICOURSEappliations, for instane in the odes used for the transfer of digital informationwithin omputer systems, and for storing information on ompat disks, digitalaudio tape, or other media and retrieving it for use at a later time, q is either 2 ora power of 2. The alphabet with exatly two symbols an be identi�ed with the�nite �eld F2 . Often, we onsider all k-tuples as possible words that an appear ina message, so the olletion of words may be identi�ed with F k2 .In order to detet and/or orret errors when they our, some redundany mustbe built into the information that is atually transmitted over the hannel. Onepossible approah is to make the enoded form of a message onsist of bloks orn-tuples of length n > k over the same alphabet as that used for the message itself.Then the enoding and deoding operations an be desribed mathematially asfuntions: E : F k2 ! F n2and D : F n2 ! F k2 [ f \error" g;where E is one-to-one, and D Æ E is the identity mapping on F k2 . The funtion Dwill return the \error" value on some words in the omplement of the image of Ethat annot be deoded on the basis of the information known to the deoder. Weall C = Im(E) the set of odewords , or just the ode, and the C obtained in thisway are alled blok odes of length n over the alphabet F2 .When a odeword x is sent over the hannel and a transmission error ours, thee�et is to replae the odeword x by a sum x+ e where e 2 F n2 is the error vetor(this is the omponentwise sum, using addition modulo 2). The word y = x+ e isreeived by the deoder, whih then attempts to reover x itself. The number ofnonzero entries in e determines how many of the entries in x have been orrupted.In order for the error to be detetable, x+ e must not be another odeword. Undermany irumstanes (for instane if the probability of an error ourring is the samein eah loation of eah transmitted word), smaller numbers of nonzero entries in eare more likely than larger numbers. A good strategy is then to attempt to orreterrors by �nding the losest odeword to the reeived word (the \nearest neighbor"odeword) in the following sense.Let x; y 2 F n2 . The Hamming distane between x and y is de�ned to bed(x; y) = jfi 2 f1; : : : ; ng : xi 6= yigj= number of nonzero entries in x+ y mod 2:For example, d(11000111; 10100101) = 3. Note that d(x; 0), whih is alled theweight of x, is just the number of nonzero entries in x. It is an nie exerise to showthat d(x; y) satis�es all the properties of a metri or distane funtion on the �niteset F n2 . In partiular, we have a triangle inequality :d(x; y) � d(x; z) + d(z; y)for all x; y; z 2 F n2 . If x 2 F n2 and s � 0, we write B(x; s) = fy 2 F n2 : d(x; y) � sgfor the losed Hamming distane ball of radius s entered at x. Using this, we havethe following fundamental statement about the error-deteting and error-orretingapability of odes.



SACNAS MINICOURSE 3(1.1) Proposition. If a ode C � F n2 satis�es d(x; y) � d for all distint pairsx; y 2 C, then any error vetor of weight at most d� 1 an be deteted. Moreover,any error vetor of weight at most b(d � 1)=2 an be orreted by the \nearest-neighbor" deoding funtion:D(y) = � E�1(x 2 C : d(y; x) is minimal) if x is unique\error" if x is not uniqueProof. First note that if d(x; y) � d for all distint pairs x; y 2 C, then hangingany 1 � r � d� 1 entries in a odeword never produes another odeword. Heneany nonzero error vetor of weight at most d � 1 produes a reeived word thatan be distinguished from all odewords. So the fat than an error ourred anbe deteted , even though it may not be possible to determine from y = x+ e alonewhih odeword x was intended as part of the transmitted message.For the seond statement, we laim that if d(x; x0) � d � 2s+ 1 for all distintpairs of odewords x and x0, then the balls B(x; s) and B(x0; s) must be disjoint .If not, then for y 2 B(x; s) \ B(x0; s)d(x; x0) � d(x; y) + d(y; x0) � 2sby the triangle inequality. But this ontradits our hypothesis. Hene if the errorvetor has weight s = b(d � 1)=2 or less, the reeived word is in B(x; s) but notin B(x0; s) for any x0 6= x, and nearest-neighbor deoding will orret the errorsintrodued in transmission. �In real-world appliations, the harateristis of the intended ommuniationshannel (in partiular the probability that a symbol is transmitted inorretly) playa major role in the hoie of a ode for a partiular situation. Nearest-neighbordeoding an fail if the reeived word y from the hannel ontains too many errors,sine then y may in fat be farther from the intended odeword x than it is froma di�erent odeword x0. So when engineers ompare odes, the most importantparameters are� d = minx 6=y2C d(x; y), the minimum distane, and� R = k=n (or more generally log2(jCj)=n if jCj is not a power of 2), alled theinformation rate.Good odes are ones for whih R = k=n is not too small (so the ode is notextremely redundant), but for whih d is also not too small. These onditions arelearly somewhat inompatible. While it is known by a famous result known asShannon's Theorem (see [vLi℄) that there exist odes with information rate nearly1 for whih the probability of deoding a random reeived word inorretly usingthe nearest-neighbor funtion is arbitrarily small, it may be neessary to take n verylarge (hene large k as well) to ahieve this, inreasing the amount of work (time,energy, et.) needed to enode or deode messages. Hene identifying good odes isa deliate balaning at, and muh e�ort has been devoted both to �nding expliitgood odes, and to developing theoretial bounds on the parameters of odes. Forfuture referene we mention two of the simplest of these bounds.(1.2) Proposition. Fix n; d and let b = b(n; d) equal the number of n-tuples inthe ball B(x; d� 1) entered at an arbitrary x 2 F n2 :b = d�1Xm=0�nm�:



4 SACNAS MINICOURSELet A(n; d) be the largest number of odewords possible for a ode C in F n2 withminimum distane d.1) (Singleton bound) A(n; d) � 2n�d+1:Hene for any ode C � F n2 with 2k odewords and minimum distane d, k �n� d+ 1.2) (Gilbert-Varshamov bound) A(n; d) � 2n=b:The proof of the Singleton Bound is obtained by deleting any �xed set of d� 1entries from all the odewords of C. The Gilbert-Varshamov bound follows fromthe fat that for a ode with the maximum number of odewords for the given n; d,there annot be any elements of F n2 outside the union [x2CB(x; d � 1). (If therewere, we ould add suh a word to the ode and maintain the minimum distane.)While any olletion C of odewords in F n2 an be onsidered as a ode, wewill restrit our attention from now on to odes with some additional algebraistruture. Namely, we will onsider only linear blok odes, for whih the set Cis a k-dimensional vetor subspae of F n2 . That is, for a linear ode, the set ofodewords is losed under vetor sums (modulo 2, as always). The losure undersalar multipliation required for the vetor spae struture is automati in thisase, beause the only salars are 0; 1 2 F2 .One reason for making this restrition is that, beause linear algebra providespowerful tools, linear odes with reasonable parameters are simply easier to on-strut expliitly than omparably good arbitrary odes. The onstrution of theReed-Solomon odes in the next setion is a perfet example of this. In addition,linear odes admit both� enoding algorithms that require muh less stored information, and� deoding algorithms that are muh more eÆientthan the methods that are available for arbitrary odes.For instane, to ompute the enoding funtion for a ompletely general odewhere the odewords had no extra symmetries, it would be neessary to storeall 2k of the odewords and do some form of table look-up to �nd the odewordorresponding to eah word x 2 F k2 in the message. While this look-up an bedone eÆiently, it requires an impratially large amount of storage for odes withrealisti n and k for some appliations. (For instane, one of the odes used in theCD digital audio system an be viewed as a ode over F2 with n = 256 and k = 224.Hene there are 2224 di�erent odewords, eah of whih is a string of 256 elementsof F2{a total of over 6:4� 1060 gigabytes of information!)On the other hand, a linear ode C an be ompletely spei�ed by any basis|kvetors instead of 2k of them. Moreover, the enoding operation an be performedvia matrix multipliation. It is ustomary to write the x 2 F k2 and the odewordsin F n2 as row vetors. For any k � n matrix G whose rows form a basis for C, theformula E(x) = xG de�nes an enoding funtion E : F k2 ! F n2 for C. The matrixG is alled a generator matrix for C.



SACNAS MINICOURSE 5Example 1. In F72 onsider the ode C given by the generator matrixG = 0B� 1 0 0 0 1 1 00 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 11CAFor this ode, we have n = 7; k = 4; d = 3. Sine b(3 � 1)=2 = 1, this ode anorret any single bit error in word of length 7. How we an tell what d is? Forlinear odes, if x; y 2 C, then x� y 2 C too. Heneminx6=y2C d(x; y) = minx6=y2C d(x� y; 0) = minz 6=02C d(z; 0)In other words: For linear odes, the minimum distane is the same as the minimum\weight" of the nonzero odewords. It an be heked that d = 3 here by expliitlywriting out all 15 nonzero odewords and noting their weights. Note that if theenoding funtion E(x) = xG is used, then the four entries of x are opied into the�rst four entries of E(x).The ode given by G above has another interesting property: every word in F72is either a odeword, or Hamming distane 1 from a unique odeword (that is, theunion of the Hamming balls of radius 1 entered at the odewords is all of F72 ). Inother words, the Hamming balls entered at the odewords are \paked together"in an extremely eÆient way { there is no left-over spae at all. There is a in�nitefamily of suh odes ontaining this one (parameters n = 2r � 1, k = 2r � r � 1,d = 3 for all r � 1) that all have this property. They are alled the Hamming odes(see [HP℄ or [MWS℄).A rudimentary deoder for this ode would use a \hek matrix" H for C suhas H = 0BBBBBBB� 1 1 01 0 10 1 11 1 11 0 00 1 00 0 1
1CCCCCCCAfor whih the odewords x 2 C (written as rows) are the solutions of xH = 0.Assuming the reeived word ontains no more than 1 bit error,(1) Given a reeived word x0 ompute s = x0H ; if s = 0, then x0 is a odeworditself; if not, then(2) Toggle eah bit in x0 in turn to get words y, until a solution of yH = 0 isfound.Even better methods are known too if we are allowed to store some preomputedinformation about the ode, for instane the \syndrome deoding" method (see [HP℄or [MWS℄).For future referene, generalizing the observation above, we see that if a linearode is given by a generator matrix of the form G = (I jB) where I is a k�k identitymatrix, and B is a k � (n � k) blok, then the �rst k entries in E(x) = xG willbe the entries from x itself. Enoding funtions for whih all the symbols of the



6 SACNAS MINICOURSEinput word appear unhanged in some omponents of the orresponding odewordare said to be systemati enoders . It is ustomary to all those omponents of theodewords the information positions . The remaining omponents of the odewordsare alled parity heks . This name omes from the fat that one simple error-detetion sheme for binary odes is to require that all odewords have an even (orodd) number of nonzero digits. To ensure this, one ould simply append another0 or 1 to eah message word to adjust the parity of the number of 1's. If one biterror (in fat, any odd number of errors) is introdued in transmission, that fatan be reognized by ounting the number of 1's in the reeived word. A similarsheme, in whih an extra hek digit is added to redit ard numbers, is used todetet transmission errors when your redit is heked during purhases.Systemati enoders are sometimes desirable from a pratial point of view be-ause the information positions an be opied diretly from the word to be enoded;only the parity heks need to be omputed. There are orresponding savings inthe deoding operation as well. If information is systematially enoded and it isdetermined that no errors our in transmission, the words in the message an beobtained diretly from the reeived words by simply removing the parity heks. Itis perhaps worthwhile to emphasize again at this point that the goal of the odingshemes we are onsidering here is primarily reliability of information transmission,not serey! x2. Reed-Solomon CodesIn this setion we will study the onstrution of a lass of odes having very goodproperties. These odes were �rst onstruted in 1960 by Irving Reed and GustaveSolomon, so they are known as Reed-Solomon odes. Our presentation will be quitesimilar to the original way these odes were onstruted.To desribe the Reed-Solomon odes, we need to introdue expliit �elds largerthan F2 = f0; 1g to be used as ode alphabets. Stiking to the binary setting,we might take the set of strings of 0; 1's of a �xed length r as the alphabet. Forinstane, strings of length r = 4 would give 24 distint symbols:0000; 0001; 0010; 0011; 0100; 0101; 0110; 0111;1000; 1001; 1010; 1011; 1100; 1101; 1110; 1111:In order to work with the set-up of linear odes, though, this set must be given thestruture of a �eld.As a quik review, we now mention a few de�nitions. A set R with two binaryoperations, `+' (addition) and `�' (multipliation), is alled a ommutative ring ifthere exist two distint elements 0; 1 2 R suh that for all a; b;  2 R� (Commutativity) a+ b = b+ a, a � b = b � a� (Assoiativity) (a+ b) +  = a+ (b+ ), (a � b) �  = a � (b � )� (Identity) a+ 0 = a, a � 1 = a� (Additive Inverses) 8a 2 R, 9(�a) 2 R suh that a+ (�a) = 0� (Distributivity) a � (b+ ) = (a � b) + (a � )If R has the additional property that eah nonzero element has a multipliativeinverse, then R is alled a �eld. Common examples of �elds are Q, R and C , thoughwe will fous on �nite �elds.



SACNAS MINICOURSE 7We now desribe how to make strings of binary symbols into a �eld. We aninterpret a string �3�2�1�0 (�i 2 F2 ) as a polynomial in a new variable �:(1) �3�3 + �2�2 + �1�+ �0The set of all 16 suh expressions will be denoted by F16 , though we need to dosome work to show that this is atually has the struture of a �eld.The addition operation presents no problems { we will use the usual polynomialaddition (same as vetor addition in F42 ). We also need a multipliation operationand the key point is that we know how to multiply polynomials. For example,(�3 + 1)(�2 + 1) = �5 + �3 + �2 + 1:But of ourse the degree of the produt is too large here. To redue to the properrange of degrees � 3, we an divide by some polynomial of degree 4 in � (using\polynomial long division") and take the remainder of the produt (reall that theremainder is either 0 or of degree stritly less than the degree of the divisor, beausethe division proess ontinues until the leading term of the divisor is larger thanthe degree of the remaining intermediate dividend).This muh works for any divisor polynomial h(�) of degree 4. But, do we alwaysget a �eld this way? The answer is no. For instane, if h(�) = �4 + 1, then(�2 + 1)(�2 + 1) = �4 + 1, so when we divide, the remainder will work out to bezero! On the other hand a �eld annot have nonzero elements a; b suh that ab = 0.So we must take an irreduible polynomial h(�) as our divisor { one whih doesnot fator into a produt of polynomials of positive degree. (These are analogousto the prime numbers in the integers.)For instane, it an be heked that h(�) = �4 + � + 1 is irreduible. Oneagain, multipliation is polynomial multipliation of the expressions (1), followedby redution using the basi relation �4 + �+1 = 0. For instane, on our exampleabove, this yields(�3 + 1)(�2 + 1) = �5 + �3 + �2 + 1= �(�4 + �+ 1) + �3 + �+ 1 by division(reall { the oeÆients are integers mod 2!) Hene, in F16 (onstruted usingh(�) = �4 + �+ 1), we have(�3 + 1)(�2 + 1) = �3 + �+ 1:One easy way to see that this method satis�es properties needed to see we havea �eld is to hek that the powers 1; �; �2; : : : ; �14 are all distint, and �15 = 1.Hene� The powers of � give all the nonzero elements of F16 , and� Eah element �k has a multipliative inverse �15�k.We all � a primitive element for F16 .The following theorem shows that we an onstrut �nite �elds of all sizes prwhere p is a prime number, and r � 1. These are sometimes alled Galois �eldsafter the 19th entury Frenh mathematiian �Evariste Galois, who disovered them.



8 SACNAS MINICOURSE(2.1) Theorem. Let p be prime in Z.(1) The set of integers mod p is a �eld denoted Fp .(2) For all p and all r � 1, there are irreduible polynomials of degree r withoeÆients in Fp .(3) Let h(�) be an irreduible polynomial of degree r with oeÆients in Fp . Theset of polynomials of degree � r � 1 in � with oeÆients in Fp , under theusual addition and multipliation de�ned by f(�) �g(�) = f(�)g(�)h, whereF h denotes the remainder on division by h, is a �eld of size pr denotedFp [�℄=hh(�)i.(4) Di�erent hoies of irreduible h of the same degree yield isomorphi �elds,whih are all denoted Fpr .(5) Every �eld Fpr has a primitive element (an element � whose powers yieldall nonzero elements of Fpr ).Proofs may be found in [HP℄, [P℄, or standard texts on abstrat algebra. Ex-tensive tables of irreduible polynomials in Fp [x℄ have been ompiled to provideonstrutions of these �elds for use in oding theory and other areas. See [MWS℄,for instane.We will use this fat in the following way. Suppose we want to onstrut odesattaining the Singleton bound over a �xed �nite �eld A = Fq , where q = pr forsome r � 1. (These are alled MDS, or \maximum distane separable," odes).Restriting to odes of length n = q, there is a way to do this using a basi fatabout polynomials over a �eld. Fix an integer k � q. Polynomials of degree < khave at most k � 1 roots in Fq , and some have preisely that many roots.We an use that observation and write Lk for the set of all polynomials in Fq [x℄of degree < k. We will always assume k < q here. Lk is a vetor spae over Fq ofdimension k. For eah polynomial f 2 Lk, we onstrut a word in Fqq by evaluatingf at the elements of Fq , to get a q-tuple (letting � be a primitive element),(f(0); f(1); f(�); : : : ; f(�q�2))(reall �q�1 = 1). When we do this, we get a word with(1) at most k � 1 zero entries, hene(2) at least q� (k� 1) = q� k+1 = n� k+1 nonzero entries (and some haveexatly k � 1 zero entries).The set of all suh words is a linear ode sine Lk is a vetor spae, and theevaluation mapping is linear. Hene the resulting ode will have minimum distaned = n� k + 1 (if k is small relative to q).Using all q elements 0; 1; �; : : : ; �q�2 of Fq , we get the so-alled extended Reed-Solomon odes. The Reed-Solomon odes themselves ome from evaluating only atthe nonzero elements of the �eld (omitting the f(0) entry to get a word in Fq�1q ).Summarizing, we have the following result.(2.2) Theorem. We write Fq [x℄ for the ring of all polynomials in x with oeÆ-ients in Fq . Pik a primitive element � for Fq , and write the nonzero elements ofFq as 1; �; : : : ; �q�2



SACNAS MINICOURSE 9Let k < q and Lk = ff 2 Fq [x℄ : deg f < kg. Writeev : Lk ! Fq�1qf 7! (f(1); f(�); : : : ; f(�q�2)):Then Im(ev) is a linear ode with n = q � 1, dimension k, and minimum distaned = n�k+1 = q�k, alled a Reed-Solomon ode, RS(k; q). All Reed-Solomon odesreah the Singleton bound by onstrution { they are MDS odes: k = n� d+1, ord = n� k + 1.For example, using the standard monomial basisf1; x; x2; x3; : : : ; xk�1gfor Lk, the Reed-Solomon ode RS(3; 16) (parameters: n = 15; k = 3; d = 13 overF16 , so 163 = 4096 distint odewords) has generator matrixG = 0� 1 1 1 � � � 1 1 � � � 11 � �2 � � � �7 �8 � � � �141 �2 �4 � � � �14 � � � � �131A :Reed-Solomon odes are probably the most ommonly used odes in ertain sit-uations where errors tend to our in \bursts" rather than randomly. This inludesommuniation to and from deep-spae exploration raft, the CD digital audiosystem, and many other appliations. Reed-Solomon odes are an important om-ponent of the oding tehniques used there (but also not the whole story|see thepapers [MES℄ and [Imm℄ for instane). There are several reasons for this. The�rst reason is that Reed-Solomon and other blok odes an orret relatively longbursts of errors on the bit level, even if the minimum distane d is relatively small.To see the idea, note that the entries of a odeword for a blok ode over a �eld F2rmay be represented as strings of r bits: If F2r = F2 [�℄=hh(�)i, where h irreduibleof degree r, then an element �r�1�r�1 + � � � + �1� + �0 of F2r an be identi�edwith the vetor (�r�1; : : : ; �1; �0) 2 F r2 . Under this identi�ation, a Reed-Solomonodeword is represented by a string of (2r � 1)r bits. A burst of 2r onseutivebit errors, for instane, will hange at most three of the entries of the odeword,when they are viewed as elements of F2r . Hene by Proposition (1.1) if d � 7, forinstane, then any onseutive burst of 2r bit errors an be orreted. On the otherhand, if the errors are loated in 2r arbitrary entries in the word, they may not beorretable with a ode of that minimum distane.The last, and most important, reason that Reed-Solomon odes are attrativeis that they have additional algebrai struture that greatly failitates the en-oding and deoding operations. To see the idea, onsider the generator matrixG for the Reed-Solomon ode RS(k; q) onstruted by evaluating the monomialsf1; x; x2; : : : ; xk�1g at the �` 2 Fq n f0g. The ith row of G has the form((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1):Cylially permuting this row, we obtain((�q�2)i�1; (1)i�1; (�)i�1; : : : ; (�q�3)i�1);



10 SACNAS MINICOURSEwhih is equal to�(i�1)(q�2) � ((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1)beause �q�1 = 1. Thus, a yli permutation of the ith row yields a salar mul-tiple of the same row|it is also one of the Reed-Solomon odewords! The ylipermutation is a linear mapping S on F q�1q , and we have just seen that there is abasis of RS(k; q) onsisting of eigenvetors for S. It follows that the Reed-Solomonode RS(k; q) is invariant under S, sine all the odewords are linear ombinationsof the rows of G.Linear odes C � F nq that are invariant under the yli permutationS : F nq ! F nq(x1; x2 : : : ; xn) 7! (xn; x1; : : : ; xn�1)are alled yli odes . The observations above give the proof of the following fat.(2.3) Proposition. For all q and all k < q, the Reed-Solomon ode RS(k; q) isyli.To understand the full meaning of this observation, we need to make one furtheridenti�ation. Namely, given a odeword  2 RS(k; q): = (0; 1; : : : ; q�2) = (f(1); f(�); : : : ; f(�q�2));where f 2 Lk � Fq [x℄, we an use the entries in  as the oeÆients in anotherpolynomial in a new variable t. We write  () for this polynomial:(2)  () = 0 + 1t+ � � �+ q�2tq�2:and all it the \polynomial form" of the Reed-Solomon odeword .It follows from the algebra of this situation that the polynomial forms  () ofthe odewords  2 RS(k; q) are all divisible by a polynomial alled the generatorpolynomial for the Reed-Solomon ode. (This follows from fats about the algebraof polynomials developed in the next setion. Unfortunately, we do not have thetime to go into this in detail; see [HP℄ or [P℄ for full details.)To identify the generator polynomial for C = RS(k; q), we may proeed asfollows. From (2), every element of  (C) has the form () = 0 + 1t+ � � �+ q�2tq�2where we obtain the oeÆients i = k�1Xj=0 aj(�i)jby evaluating some �xed f(x) =Pk�1j=0 ajxj at x = �i for i = 0; : : : ; q � 2. Substi-tuting these expressions for i into  () and interhanging the order of summationwe see:(3)  () = q�2Xi=00�k�1Xj=0 aj(�i)j1A ti= k�1Xj=0 aj  q�2Xi=0(�jt)i! :



SACNAS MINICOURSE 11In Fq , the roots of 0 = 1 + z + z2 + � � � + zq�2 are preisely the z 6= 0; 1. Henethe inner sum in the last line of (3) is equal to zero provided that ajt 6= 0; 1. Thewhole sum equals zero if �j t 6= 0; 1 for all j = 0; : : : ; k � 1, or equivalently if t 2f�; �2; : : : ; �q�k�1g. Sine  2 RS(k; q) was arbitrary, this omputation shows thatfor all ,  () from (2) (viewed as a polynomial in Fq [t℄) has t = �; �2; : : : ; �q�k�1as roots. Consequently, every  () is divisible by(4) g(t) = (t� �)(t � �2) � � � (t� �q�k�1):In fat, we have:(2.4) Proposition. The polynomial g(t) from (4) is the generator polynomial forRS(k; q).Sine the minimum distane of a Reed-Solomon ode satis�es d = q � k, thegenerator polynomial an also be written asg(t) = (t� �)(t� �2) � � � (t� �d�1):For example, the Reed-Solomon ode RS(3; 16) from above hasg(t) = (t� �)(t � �2)(t� �3) � � � (t� �12)sine d = 15� 3 + 1 = 13.x3. The Eulidean Algorithm for PolynomialsIn this setion, we will introdue another key aspet of the algebra of polynomialsin one variable over a �eld, the Eulidean Algorithm. This proess for omputing agreatest ommon divisor goes bak to the anient Greeks, and was used �rst in thease of ordinary integers. The ring of integers Z and the polynomial rings Fq [x℄ havemany of the same properties, beause both have well-behaved division algorithms.We have already used polynomial division in onstruting our �nite �elds. Here isa preise statement of the haraterization of the quotient and remainder.(3.1) Theorem. (Division algorithm in Fq [x℄) Let f(x); g(x) be nonzero polyno-mials in Fq [x℄. Then there exist unique polynomials q(x) and r(x) satisfyingf(x) = q(x)g(x) + r(x);where either r(x) is the zero polynomial, or else deg(r(x)) < deg(g(x)).(Note: the degree of a polynomial is by de�nition the largest power of the variableappearing with a nonzero oeÆient in the polynomial. The degree is not de�nedfor the zero polynomial, and that is why the theorem is stated in the way givenhere.)The �rst onsequene of this division algorithm onerns speial subsets of thepolynomial ring alled ideals. An ideal I � Fq [x℄ is a nonempty subset that is losedunder sums, and also losed under multipliation by all polynomials. That is, iff; g 2 I , then f + g 2 I . Moreover, if f 2 I and h is any polynomial, then hf 2 I .For example, let � 2 Fq . Then the set I of all polynomials f 2 Fq [x℄ satisfyingf(�) = 0 is an ideal in Fq [x℄. It is easy to hek that both de�ning propertiesare satis�ed here: If f(�) = 0 and g(�) = 0, then (f + g)(�) = f(�) + g(�) = 0.Moreover, if h is any polynomial (hf)(�) = h(�)f(�) = h(�) � 0 = 0.Theorem (3.1) implies the following statement about ideals.



12 SACNAS MINICOURSE(3.2) Theorem. Every ideal I in Fq [x℄ is generated by a single polynomial g(x)in the sense that I = fq(x)g(x) : q(x) 2 Fq [x℄g:Before proeeding to the proof, we note that ideals of the form desribed here {ideals generated by a single element of the ring { are alled prinipal ideals. So thisTheorem says that every ideal in the polynomial ring Fq [x℄ is prinipal. There isalso a orresponding statement in the ring of integers. Moreover, it is this fat thatunderlies the existene of the generator polynomial for Reed-Solomon and otheryli odes as in Proposition (2.4).Proof. If I = f0g, then the zero polynomial ats as the generator g(x). Sofrom now on, we assume that I ontains nonzero polynomials. Let g(x) be thenonzero moni (leading oeÆient 1) polynomial of minimal degree in I . It is easyto see that g(x) is unique, sine if there were two moni polynomials of minimumdegree in I , then their di�erene would be in I , but of smaller degree. Now letf(x) be any other polynomial in I , and apply the division algorithm (3.1). We getf(x) = q(x)g(x)+r(x) where either r(x) is the zero polynomial, or else deg(r(x)) <deg(g(x)). But this equation implies that r(x) = f(x) � q(x)g(x). So by theproperties of an ideal, r(x) 2 I . The polynomial r(x) annot have smaller degreethan g(x), sine we hose g(x) to have minimal degree among the nonzero elementsof I . Therefore, r(x) = 0, whih shows that f(x) = q(x)g(x). Hene I is ontainedin the set of multiples of g(x). But the other inlusion is automati by the de�nitionof an ideal. Hene we have the equality of sets laimed in the statement of thetheorem. �Another way to make an ideal in Fq [x℄ is to onsider all \linear ombinations"of any two given polynomials with polynomial oeÆents:hf(x); g(x)i = fa(x)f(x) + b(x)g(x) : a(x); b(x) 2 Fq [x℄g:Theorem (3.2) says that these ideals are prinipal ideals too, and the generatorpolynomial d(x) for this ideal hf(x); g(x)i is alled the greatest ommon divisor, orGCD, of f(x) and g(x). The Eulidean Algorithm is a method for omputing thisgreatest ommon divisor, and an extension provides the polynomials a(x); b(x) too.The Eulidean Algorithm works as follows to ompute the GCD of two polyno-mials f(x) and g(x). We begin by assuming deg(f(x)) � deg(g(x)) and we divideg(x) into f(x) using (3.1). Then we divide the remainder from the �rst division intog(x), the remainder from the seond division into the �rst remainder, and so on,until a zero remainder ours. (This must happen eventually, sine the degree ofthe remainder dereases at eah step.) In symbols, we an write the omputationsas follows: f(x) = q0(x)g(x) + r1(x)g(x) = q1(x)r1(x) + r2(x)r1(x) = q2(x)r2(x) + r3(x)...rk�1(x) = qk(x)rk(x) + 0Then the last nonzero remainder is the GCD: d(x) = rk(x).



SACNAS MINICOURSE 13Here is an example. Consider the polynomials f(x) = x6 + x5 + x3 + x2 andg(x) = x6 + x4 + x+ 1 in F2 [x℄. Carrying out the proess above, we �nd:f(x) = 1 � g(x) + x5 + x4 + x3 + x2 + x+ 1g(x) = (x + 1)(x5 + x4 + x3 + x2 + x+ 1) + x4 + xx5 + x4 + x3 + x2 + x+ 1 = (x + 1)(x4 + x) + x3 + 1x4 + x = x(x3 + 1) + 0The sequene of remainders isr1(x) = x5 + x4 + x3 + x2 + x+ 1r2(x) = x4 + xr3(x) = x3 + 1r4(x) = 0So the last nonzero remainder r3(x) = x3 + 1 is the GCD d(x) of f(x) and g(x).(In fat f(x) = (x3 + x2)d(x) and g(x) = (x3 + x + 1)d(x), so d(x) is a ommondivisor of f(x) and g(x)).In the next setion, we will see that a very good deoding algorithm for Reed-Solomon odes is based on the kind of omputations done here, and in the following\extended" version of the Eulidean Algorithm that omputes d(x) together withthe a(x); b(x) that give d(x) = a(x)f(x)+b(x)g(x). We �rst introdue the notationf(x) = r�1(x) and g(x) = r0(x) to give a uniform form for the steps in the suessivedivisions. So every line of the above desription an be written asrk�1(x) = qk(x)rk(x) + rk+1(x)for k = 0; 1; 2; : : : . Then the statement of the Extended Eulidean Algorithm is asfollows.(3.3) Algorithm. Input : nonzero f(x); g(x)Output : d(x); a(x); b(x)r�1 := f ; r0 := ga�1 := 1; a0 := 0b�1 := 0; b1 := 1k := 0WHILE rk 6= 0 DOdivide rk into rk�1 : rk�1 = qkrk + rk+1ak+1 := ak�1 � qkakbk+1 := bk�1 � qkbkk := k + 1



14 SACNAS MINICOURSENote: The polynomials a(x); b(x), and d(x) are the �nal values ak(x), bk(x), andrk(x), respetively.We will present a nie tabular format for organizing and arrying out thesealulations in the miniourse. This format is shown in the following example.With the polynomials f(x) = x6 + x5 + x3 + x2 and g(x) = x6 + x4 + x + 1 asin our previous example, we get the following results:k rk qk ak bk�1 x6 + x5 + x3 + x2 1 00 x6 + x4 + x+ 1 1 0 11 x5 + x4 + x3 + x2 + x+ 1 x+ 1 1 12 x4 + x x+ 1 x+ 1 x3 x3 + 1 x x2 x2 + x+ 1We have (x2)f(x) + (x2 + x+ 1)g(x) = x3 + 1in F2 [x℄ as laimed.Complete proofs for the Extended Eulidean Algorithm an be found in manyabstrat and omputational algebra texts.x4. Reed-Solomon DeodingWe now turn to the deoding problem for Reed-Solomon odes. Several di�erentbut related extremely eÆient deoding algorithms for Reed-Solomon and relatedodes have been developed. And indeed, the fat that they are available is one majorreason for the Reed-Solomon odes' popularity. One well-known method is due toBerlekamp and Massey. It is very ommonly used in pratie (see [MWS℄). Otheralgorithms paralleling the Eulidean algorithm for the GCD of two polynomialshave also been onsidered ([SKHN℄, [P℄), and we will study that approah here.For simpliity we will assume that the minimum distane of our Reed-Solomonode C is odd: d = 2s + 1. Then by Proposition 1, any s or fewer errors in areeived word should be orretable.Let  = Pq�2j=0 jtj be a odeword of C, in the polynomial representation from(2). In Fq [t℄,  is divisible by the generator polynomialg = (t� �)(t � �2) � � � (t� �d�1):Suppose that  is transmitted, but some errors are introdued, so that the reeivedword is r = + e for some e =Pi2L eiti. L is alled the set of error loations , andwe assume jLj � s. The oeÆients ei are known as the error values .Deoding Problem. Given the reeived word r, determine the set of error loa-tions L and the error values ei for the error polynomial e with s or fewer nonzeroterms (if suh a polynomial exists).One we �nd e, the deoding funtion will return E�1(r � e). To solve thisproblem we will proeed as follows. First, we an try to determine whether errorshave ourred by omputing the values of the polynomial form of the reeived wordat �; : : : ; �d�1. If r(�j ) = 0 for all j = 1; : : : ; d � 1, then r is divisible by g, andassuming s or fewer errors have ourred, r must be the odeword we intended to



SACNAS MINICOURSE 15send. The values sj = r(�j) are alled the syndromes of the reeived word. Notethat sj = r(�j ) = (�j) + e(�j) = e(�j);sine  is a multiple of g. Hene the sj are the values of the error polynomial forj = 1; : : : ; d� 1.The syndromes may be used as the oeÆients in a polynomialS(u) = d�1Xj=1 sjuj�1;alled the syndrome polynomial for the reeived word r. Its degree is d� 2 or less.By extending the de�nition of sj = e(�j) to all exponents j we an also onsiderthe formal power series bS(u) = 1Xj=1 sjuj�1:Suppose we knew the error polynomial e for a reeived word with s or fewererrors. Then as noted above, sj = Pi2L ei(�j)i = Pi2L ei(�i)j : By exhangingthe order of summation, then summing formal geometri series, bS(u) an be writtenas
(5) bS(u) = 1Xj=1 sjuj�1=Xi2L ei0� 1Xj=1(�i)juj�11A=Xi2L ei�i(1� �iu)= w(u)`(u) ;where ` =Yi2L(1� �iu)and w =Xi2L ei�i Yj 6=ij2L (1� �ju):The roots of ` are preisely the ��i for i 2 L. Sine the error loations an bedetermined easily from these roots, ` is alled the error loator polynomial . Turningto the numerator w, we see thatdegw � deg `� 1:In addition, if i 2 L, w(��i) = ei�i Yj 6=i;j2L(1� �j��i) 6= 0:



16 SACNAS MINICOURSEHene w has no roots in ommon with `. From this we dedue the importantobservation that the polynomials w and ` must be relatively prime (that is, theirGCD is 1).Similarly, if we onsider the \tail" of the series bS,(6) bS(u)� S(u) = 1Xj=d Xi2L ei(�i)j!uj�1= ud�1 � g(u)`(u) ;where g =Xi2L ei�id Yj 6=ij2L (1� �ju):The degree of g is also at most deg `� 1.Combining (5) and (6), and writing d� 1 = 2s we obtain the relation(7) w = `S + u2sg:The equation (7) is alled the key equation for deoding.The derivation of the key equation (7) assumed the error polynomial e wasknown. But now onsider the situation in an atual deoding problem, assumingthat no more than s errors ourred. Given the reeived word r, S is omputed.Consider the key equation (7) as a relation between the known polynomials S; u2s,and unknowns 
;�;�: 
 = �S + u2s�:Suppose a solution (
;�;�) of the key equation is found, whih satis�es the follow-ing degree onditions :(8) deg � � sdeg
 < deg �;and in whih 
;� are relatively prime. We laim that in suh a solution � mustbe a fator of uq�1 � 1, and its roots give the inverses of the error loations. Thisis a onsequene of the following uniqueness statement.(4.1) Theorem. Suppose that s or fewer errors our in the reeived word r, andlet S be the orresponding syndrome polynomial. Up to a onstant multiple, thereexists a unique solution (
;�;�) of (7) that satis�es the degree onditions (8), andfor whih 
 and � are relatively prime.Proof. The existene of a solution follows from Algorithm (4.2) below. As above,the atual error loator ` and the orresponding w; g give one suh solution. Let(
;�;�) be any other. Start withw = `S + u2sg
 = �S + u2s�;



SACNAS MINICOURSE 17multiply the seond by `, the �rst by � and subtrat. We obtainw� = 
`+ u2s(g�� `�):Sine the degree onditions (8) are satis�ed for both solutions, w� and 
` areatually polynomials of degree at most 2s� 1, so it follows thatw� = 
`(and g� = `�). Sine both pairs (w; `) and (
;�) are relatively prime, they andi�er only by a onstant multiple. �Given a solution of (7) for whih the degree onditions (8) are satis�ed, workingbakwards, we an determine the roots of � = 0 in Fqnf0g, and hene the errorloations|if ��i appears as a root, then i 2 L is an error loation. Finally, theerror values an be determined by the following observation.Let (w; `; g) be the solution of (7) in whih the atual error loator polynomial` (with onstant term 1) appears. If i 2 L, then(9) w(��i) = �iei�i(��i)where �i =Qj 6=i(1��ju). (This is alled the Forney formula.) Hene we an solvefor ei, one we know the error loations.Theorem (4.1) and the preeding disussion show that solving the deoding prob-lem an be aomplished by solving the key equation (7).We will see that this an be done by adapting the Eulidean Algorithm for theGCD of two polynomials from x3.(4.2) Algorithm. The following algorithm will solve the key equation (7) andorretly deode RS(k; q), provided the weight of the error is at most bd�12  =b q�k�12 . We assume d = 2s+ 1.Input : r; � primitive elementOutput : eFOR j FROM 1 TO 2s DOsj := r(�j )S := 2sXj=1 sjuj�1



18 SACNAS MINICOURSEIF S 6= 0 THENr�1 := u2s; r0 := Sg�1 := 1; g0 := 0`�1 := 0; `0 := 1k := 0WHILE deg(rk) � s DOdivide rk into rk�1 : rk�1 = qkrk + rk+1gk+1 := gk�1 � qkgk`k+1 := `k�1 � qk`kk := k + 1IF rk 6= 0 THENdetermine roots of `k(u) = 0�nd ei using Forney Formula (9)ELSEe := 0Note: The �nal values (gk(u); `k(u)) an be shown to be (g(u); `(u)) from (7),up to a onstant multiple, and the �nal value rk is w. So the roots of `k(u) are theinverses of the error loations.We demonstrate this with an example. Use the �eld F8 (with h(�) = �3+�+1as the problems below), and the Reed-Solomon ode RS(3; 8), whih has d = n�k + 1 = 7� 3 + 1 = 5, so s = 2. Suppose the odeword = ev(1) = (1; 1; 1; 1; 1; 1; 1)is sent, but it is orrupted by errors to yieldr = (1; �; 1; 1; 1; 1; �2 + 1);or in polynomial formr = 1 + �t+ t2 + t3 + t4 + t5 + (�2 + 1)t6:The �rst step is to ompute the syndromes and the orresponding syndromepolynomial S(u). For instane,s1 = r(�) = 1 + �2 + �2 + �3 + �4 + �5 + �6(�2 + 1)= 1 + (� + 1) + (�2 + �) + (�2 + �+ 1) + (�2 + �+ 1)= �2Similarly, s2 = �4; s3 = 0; s4 = �4;So S(u) = �2 + �4u+ �4u3



SACNAS MINICOURSE 19(note the shift in indexing, as in the de�nition of S above).We now begin the Eulidean algorithm to �nd the gd of u2t = u4 and S(u),keeping trak of the remainders rk, and gk; `k. In the �rst division:u4 = �3uS + (u2 + �5u)so q0 = �3u and r1 = u2 + �5u. Heneg1 = g�1 � q0g0 = 1 `1 = `�1 � q0`0 = �3u:We ontinue in the same way (only one more step is needed in the WHILE loopin (4.2) in this small example), and obtain the results olleted in the followingtable k qk rk gk `k�1 u4 1 00 �3u �4u3 + �4u+ �2 0 11 �4u+ �2 u2 + �5u 1 �3u2 �5u+ �2 �4u+ �2 u2 + �5u+ 1Here w = �5u+ �2:We stop here sine deg(r2) = 1 < 2 = s. The next step is to �nd the roots of`2(u) = u2 + �5u+ 1 = 0:This an be done either by exhaustive searh, or by fatoring. We �ndu2 + �5u+ 1 = (1 + �u)(1 + �6u);so the roots are u = �6; �. But by the de�nition of the error loator polynomial,the loations of the errors are found from the inverses: � = ��6 and �6 = ��1, sothe errors ourred in loations 1 and 6. Finally we use the Forney Formula (9) todetermine the error values e1 and e6: with u = � = ��6, (9) says:w(��1) = �e1�1(�6) = �e1(1� �5) = �5e1:Sine w(u) = �5u+ �2, it follows that w(��1) = �, and so e1 = �3. Similarly,w(��6) = �6e6�6(�) = �6e6(1� �2) = �5e6and w(��6) = 1, and so e6 = �2. Thene(t) = �3t+ �2t6and r(u) + e(u) =  () = 1 + t+ t2 + � � �+ t6.



20 SACNAS MINICOURSEx5. Codes from Order DomainsA ertain type of generalization of Reed-Solomon odes, known as geometriGoppa odes have been intensively studied in oding theory reently. These arenamed after their disoverer, V. D. Goppa. Some of these odes have extremelygood parameters and the 1982 paper [TVZ℄ establishing this fat was a majorlandmark in the history of oding theory. The original formulation of the geometriGoppa odes required many notions from the lassial theory of algebrai urves orfuntion �elds of transendene degree one, as well as topis from number theory.However, there is a lass of odes, inluding the most important geometri Goppaodes, for whih a more elementary desription is now available. We will introduethat treatment here and work out an example to give a brief �rst indiation of howthis works. A general referene for this is the artile by H�holdt, van Lint andPellikaan [HvLP℄ from the reently published Handbook of Coding Theory.We will begin with some motivation. The onstrution of odes possessing goodparameters and eÆient deoding methods is the basi problem in oding theory.The Reed-Solomon odes are among the most powerful and suessful odes forertain appliations. Hene it is natural to try to generalize the onstrution ofReed-Solomon odes given above to produe other, potentially even better odes.In the Reed-Solomon ase, given an f 2 Lk�1 = Spanf1; t; : : : ; tk�1g for somek < q, we evaluated f at the nonzero elements of Fq to form the entries in aodeword of RS(k; q). The set of nonzero elements of Fq is a olletion of pointson the aÆne line and Lk�1 an be seen as a vetor subspae of the ring R = Fq [t℄.A possible extension might proeed as follows. Let S = fP1; : : : ; Png be a set ofpoints in F tq . We an then follow the Reed-Solomon ase to de�ne an evaluationmapping by evS : Fq [X1; : : : ; Xt℄! Fnqf 7! (f(P1); : : : ; f(Pn)):The mapping evS is learly linear, so if L is a �nite-dimensional vetor subspae ofpolynomials in t variables, the image E = evS(L) will be a linear ode in Fnq , alledan evaluation ode.This gives a very general reipe for onstruting odes, inluding the Reed-Solomon odes and a number of other lasses of odes (suh as the Reed-Mullerodes, see [W℄) that have been studied in oding theory. But there is no india-tion of how the S and the subspae L might be hosen to yield odes with goodparameters and eÆient deoding methods. It has reently beome lear that oneway to supply this missing ingredient is the notion of an order (or weight) funtionon a ring. The following is a slightly simpli�ed treatment of a speial ase of thisonstrution. Let � � Z�0 be a subset of the form� = hm1; : : : ;mti= fa1m1 + � � �+ atmt : ai 2 Z�0g:Given a �eld F and a ommutative ring R, we say that R is an F -algebra if Rontains F and the multipliation in R restrited to F is the same as multipliationin F . For instane, the polynomial ring Fq [X1; : : : ; Xt℄ is an example of an Fq -algebra.(5.1) De�nition. Let R be a �nitely-generated ommutative Fq -algebra with iden-tity, and let � be as above (for some hoie of m1; : : : ;mt). A surjetive funtion



SACNAS MINICOURSE 21� : R ! f�1g [ � is said to be a order funtion on R if it satis�es the followingproperties for all f; g 2 R, and � 2 Fq :(1) �(f) = �1 if and only if f = 0.(2) �(�f) = �(f) for all � 6= 0.(3) �(f + g) � maxf�(f); �(g)g, with equality if �(f) 6= �(g).(4) If �(f) = �(g) 6= �1, then there exists � 6= 0 suh that �(f + �g) � �(f).(5) �(fg) = �(f) + �(g).The following Proposition develops some �rst properties of rings with order fun-tions.(5.2) Proposition. Let � be a order funtion on R.(1) We have �(1) = 0 (the additive identity in �), and hene �() = 0 for all 6= 0 in Fq .(2) Every R having a order funtion is an integral domain. (A ring R is saidto be an integral domain if it has no nonzero zero-divisors, where a zero-divisor is de�ned to be any element a 2 R suh that ab = 0 for some nonzerob 2 R.)(3) Every set of elements of R with distint � values is linearly independentover Fq .(4) There exists an Fq -basis of R onsisting of elements with distint � values.As a �rst example, note that the ring R = Fq [X ℄ satis�es this de�nition if wetake �(f) = deg(f). Thus the Reed-Solomon ode set-up is inluded in this largerontext.(5.3) Example. Let q = 4. In the olletion of all polynomials in two variablesX1; X2 with oeÆients in F4 , denoted F4 , we onsider the set R of all (�nite)linear ombinations of the monomials in the set� = fX i1Xj2 : 0 � i � 2; j � 0g:As in our onstrution of the �nite �elds Fpr before, we will make this set of monomi-als into a ring (not a �eld, though, sine most elements will not have multipliativeinverses). We will do this by de�ning appropriate sum and produt operations. Thesum operation is the familiar sum of polynomials. For the produt, we multiply thefators as polynomials, then divide by the polynomial X31 + X22 + X2, thinking ofthe X31 as the \leading term" for the division. For instane, dividing X31 +X22 +X2into �X41 +X1 gives a quotient of �X1 and a remainder of �X22 +�X2+X1. Notiethat the terms that an appear in remainders are exatly the monomials in �. (Inabstrat algebra, the onstrution we are doing here leads to the idea of the quotientring F4 [X1; X2℄=I;where I = hX31 +X22 +X2i is the prinipal ideal generated by X31 +X22 +X2.)For eah monomial in �, we have the following notion of its weight, or order:�(Xa1Xb2) = (2; 3) � (a; b) = 2a + 3b. These are distint beause of the limitation0 � a � 2. So in fat the set � is an example of part (4) of Proposition (5.2) above.The set of integers we get here as �-values of monomials is preisely the subset� = h2; 3i � Z



22 SACNAS MINICOURSEas in De�nition (5.1) above. And in fat we an extend � to R by setting�(f) = maxf�(Xa1Xb2) : Xa1Xb2 appears in fg:We laim that this makes R into a order domain with � = h2; 3i = f2i+ 3j : i; j 2Z�0g � Z�0.We will now present the most important examples of evaluation odes as de-sribed at the start of this setion. The ring R = Fq [t℄ leading to the Reed-Solomonodes an be thought of as the ring of polynomial funtions on the line over the�eld Fq . If R is an order domain, there is a geometri objet assoiated to R ina similar way. Let R = Fq [X1; : : : ; Xt℄=I has an order funtion �. The geometriobjet assoiated to R is alled the variety de�ned by the ideal I , the ommon zerolous of all polynomials in I :X = V(I) = f(a1; : : : ; at) 2 F tq : f(a1; : : : ; at) = 0 for all f 2 Ig:Sine Fq is �nite, X is also a �nite set.(5.4) Example. We ontinue with the order domain introdued in Example (5.3).To onstrut evaluation odes, we need to know the points in X , where X =V(X31 + X22 + X2). There are exatly eight suh points with oordinates in F4 .Writing � for a primitive element of F4 (onstruted using h(�) = �2+�+1 = 0),the eight points an be numbered as follows:P1 = (0; 0) P2 = (0; 1)P3 = (1; �) P4 = (1; �2)P5 = (�; �) P6 = (�; �2)P7 = (�2; �) P8 = (�2; �2):To onstrut odes from an order domain, we will evaluate funtions from somevetor subspae L in R at the points in X . As in the Reed-Solomon ase, the mostuseful vetor subspaes L of R will have the form L = ff 2 R : �(f) � mg for somem 2 �.(5.5) Proposition. Let (R; �) be an order domain as above. For a 2 �, let La =ff 2 R : �(f) � ag and let L�1 = f0g. Then La is a �nite dimensional vetorsubspae of R for all a.Proof. Closure of eah La under sums and salar multiples follows from parts (2)and (3) of De�nition (5.1). �We now present some examples of evaluation odes onstruted using the Lasubspaes. We will write Ea = evS(La), where evS is the evaluation mapping asabove.Continuing with R from (5.3) and (5.4) above, The ode E3 = ev(V3) is obtainedas follows. The vetor spae L3 is spanned by f1; X1; X2g, sine �(1) = 0, �(X1) =2, �(X2) = 3, and all other monomials in � have �-value at least 4. The odewordsare obtained by evaluation at the eight points Pi above. This gives the followinggenerator matrix for a ode of blok length n = 8 over F4 :(10) G = 0� 1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �21A :



SACNAS MINICOURSE 23Determining the minimum distane of the evaluation odes an be quite deliate,sine it involves the subtle question of how many zeroes a polynomial in La anhave at the Fq -rational points on X . There are both geometri and arithmeti issuesinvolved. In the following simple example the geometry suÆes to understand whatis going on.Consider the E3 ode over F4 studied above. Eah odeword is a linear ombi-nation of the three rows of the matrix G given in (10). Hene eah odeword isformed by evaluation of some linear funtion f = a+bX1+X2 at the 8 F4 -rationalpoints. We an use a famous result known as B�ezout's theorem to give an upperbound for the number for the number of zero entries in a odeword, hene a lowerbound for d. B�ezout's theorem says that over any �eld, if X is a the set of zeroes ofa polynomial F of degree m in two variables, and Y is the set of zeroes of a seondpolynomial G of degree n whih has no fator of positive degree in ommon withF , then jX \ Y j � mn.Beause X is de�ned by a polynomial of degree m = 3, it meets eah lineV(a+bX1+X2) (degree n = 1) in at most mn = 3 �1 = 3 points, and hene d � 5.Some nonzero words in E2 have weight exatly 5 sine some of these lines intersetX in exatly 3 aÆne F4 -rational points. The bound obtained from B�ezout's theoremusing the de�ning equations of X is sharp in this ase, but that will not always betrue.Order domains and assoiated odes are a subjet of urrent interest in odingtheory. There is a very good deoding algorithm alled the Berlekamp-Massey-Sakata (or BMS) algorithm that applies very generally. This onstrution looksquite promising as a way to onstrut odes with good parameters and eÆientdeoding methods. Although the Reed-Solomon odes have suÆed \so far" forthe engineering problems we have enountered, many experiened oding theoristsbelieve that it is only a matter of time before these more general odes are exploitedalso in the real world. Problem SessionsProblem 1. (a) Aording to the Singleton bound, what is the largest possiblenumber of odewords for a ode C � F 82 with minimum distane d = 3?(b) Improve this bound by showing that number of odewords in suh a ode isatually fewer than 32. (Hint: onsider Hamming balls of radius 1 entered aboutthe odewords.)Problem 2. Let h(x) be an irreduible polynomial over Fp of degree r. Prove thath(x) divides xpr�1 � 1 Hint: Think about what part 5 in Theorem (2.1) says aboutthe nonzero elements of the �eld Fpr .Problem 3. Prove that if a polynomial of degree 3 or less has no roots, then itis irreduible. Is this true for polynomials of degree 4 and higher? Use the �rststatement to show that the polynomial p(�) = �3 + �+ 1 is irreduible over F2 .Problem 4. Consider the �eld F8 obtained by using the irreduible polynomialh(�) = �3 + � + 1 from Problem 3. Write eah of the elements of this �eld as alinear ombination of 1; �, and �2. Construt the addition and multipliation tablesfor the elements expressed in the form 0; 1; �; �2; : : : ; �6.



24 SACNAS MINICOURSEProblem 5. Show that h(�) = �4 + �3 + �2 + � + 1 = 0 is irreduible over F2 ,but � is not primitive for F16 .Problem 6. Find all of the irreduible, moni, quadrati polynomials over F3 .Whih of these polynomials have roots that are primitive for F9?Problem 7. Prove that for a; b 2 Fpr , (a+ b)pr = apr + bpr . (Hint: �rst show that�pk� is divisible by p.)Problem 8. Consider the �eld F8 obtained by using the irreduible polynomialh(�) = �3 + � + 1 over F2 . Let C denote the Reed-Solomon ode over F8 withgenerator polynomial g(t) = (t� �)(t� �2)(t� �3)(t� �4)?(a) What are the parameters of this ode (i.e., what are n, k, and d)?(b) Construt the generator matrix for this ode.() How would you enode the message onsisting of the vetor (1; �3; �2), i.e,what is the orresponding ode vetor ?(d) Suppose somebody hands you the vetor (�3; 1; �3; �; �; 1; 0) and laims thatit is a odeword. Verify that this is really the ase without using the deodingalgorithm. Can you determine the original message vetor?Problem 9. Consider the Reed-Solomon ode from the previous problem. Supposeyou reeive the vetor r = (1; �2; �4; �6; �; �; �). Assuming there are at most twoerrors, what is the original odeword?Problem 10. Consider the Reed-Solomon ode RS(k,q).(a) Prove that the rank of the generator matrix is k.(b) Let  2 Fq�1q . Prove the onverse of Proposition (2.4), that is, if g(t) divides (), then  is a odeword.Problem 11. What are the generator and parity hek matries for the Reed-Solomon ode RS(3,8) where the polynomial h(�) = �3+�2+1 is used to generateF8 .Problem 12. Consider the Reed-Solomon ode RS(k,q). Here is an alternativemethod of produing a map from the set of message vetors to the set of odewords.Let g(t) be the generator polynomial for this ode. For eah message polynomialf(t), de�ne the orresponding odeword polynomial to be(t) = tq�k�1f(t)� d(t);where d(t) is the remainder upon division of tq�k�1f(t) by g(t). This method isalled systemati enoding sine the original message an be read diretly from anunorrupted odeword.(a) From Problem 2, we know g(t) divides tq�1 � 1. De�neh(t) = tq�1 � 1g(t) ;whih we all the parity-hek polynomial. Show that (t)h(t) is divisible by tq�1�1if and only if (t) is a odeword.(b) Again, we onsider the Reed-Solomon ode RS(3,8). Given thatg(t) = (t� �)(t � �2)(t� �3)(t� �4) = t4 + �3t3 + t2 + �t+ �3;



SACNAS MINICOURSE 25show how to enode the polynomials f(t) = 1 and f(t) = t � �. Note that thissystemati oding does not produe the same results as the evaluation map ev :Lk ! Fq�1q .() Compute the parity-hek polynomial for RS(3,8). Use this to test whether(t) = 1 + �t+ t2 + �t3 + t4 + �t5 + t6 is a odeword.Referenes[HPL℄ T. H�holdt, R. Pellikaan, and J. van Lint, Algebrai Geometry Codes, Handbook ofCoding Theory (W. Hu�man and V. Pless, eds.), Elsevier, Amsterdam, 1998, pp. 871-962.[HP℄ W. Cary Hu�man, and V. Pless, Fundamentals of Error-Correting Codes, CambridgeU. Press, Cambridge, UK.[Imm℄ K. Immink, Reed-Solomon Codes and the Compat Dis, Reed-Solomon Codes and theirAppliations, S. Wiker and V. Bhargava, editors, IEEE Press, New York, NY, 1994,pp. 41{59.[MES℄ R. MEliee and L. Swanson, Reed-Solomon Codes and the Exploration of the Solar Sys-tem, Reed-Solomon Codes and their Appliations, S. Wiker and V. Bhargava, editors,IEEE Press, New York, NY, 1994, pp. 25{40.[MWS℄ F. MaWilliams and N. Sloane, The Theory of Error-Correting Codes, North Holland,Amsterdam.[Mor℄ C. Moreno, Algebrai Curves over Finite Fields, Cambridge U. Press, Cambridge, UK.[P℄ O. Pretzel, Error-Correting Codes and Finite Fields, Oxford U. Press, Oxford, UK.[SKHN℄ Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A method for solving keyequation for deoding Goppa odes, Inform. and Control 27 (1975), 87{99.[TVZ℄ M. Tsfasman, S.Vl�adut�, and T. Zink, Modular Curves, Shimura Curves and GoppaCodes Better Than the Varshamov-Gilbert Bound, Math. Nahr. 109 (1982), 21{28.[vLi℄ J. van Lint, Introdution to Coding Theory, 2nd edition, Springer-Verlag, Berlin, 1992.[W℄ S. Wiker, Error Control Systems for Digital Communiation and Storage, PrentieHall, Englewood Cli�s, NJ, 1995.Department of Mathematis College of the Holy Cross Worester, MA 01610E-mail address: little�maths.holyross.eduDepartment of Mathematis Loyola Marymount University Los Angeles, CA 90045E-mail address: emosteig�lmu.edu


