ERROR CONTROL CODES FROM ALGEBRA AND
GEOMETRY — NOTES FOR SACNAS MINICOURSE

JOHN B. LITTLE
COLLEGE OF THE HoLy CROSS

EDWARD MOSTEIG
LovyorLA MARYMOUNT UNIVERSITY

September 25, 2004

ABSTRACT. Communication of information often takes place over noisy channels.
For reliability, it is often necessary to encode the transmitted information in such a
way that errors can be detected and/or corrected when they occur. Designing schemes
that achieve error control without introducing undue redundancy, and that admit
efficient encoding and decoding, are the main goals of coding theory. Techniques
from algebra and geometry have come to play an important role both in designing
codes and in developing encoding and decoding algorithms. This minicourse will
introduce the basic theory of error control codes, illustrate this with the example of
the Reed-Solomon codes, then introduce an important recent idea the construction
of codes from order domains.

§1. BAsics oN ERROR CONTROL CODES

Coding theory and information theory are relatively new subjects; their foun-
dations were laid by Claude Shannon in a seminal paper [S] in 1948. Starting in
the early 1950’s many workers in communications and electrical engineering have
developed coding schemes to ensure reliability of information transmission in areas
such as

(1) communications with deep-space exploration craft,
(2) design of computer memory systems,

(3) the CD audio and DVD video systems,

(4) wireless telephony,

and many others.

As coding theory has grown, more and more tools from algebra have come to
be useful for finding codes with good properties and for implementing encoding
and decoding procedures. In this section, we will review some basic definitions.
The references [HP], [McWS], and [vLi] are excellent sources for more detailed
presentations of this basic material.

We will always consider a communications environment in which all messages are
divided into “words” or blocks of a fixed length, k, formed using a finite alphabet
with ¢ symbols. The simplest case (also the one best adapted to electronic hard-
ware) is an alphabet with two symbols, the binary digits 0,1. And indeed in most

1

2 SACNAS MINICOURSE

applications, for instance in the codes used for the transfer of digital information
within computer systems, and for storing information on compact disks, digital
audio tape, or other media and retrieving it for use at a later time, g is either 2 or
a power of 2. The alphabet with exactly two symbols can be identified with the
finite field F,. Often, we consider all k-tuples as possible words that can appear in
a message, so the collection of words may be identified with F¥.

In order to detect and/or correct errors when they occur, some redundancy must
be built into the information that is actually transmitted over the channel. One
possible approach is to make the encoded form of a message consist of blocks or
n-tuples of length n > k over the same alphabet as that used for the message itself.
Then the encoding and decoding operations can be described mathematically as
functions:

E:F} =Ty

and
D :F! — IFQ’“ U { “error”

where E is one-to-one, and D o E is the identity mapping on F¥. The function D
will return the “error” value on some words in the complement of the image of F
that cannot be decoded on the basis of the information known to the decoder. We
call C = Im(E) the set of codewords, or just the code, and the C obtained in this
way are called block codes of length n over the alphabet Fs.

When a codeword = is sent over the channel and a transmission error occurs, the
effect is to replace the codeword = by a sum z + e where e € F3' is the error vector
(this is the componentwise sum, using addition modulo 2). The word y = x + e is
received by the decoder, which then attempts to recover z itself. The number of
nonzero entries in e determines how many of the entries in = have been corrupted.
In order for the error to be detectable, x + e must not be another codeword. Under
many circumstances (for instance if the probability of an error occurring is the same
in each location of each transmitted word), smaller numbers of nonzero entries in e
are more likely than larger numbers. A good strategy is then to attempt to correct
errors by finding the closest codeword to the received word (the “nearest neighbor”
codeword) in the following sense.

Let z,y € F'. The Hamming distance between x and y is defined to be

d(z,y) ={i € {1,... ,n}:2; #y; }|

= number of nonzero entries in 4+ y mod 2.

For example, d(11000111,10100101) = 3. Note that d(z,0), which is called the
weight of x, is just the number of nonzero entries in x. It is an nice exercise to show
that d(z,y) satisfies all the properties of a metric or distance function on the finite
set Fy'. In particular, we have a triangle inequality:

d(z,y) < d(z, 2) + d(z,y)

for all z,y,z € B. If 2 € F* and s > 0, we write B(z,s) = {y € F} : d(z,y) < s}
for the closed Hamming distance ball of radius s centered at z. Using this, we have
the following fundamental statement about the error-detecting and error-correcting
capability of codes.

SACNAS MINICOURSE 3

(1.1) Proposition. If a code C C F} satisfies d(z,y) > d for all distinct pairs
xz,y € C, then any error vector of weight at most d — 1 can be detected. Moreover,
any error vector of weight at most |(d — 1)/2]| can be corrected by the “nearest-
neighbor” decoding function:

D) = {

E~'(z € C :d(y,x) is minimal) if © is unique

“error” if x is not unique

PRroOOF. First note that if d(z,y) > d for all distinct pairs z,y € C, then changing
any 1 <r < d — 1 entries in a codeword never produces another codeword. Hence
any nonzero error vector of weight at most d — 1 produces a received word that
can be distinguished from all codewords. So the fact than an error occurred can
be detected, even though it may not be possible to determine from y = x + e alone
which codeword = was intended as part of the transmitted message.

For the second statement, we claim that if d(z,z') > d > 2s + 1 for all distinct
pairs of codewords x and ', then the balls B(z,s) and B(z',s) must be disjoint.
If not, then for y € B(z,s) N B(z', s)

d(z,z") < d(z,y) +d(y,z') < 2s

by the triangle inequality. But this contradicts our hypothesis. Hence if the error
vector has weight s = [(d — 1)/2] or less, the received word is in B(z,s) but not
in B(z',s) for any 2’ # z, and nearest-neighbor decoding will correct the errors
introduced in transmission. d

In real-world applications, the characteristics of the intended communications
channel (in particular the probability that a symbol is transmitted incorrectly) play
a major role in the choice of a code for a particular situation. Nearest-neighbor
decoding can fail if the received word y from the channel contains too many errors,
since then y may in fact be farther from the intended codeword z than it is from
a different codeword z’'. So when engineers compare codes, the most important
parameters are

e d=mingzycc d(z,y), the minimum distance, and
e R = k/n (or more generally log,(|C|)/n if |C| is not a power of 2), called the
information rate.

Good codes are ones for which R = k/n is not too small (so the code is not
extremely redundant), but for which d is also not too small. These conditions are
clearly somewhat incompatible. While it is known by a famous result known as
Shannon’s Theorem (see [vLi]) that there exist codes with information rate nearly
1 for which the probability of decoding a random received word incorrectly using
the nearest-neighbor function is arbitrarily small, it may be necessary to take n very
large (hence large k as well) to achieve this, increasing the amount of work (time,
energy, etc.) needed to encode or decode messages. Hence identifying good codes is
a delicate balancing act, and much effort has been devoted both to finding explicit
good codes, and to developing theoretical bounds on the parameters of codes. For
future reference we mention two of the simplest of these bounds.

(1.2) Proposition. Fiz n,d and let b = b(n,d) equal the number of n-tuples in
the ball B(xz,d — 1) centered at an arbitrary € FJ*:

b:dil (:;)

m=0

4 SACNAS MINICOURSE

Let A(n,d) be the largest number of codewords possible for a code C in B3 with
minimum distance d.

1) (Singleton bound)
A(n,d) < 2n—d+1

Hence for any code C C T with 2% codewords and minimum distance d, k <
n—d+1.

2) (Gilbert-Varshamov bound)
A(n,d) > 2"/b.

The proof of the Singleton Bound is obtained by deleting any fixed set of d — 1
entries from all the codewords of C'. The Gilbert-Varshamov bound follows from
the fact that for a code with the maximum number of codewords for the given n,d,
there cannot be any elements of FJ* outside the union U,ecB(z,d — 1). (If there
were, we could add such a word to the code and maintain the minimum distance.)

While any collection C' of codewords in FJ' can be considered as a code, we
will restrict our attention from now on to codes with some additional algebraic
structure. Namely, we will consider only linear block codes, for which the set C
is a k-dimensional vector subspace of F3*. That is, for a linear code, the set of
codewords is closed under vector sums (modulo 2, as always). The closure under
scalar multiplication required for the vector space structure is automatic in this
case, because the only scalars are 0,1 € Fy.

One reason for making this restriction is that, because linear algebra provides
powerful tools, linear codes with reasonable parameters are simply easier to con-
struct explicitly than comparably good arbitrary codes. The construction of the
Reed-Solomon codes in the next section is a perfect example of this. In addition,
linear codes admit both

e encoding algorithms that require much less stored information, and
e decoding algorithms that are much more efficient

than the methods that are available for arbitrary codes.

For instance, to compute the encoding function for a completely general code
where the codewords had no extra symmetries, it would be necessary to store
all 2% of the codewords and do some form of table look-up to find the codeword
corresponding to each word x € F¥ in the message. While this look-up can be
done efficiently, it requires an impractically large amount of storage for codes with
realistic n and k& for some applications. (For instance, one of the codes used in the
CD digital audio system can be viewed as a code over Fy with n = 256 and k = 224.
Hence there are 2224 different codewords, each of which is a string of 256 elements
of Fy—a total of over 6.4 x 1050 gigabytes of information!)

On the other hand, a linear code C' can be completely specified by any basis—k
vectors instead of 2F of them. Moreover, the encoding operation can be performed
via matrix multiplication. It is customary to write the # € F} and the codewords
in F3' as row vectors. For any k& x n matrix G whose rows form a basis for C, the
formula E(z) = G defines an encoding function E : F¥ — F3 for C. The matrix
G is called a generator matriz for C.

SACNAS MINICOURSE 5

Example 1. In F; consider the code C given by the generator matrix

100 01 10
GZOIOOIOI
0010011
0001111

For this code, we have n = 7,k = 4,d = 3. Since [(3 — 1)/2] = 1, this code can
correct any single bit error in word of length 7. How we can tell what d is? For
linear codes, if =,y € C, then z —y € C too. Hence

7712}20 d(z,y) = mglylélc d(z —y,0) = Z%lgc d(z,0)
In other words: For linear codes, the minimum distance is the same as the minimum
“weight” of the nonzero codewords. It can be checked that d = 3 here by explicitly
writing out all 15 nonzero codewords and noting their weights. Note that if the
encoding function E(z) = zG is used, then the four entries of = are copied into the
first four entries of E(x).

The code given by G above has another interesting property: every word in 5
is either a codeword, or Hamming distance 1 from a unique codeword (that is, the
union of the Hamming balls of radius 1 centered at the codewords is all of F7). In
other words, the Hamming balls centered at the codewords are “packed together”
in an extremely efficient way — there is no left-over space at all. There is a infinite
family of such codes containing this one (parameters n = 2" — 1, k = 2" —r — 1,
d = 3 for all r > 1) that all have this property. They are called the Hamming codes
(see [HP] or [McWS]).

A rudimentary decoder for this code would use a “check matrix” H for C such
as

1 10
1 01
011
H=]1 11
1 00
010
0 01

for which the codewords z € C (written as rows) are the solutions of xtH = 0.
Assuming the received word contains no more than 1 bit error,

(1) Given a received word z' compute s = z'H; if s = 0, then 2’ is a codeword
itself; if not, then

(2) Toggle each bit in z' in turn to get words y, until a solution of yH = 0 is
found.

Even better methods are known too if we are allowed to store some precomputed
information about the code, for instance the “syndrome decoding” method (see [HP]
or [McW§)).

For future reference, generalizing the observation above, we see that if a linear
code is given by a generator matrix of the form G = (I|B) where I is a k x k identity
matrix, and B is a k x (n — k) block, then the first k entries in E(z) = G will
be the entries from z itself. Encoding functions for which all the symbols of the

6 SACNAS MINICOURSE

input word appear unchanged in some components of the corresponding codeword
are said to be systematic encoders. It is customary to call those components of the
codewords the information positions. The remaining components of the codewords
are called parity checks. This name comes from the fact that one simple error-
detection scheme for binary codes is to require that all codewords have an even (or
odd) number of nonzero digits. To ensure this, one could simply append another
0 or 1 to each message word to adjust the parity of the number of 1’s. If one bit
error (in fact, any odd number of errors) is introduced in transmission, that fact
can be recognized by counting the number of 1’s in the received word. A similar
scheme, in which an extra check digit is added to credit card numbers, is used to
detect transmission errors when your credit is checked during purchases.

Systematic encoders are sometimes desirable from a practical point of view be-
cause the information positions can be copied directly from the word to be encoded;
only the parity checks need to be computed. There are corresponding savings in
the decoding operation as well. If information is systematically encoded and it is
determined that no errors occur in transmission, the words in the message can be
obtained directly from the received words by simply removing the parity checks. It
is perhaps worthwhile to emphasize again at this point that the goal of the coding
schemes we are considering here is primarily reliability of information transmission,
not secrecy!

§2. REED-SOL.OMON CODES

In this section we will study the construction of a class of codes having very good
properties. These codes were first constructed in 1960 by Irving Reed and Gustave
Solomon, so they are known as Reed-Solomon codes. Our presentation will be quite
similar to the original way these codes were constructed.

To describe the Reed-Solomon codes, we need to introduce explicit fields larger
than Fs = {0,1} to be used as code alphabets. Sticking to the binary setting,
we might take the set of strings of 0,1’s of a fixed length r as the alphabet. For
instance, strings of length r = 4 would give 2* distinct symbols:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

In order to work with the set-up of linear codes, though, this set must be given the
structure of a field.

As a quick review, we now mention a few definitions. A set R with two binary
operations, ‘+’ (addition) and ‘-’ (multiplication), is called a commutative ring if
there exist two distinct elements 0,1 € R such that for all a,b,c € R
e (Commutativity) a+b=b+a, a-b=b-a
e (Associativity) (a+b)+c=a+ (b+¢), (a-b)-c=a-(b-c)

e (Identity) a+0=a, a-1=aq
e (Additive Inverses) Va € R, 3(—a) € R such that a+ (—a) =0
e (Distributivity) a- (b+¢) = (a-b) + (a - ¢)

If R has the additional property that each nonzero element has a multiplicative
inverse, then R is called a field. Common examples of fields are @, R and C, though
we will focus on finite fields.

SACNAS MINICOURSE 7

We now describe how to make strings of binary symbols into a field. We can
interpret a string 83628180 (8i € Fa) as a polynomial in a new variable a:

(1) Bsa® + Baa® + Bra + By

The set of all 16 such expressions will be denoted by Fi4, though we need to do
some work to show that this is actually has the structure of a field.

The addition operation presents no problems we will use the usual polynomial
addition (same as vector addition in F3). We also need a multiplication operation
and the key point is that we know how to multiply polynomials. For example,

@+ +1)=a" +a*+a® +1.

But of course the degree of the product is too large here. To reduce to the proper
range of degrees < 3, we can divide by some polynomial of degree 4 in a (using
“polynomial long division”) and take the remainder of the product (recall that the
remainder is either 0 or of degree strictly less than the degree of the divisor, because
the division process continues until the leading term of the divisor is larger than
the degree of the remaining intermediate dividend).

This much works for any divisor polynomial h(a) of degree 4. But, do we always
get a field this way? The answer is no. For instance, if h(a) = a* + 1, then
(a® +1)(a® +1) = a* + 1, so when we divide, the remainder will work out to be
zero! On the other hand a field cannot have nonzero elements a, b such that ab = 0.
So we must take an irreducible polynomial h(a) as our divisor one which does
not factor into a product of polynomials of positive degree. (These are analogous
to the prime numbers in the integers.)

For instance, it can be checked that h(a) = a' + a + 1 is irreducible. Once
again, multiplication is polynomial multiplication of the expressions (1), followed
by reduction using the basic relation a* + a + 1 = 0. For instance, on our example
above, this yields

@@ +D@+1)=a"+a*+a?+1
=a(a® +a+1)+a® + a+ 1 by division

(recall — the coefficients are integers mod 2!) Hence, in Fig (constructed using
h(a) = a* + a + 1), we have

@@+ D> +1)=a*+a+1.

One easy way to see that this method satisfies properties needed to see we have
a field is to check that the powers 1,a,a?,...,a' are all distinct, and a'® = 1.
Hence

e The powers of a give all the nonzero elements of F4, and
e Each element o* has a multiplicative inverse a'®~*.

We call a a primitive element for Fig.

The following theorem shows that we can construct finite fields of all sizes p”
where p is a prime number, and r > 1. These are sometimes called Galois fields
after the 19th century French mathematician Evariste Galois, who discovered them.

8 SACNAS MINICOURSE

(2.1) Theorem. Let p be prime in 7.

1) The set of integers mod p is a field denoted F,.

2) For all p and all r > 1, there are irreducible polynomials of degree r with
coefficients in F,,.

(3) Let h(e) be an irreducible polynomial of degree r with coefficients inF,. The
set of polynomials of degree < r — 1 in « with coefficients in Fy, under the

1
(
(

usual addition and multiplication defined by f(a)-g(a) = f(a)g(a)h, where

7 denotes the remainder on division by h, is a field of size p" denoted
Fy[al/{h(a)).

(4) Different choices of irreducible h of the same degree yield isomorphic fields,
which are all denoted F,- .

(5) Ewvery field Fp- has a primitive element (an element 8 whose powers yield
all nonzero elements of By).

Proofs may be found in [HP], [P], or standard texts on abstract algebra. Ex-
tensive tables of irreducible polynomials in F,[z] have been compiled to provide
constructions of these fields for use in coding theory and other areas. See [McWS],
for instance.

We will use this fact in the following way. Suppose we want to construct codes
attaining the Singleton bound over a fixed finite field A = F,, where ¢ = p" for
some r > 1. (These are called MDS, or “maximum distance separable,” codes).
Restricting to codes of length n = g, there is a way to do this using a basic fact
about polynomials over a field. Fix an integer k& < ¢. Polynomials of degree < k
have at most k — 1 roots in F,, and some have precisely that many roots.

We can use that observation and write Ly for the set of all polynomials in [F, [x]
of degree < k. We will always assume k < q here. Ly is a vector space over F, of
dimension k. For each polynomial f € Ly, we construct a word in F] by evaluating
f at the elements of Fy, to get a g-tuple (letting o be a primitive element),

(f(0), f(1), f(a),..., f(a"?))

(recall /! = 1). When we do this, we get a word with

(1) at most k — 1 zero entries, hence
(2) atleast q— (k—1)=qg—k+1=mn—k+ 1 nonzero entries (and some have
exactly k — 1 zero entries).

The set of all such words is a linear code since Lj is a vector space, and the
evaluation mapping is linear. Hence the resulting code will have minimum distance
d=n—k+1 (if k is small relative to q).

Using all ¢ elements 0,1, q,...,a? 2 of F,, we get the so-called extended Reed-
Solomon codes. The Reed-Solomon codes themselves come from evaluating only at
the nonzero elements of the field (omitting the f(0) entry to get a word in FZ~").

Summarizing, we have the following result.

(2.2) Theorem. We write F,[z] for the ring of all polynomials in x with coeffi-
cients in F,. Pick a primitive element o for F,, and write the nonzero elements of
F, as

SACNAS MINICOURSE 9
Let k < q and Ly = {f € Fy[z] : deg f < k}. Write

ev: Ly — IF'Z*]
fe (f), fl@),..o, f(@™?)).
Then Im(ev) is a linear code with n = q — 1, dimension k, and minimum distance
d=n—k+1=q—k, called a Reed-Solomon code, RS(k,q). All Reed-Solomon codes

reach the Singleton bound by construction — they are MDS codes: k =n—d+1, or
d=n—-k+1.

For example, using the standard monomial basis

{1,z,2% 2% ... ,a:’“il}

for Ly, the Reed-Solomon code RS(3,16) (parameters: n = 15,k = 3,d = 13 over
Fig, so 163 = 4096 distinct codewords) has generator matrix

1 1 1 ... 1 1 ... 1
G=[1 a o> -+ a" o .. aol*
1 a2 o -+ aoa% o .. ol3

Reed-Solomon codes are probably the most commonly used codes in certain sit-
uations where errors tend to occur in “bursts” rather than randomly. This includes
communication to and from deep-space exploration craft, the CD digital audio
system, and many other applications. Reed-Solomon codes are an important com-
ponent of the coding techniques used there (but also not the whole story see the
papers [McES] and [Imm] for instance). There are several reasons for this. The
first reason is that Reed-Solomon and other block codes can correct relatively long
bursts of errors on the bit level, even if the minimum distance d is relatively small.
To see the idea, note that the entries of a codeword for a block code over a field Fy-
may be represented as strings of r bits: If For = Fy[a]/(h(a)), where h irreducible
of degree r, then an element 8, 1" ! + --- 4+ Bia + By of Fyr can be identified
with the vector (8,_1,...,01,580) € FJ. Under this identification, a Reed-Solomon
codeword is represented by a string of (2" — 1)r bits. A burst of 27 consecutive
bit errors, for instance, will change at most three of the entries of the codeword,
when they are viewed as elements of Fy». Hence by Proposition (1.1) if d > 7, for
instance, then any consecutive burst of 2r bit errors can be corrected. On the other
hand, if the errors are located in 2r arbitrary entries in the word, they may not be
correctable with a code of that minimum distance.

The last, and most important, reason that Reed-Solomon codes are attractive
is that they have additional algebraic structure that greatly facilitates the en-
coding and decoding operations. To see the idea, consider the generator matrix
G for the Reed-Solomon code RS(k,q) constructed by evaluating the monomials
{1,z,2%,... ,2¥71} at the o’ € F, \ {0}. The ith row of G has the form

()77 (@)1 (@) (a2),
Cyclically permuting this row, we obtain

(921, (1) (@), (a0),

10 SACNAS MINICOURSE

which is equal to

a(ifl)(q72) . ((1)1'71: (a)i717 (a2)i71= o (aq72)i71)

because a?~! = 1. Thus, a cyclic permutation of the ith row yields a scalar mul-
tiple of the same row it is also one of the Reed-Solomon codewords! The cyclic
permutation is a linear mapping S on IF;’] , and we have just seen that there is a
basis of RS(k, q) consisting of eigenvectors for S. It follows that the Reed-Solomon
code RS(k,q) is invariant under S, since all the codewords are linear combinations
of the rows of G.

Linear codes C' C F;' that are invariant under the cyclic permutation

S:F! = F}
(z1,22 ... ,xn) = (T, @1, , Tp_1)
are called cyclic codes. The observations above give the proof of the following fact.
(2.3) Proposition. For all ¢ and all k < q, the Reed-Solomon code RS(k,q) is
cyclic.

To understand the full meaning of this observation, we need to make one further
identification. Namely, given a codeword ¢ € RS(k, q):

c=1(co,Cry--. cq2) = (F(1), fla),..., f(a??)),

where f € L C F,[z], we can use the entries in ¢ as the coefficients in another
polynomial in a new variable . We write ¢(c¢) for this polynomial:

(2) Y(c) = co+ert+ -+ ey ot

and call it the “polynomial form” of the Reed-Solomon codeword c.

It follows from the algebra of this situation that the polynomial forms (c) of
the codewords ¢ € RS(k,q) are all divisible by a polynomial called the generator
polynomial for the Reed-Solomon code. (This follows from facts about the algebra
of polynomials developed in the next section. Unfortunately, we do not have the
time to go into this in detail; see [HP] or [P] for full details.)

To identify the generator polynomial for C = RS(k,q), we may proceed as
follows. From (2), every element of ¢(C') has the form

Y(c) =co+eit+ - +ey ott?

where we obtain the coefficients

<
I
=]

by evaluating some fixed f(z) = Z;:(; ajzl at ¥ = o' for i =0,...,q — 2. Substi-
tuting these expressions for ¢; into ¢(¢) and interchanging the order of summation
we see:

ble) = aj(a’) | ¢
i=0 \ j=0

(3) e e
= Zaj (Z(a'it)i> :

i=0

SACNAS MINICOURSE 11

In F,, the roots of 0 = 1+ z + 2% 4+ -+ 4+ 2772 are precisely the z # 0,1. Hence
the inner sum in the last line of (3) is equal to zero provided that a’t # 0,1. The
whole sum equals zero if aft # 0,1 for all j = 0,... ,k — 1, or equivalently if t €
{a,a?,... ,a? %=1} Since ¢ € RS(k,q) was arbitrary, this computation shows that
for all ¢, 1(c) from (2) (viewed as a polynomial in F, [¢]) has t = a,a?,... a9 k!
as roots. Consequently, every ¢(c) is divisible by

(4) gt) = (t —a)(t —a2) - (t —atF D).
In fact, we have:

(2.4) Proposition. The polynomial g(t) from (4) is the generator polynomial for
RS(k,q).

Since the minimum distance of a Reed-Solomon code satisfies d = g — k, the
generator polynomial can also be written as

gt) =t —a)t —a?)---(t —a®l).
For example, the Reed-Solomon code RS(3,16) from above has
glt) = (t—)t - a®)(t — a®) -+ (t - a'?)
sinced=15—-3+1=13.

63. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS

In this section, we will introduce another key aspect of the algebra of polynomials
in one variable over a field, the Euclidean Algorithm. This process for computing a
greatest common divisor goes back to the ancient Greeks, and was used first in the
case of ordinary integers. The ring of integers Z and the polynomial rings F, [z] have
many of the same properties, because both have well-behaved division algorithms.
We have already used polynomial division in constructing our finite fields. Here is
a precise statement of the characterization of the quotient and remainder.

(3.1) Theorem. (Division algorithm in Fy[z]) Let f(z),g(z) be nonzero polyno-
mials in Fy[x]. Then there exist unique polynomials q(x) and r(x) satisfying

F(2) = a(@)g(x) +r(x),

where either r(z) is the zero polynomial, or else deg(r(z)) < deg(g(z)).

(Note: the degree of a polynomial is by definition the largest power of the variable
appearing with a nonzero coefficient in the polynomial. The degree is not defined
for the zero polynomial, and that is why the theorem is stated in the way given
here.)

The first consequence of this division algorithm concerns special subsets of the
polynomial ring called ideals. An ideal I C IF,[z] is a nonempty subset that is closed
under sums, and also closed under multiplication by all polynomials. That is, if
f,g €I, then f+ g€ I. Moreover, if f € I and h is any polynomial, then hf € I.

For example, let 5 € F,. Then the set I of all polynomials f € [, [z] satisfying
f(B) = 0is an ideal in F,[z]. It is easy to check that both defining properties
are satisfied here: If f(8) = 0 and g(8) = 0, then (f + g)(8) = f(8) + g(8) = 0.
Moreover, if h is any polynomial (hf)(8) = h(8)f(8) = h(B) -0 = 0.

Theorem (3.1) implies the following statement about ideals.

12 SACNAS MINICOURSE

(3.2) Theorem. FEvery ideal I in F,[z] is generated by a single polynomial g(x)
in the sense that

I ={q(x)g9(z) : q(z) € F,[z]}.

Before proceeding to the proof, we note that ideals of the form described here
ideals generated by a single element of the ring are called principal ideals. So this
Theorem says that every ideal in the polynomial ring F,[z] is principal. There is
also a corresponding statement in the ring of integers. Moreover, it is this fact that
underlies the existence of the generator polynomial for Reed-Solomon and other
cyclic codes as in Proposition (2.4).

Proor. If I = {0}, then the zero polynomial acts as the generator g(z). So
from now on, we assume that I contains nonzero polynomials. Let g(z) be the
nonzero monic (leading coefficient 1) polynomial of minimal degree in I. It is easy
to see that g(z) is unique, since if there were two monic polynomials of minimum
degree in I, then their difference would be in I, but of smaller degree. Now let
f(x) be any other polynomial in I, and apply the division algorithm (3.1). We get
f(x) = q(x)g(x)+r(x) where either r(z) is the zero polynomial, or else deg(r(z)) <
deg(g(x)). But this equation implies that r(z) = f(z) — g(z)g(x). So by the
properties of an ideal, r(x) € I. The polynomial r(z) cannot have smaller degree
than g(z), since we chose g(z) to have minimal degree among the nonzero elements
of I. Therefore, r(z) = 0, which shows that f(z) = q(z)g(z). Hence I is contained
in the set of multiples of g(z). But the other inclusion is automatic by the definition
of an ideal. Hence we have the equality of sets claimed in the statement of the
theorem. O

Another way to make an ideal in F,[z] is to consider all “linear combinations”
of any two given polynomials with polynomial coefficents:

(F(2).9(x)) = {alx) f(x) + b(x)g(x) : a(a), b(x) € F,[a]}.

Theorem (3.2) says that these ideals are principal ideals too, and the generator
polynomial d(z) for this ideal (f(z), g(x)) is called the greatest common divisor, or
GCD, of f(x) and g(z). The Euclidean Algorithm is a method for computing this
greatest common divisor, and an extension provides the polynomials a(z), b(z) too.

The Euclidean Algorithm works as follows to compute the GCD of two polyno-
mials f(z) and g(x). We begin by assuming deg(f(z)) > deg(g(z)) and we divide
g(z) into f(z) using (3.1). Then we divide the remainder from the first division into
g(z), the remainder from the second division into the first remainder, and so on,
until a zero remainder occurs. (This must happen eventually, since the degree of
the remainder decreases at each step.) In symbols, we can write the computations

as follows:

f(@) = qo(x)g(x) + i (2)
9(x) = qu(z)r1(z) + ra()
r1(2) = g2 (x)rs () + r3(z)

re—1(x) = qr(x)r(z) + 0

Then the last nonzero remainder is the GCD: d(x) = ri(z).

SACNAS MINICOURSE 13

Here is an example. Consider the polynomials f(z) = 2% + 2° + 23 + 22 and
g(z) = 2% + 2 + 2 + 1 in Fy[z]. Carrying out the process above, we find:

fx)=1-g(x)+2° +a" +2° +2° + 2z +1
gz) =@+)@ +a' + 22+ 2+ + 1) + 2t 2
2+t 42 4 2? +T+1—(T+1)(.7:4+.7:)+m3+1
o=z +1)+0

The sequence of remainders is

So the last nonzero remainder r3(z) = 2 + 1 is the GCD d(z) of f(z) and g(z).
(In fact f(z) = (2® + 22)d(z) and g(z) = (2 + 2 + 1)d(z), so d(x) is a common
divisor of f(z) and g(z)).

In the next section, we will see that a very good decoding algorithm for Reed-
Solomon codes is based on the kind of computations done here, and in the following
“extended” version of the Euclidean Algorithm that computes d(z) together with
the a(z), b(z) that give d(z) = a(z) f(z)+b(x)g(x). We first introduce the notation
f(x) =r_1(z) and g(z) = ro(z) to give a uniform form for the steps in the successive
divisions. So every line of the above description can be written as

ri_1(x) = qe(z)re(x) + regq (x)

for k=0,1,2,.... Then the statement of the Extended Euclidean Algorithm is as
follows.

(3.3) Algorithm.

Input : nonzero f(x),g(x)
Output : d(z),a(z), b(x)

r-1:=firg =g
a_q:=1;a9:=0
b_1:=0;by :=1
k=0
WHILE r, #0 DO
divide T into rg_q 1 TR_1 = QkTE + Tk41
k41 = Ag—1 — Gk
bry1 :=br_1 — qrbg
k=k+1

14 SACNAS MINICOURSE

Note: The polynomials a(x),b(x), and d(x) are the final values ay(z), by(z), and
ri (), respectively.

We will present a nice tabular format for organizing and carrying out these
calculations in the minicourse. This format is shown in the following example.

With the polynomials f(z) = 2° + 2° + 2° + 2° and g(z) = 2% + 2 + 2+ 1 as
in our previous example, we get the following results:

k Tk qr ay, by
-1 28+ 2® + 2% + 22 1 0
0 B+t +r+1 1 0 1
1 2+t 4+28+22+2+1 z+1 1 1
2 z +z z+1 z+1 T
3 22 +1 x 22 2441

We have
(@) f(2) + (#” + z + 1)g(z) = 2° + 1

in [Fy[z] as claimed.
Complete proofs for the Extended Euclidean Algorithm can be found in many
abstract and computational algebra texts.

§4. REED-SOLOMON DECODING

We now turn to the decoding problem for Reed-Solomon codes. Several different
but related extremely efficient decoding algorithms for Reed-Solomon and related
codes have been developed. And indeed, the fact that they are available is one major
reason for the Reed-Solomon codes’ popularity. One well-known method is due to
Berlekamp and Massey. It is very commonly used in practice (see [McWS]). Other
algorithms paralleling the Euclidean algorithm for the GCD of two polynomials
have also been considered ([SKHN], [P]), and we will study that approach here.

For simplicity we will assume that the minimum distance of our Reed-Solomon
code C is odd: d = 2s + 1. Then by Proposition 1, any s or fewer errors in a
received word should be correctable.

Let ¢ = Z‘J’;g cjtj be a codeword of C, in the polynomial representation from

2). In F,[t], c is divisible by the generator polynomial
q g
g=({—a)(t— a2) (- ozdfl).

Suppose that ¢ is transmitted, but some errors are introduced, so that the received
word is 7 = ¢ + e for some e =)., e;t'. L is called the set of error locations, and
we assume |L| < s. The coefficients e; are known as the error values.

Decoding Problem. Given the received word r, determine the set of error loca-
tions L and the error values e; for the error polynomial e with s or fewer nonzero
terms (if such a polynomial exists).

Once we find e, the decoding function will return E~1(r — e). To solve this
problem we will proceed as follows. First, we can try to determine whether errors
have occurred by computing the values of the polynomial form of the received word
at a,...,a% " If r(af) =0 for all j = 1,...,d — 1, then r is divisible by g, and
assuming s or fewer errors have occurred, r must be the codeword we intended to

SACNAS MINICOURSE 15

send. The values s; = r(a’) are called the syndromes of the received word. Note
sj =r(d’) =c(a?) +e(a’) =e(a?),

since ¢ is a multiple of g. Hence the s; are the values of the error polynomial for
j=1,...,d—-1.
The syndromes may be used as the coefficients in a polynomial

d—1
S(u) = Z sjul =t
j=1

called the syndrome polynomial for the received word r. Its degree is d — 2 or less.
By extending the definition of s; = e(a’) to all exponents j we can also consider

the formal power series
o0

S(u) = Zsjuj*l.
j=1
Suppose we knew the error polynomial e for a received word with s or fewer
errors. Then as noted above, s; = Y., ei(a?)’ = > ;. ei(a’)?. By exchanging
the order of summation, then summing formal geometric series, S(u) can be written
as

I
o - -
S mM m
— .
- :
(s
DR
s
=

t(u)

where '

(= H(l —a'u)

i€l
and . ‘
w = Ze,;oz’ H (1 - alu).
i€l j#i
Jer

The roots of £ are precisely the a~% for i € L. Since the error locations can be
determined easily from these roots, £ is called the error locator polynomial. Turning
to the numerator w, we see that

degw < degl — 1.

In addition, if 7 € L,

w(a) = e;al H (1—ala") #0.

J#ijel

16 SACNAS MINICOURSE

Hence w has no roots in common with £. From this we deduce the important
observation that the polynomials w and ¢ must be relatively prime (that is, their
GCD is 1).

Similarly, if we consider the “tail” of the series §,

S(u) — S(u) ‘ (Z ei(ai)j) !

(6) j=d \i€L
d—1 g(u)
(u)

where

The degree of g is also at most deg?¢ — 1.
Combining (5) and (6), and writing d — 1 = 2s we obtain the relation

(7 w = (S +u*g.

The equation (7) is called the key equation for decoding.

The derivation of the key equation (7) assumed the error polynomial e was
known. But now consider the situation in an actual decoding problem, assuming
that no more than s errors occurred. Given the received word r, S is computed.
Consider the key equation (7) as a relation between the known polynomials S, u2*,
and unknowns Q,A,T:

Q= AS +u™T.

Suppose a solution (2, A,T') of the key equation is found, which satisfies the follow-
ing degree conditions:

degA <s

(8)

deg Q2 < degA,
and in which Q, A are relatively prime. We claim that in such a solution A must
be a factor of u9~! — 1, and its roots give the inverses of the error locations. This
is a consequence of the following uniqueness statement.

(4.1) Theorem. Suppose that s or fewer errors occur in the received word r, and
let S be the corresponding syndrome polynomial. Up to a constant multiple, there
exists a unique solution (Q, A,T) of (7) that satisfies the degree conditions (8), and
for which Q and A are relatively prime.

ProoF. The existence of a solution follows from Algorithm (4.2) below. As above,
the actual error locator ¢ and the corresponding w, g give one such solution. Let
(Q,A,T) be any other. Start with

w = 1S +u*g
Q= AS +u*T,

SACNAS MINICOURSE 17

multiply the second by £, the first by A and subtract. We obtain
wA = Qf + u**(gA — ().

Since the degree conditions (8) are satisfied for both solutions, wA and Q¢ are
actually polynomials of degree at most 2s — 1, so it follows that

wA = QU

(and gA = (T'). Since both pairs (w,?) and (2, A) are relatively prime, they can
differ only by a constant multiple. O

Given a solution of (7) for which the degree conditions (8) are satisfied, working
backwards, we can determine the roots of A = 0 in [F,\{0}, and hence the error
locations if a~% appears as a root, then i € L is an error location. Finally, the
error values can be determined by the following observation.

Let (w,?,g) be the solution of (7) in which the actual error locator polynomial
¢ (with constant term 1) appears. If i € L, then

(9) w(a™) = a'eixi(a™)

where x; = [];;(1- a/u). (This is called the Forney formula.) Hence we can solve
for e;, once we know the error locations.

Theorem (4.1) and the preceding discussion show that solving the decoding prob-
lem can be accomplished by solving the key equation (7).

We will see that this can be done by adapting the Euclidean Algorithm for the
GCD of two polynomials from §3.

S

(4.2) Algorithm. The following algorithm will solve the key equation (7) an
correctly decode RS(k,q), provided the weight of the error is at most L%J =
L%J We assume d = 2s + 1.

Input : r, @ primitive element

Output : e

FOR j FROM 1 TO 2s DO

sj =r(al)

2s
S = E sjul ™!
J=1

18 SACNAS MINICOURSE

IF S # 0 THEN
r_q = 11,2s;r0 =S5
g-1:=1;g90:=0
{1 :=0;45:=1
k:=0
WHILE deg(ry) > s DO
divide rg into rg_1 : rg—1 = qTk + Tkt
Jk+1 = Gk—1 — Gk Gk
Cet1 = lr—1 — qily
k=k+1
IF r; # 0 THEN
determine roots of £ (u) =0
find e; using Forney Formula (9)
ELSE
e:=0
Note: The final values (g (u), £ (u)) can be shown to be (g(u),¢(u)) from (7),
up to a constant multiple, and the final value r is w. So the roots of #j(u) are the
inverses of the error locations.

We demonstrate this with an example. Use the field Fy (with h(a) = a® + a+1
as the problems below), and the Reed-Solomon code RS(3,8), which has d = n —

3

k+1=7—-3+1=25,5s0s = 2. Suppose the codeword
c=ev(l)=(1,1,1,1,1,1,1)
is sent, but it is corrupted by errors to yield
r=(1,a,1,1,1,1,a> + 1),
or in polynomial form
r=1+at+t2+12+t* +1° + (o + 1)t°.

The first step is to compute the syndromes and the corresponding syndrome
polynomial S(u). For instance,

si=r(a)=1+a’+a’+ao® +a* +a° +a%® +1)

=l+(a+D)+@+a)+ @ +a+1D)+ (> +a+1)

Similarly,

So :a4,53 =0,s4 :a47

So

S(u) = a® + a*u + a*u?

SACNAS MINICOURSE 19

(note the shift in indexing, as in the definition of S above).
We now begin the Euclidean algorithm to find the ged of u? = u* and S(u)
keeping track of the remainders ry, and gg,). In the first division:

3

u = a*uS + (u? + a’u)

so qo = o®u and r; = u? + a’u. Hence

91 =9g-1—qogo =1 0 =1_1 — qoly = a’u.

We continue in the same way (only one more step is needed in the WHILE loop
in (4.2) in this small example), and obtain the results collected in the following
table

k qk Tk 9k U,

-1 ut 1 0

0 oy atu® + atu + o? 0 1

1 a*u+a? u? + a’u 1 alu

2 a’u+ a? atu+a? ur+dfu+1

Here w = o’u + o?.
We stop here since deg(ry) = 1 < 2 = s. The next step is to find the roots of

ly(u) =u? +a’u+1=0.
This can be done either by exhaustive search, or by factoring. We find

u? + oPu+1= (14 au)(l+ abu),

6

so the roots are u = a°,a. But by the definition of the error locator polynomial,
—1

the locations of the errors are found from the inverses: @« = a=% and a® = a™', so
the errors occurred in locations 1 and 6. Finally we use the Forney Formula (9) to

determine the error values e; and eg: with u = a = a9, (9) says:

w(a™') = aerx1(a®) = ae (1 — o) = a’ey.

Since w(u) = a®u + o?, it follows that w(a~') = a, and so e; = a?. Similarly,
w(a™%) = alegxs (@) = aleg(1 — a?) = aeg

and w(a~%) =1, and so e = @?. Then

e(t) = a®t 4+ o?t"

and r(u) +e(u) =(c) =1+t + 2+ +15.

20 SACNAS MINICOURSE

§5. CODES FROM ORDER DOMAINS

A certain type of generalization of Reed-Solomon codes, known as geometric
Goppa codes have been intensively studied in coding theory recently. These are
named after their discoverer, V. D. Goppa. Some of these codes have extremely
good parameters and the 1982 paper [TVZ] establishing this fact was a major
landmark in the history of coding theory. The original formulation of the geometric
Goppa codes required many notions from the classical theory of algebraic curves or
function fields of transcendence degree one, as well as topics from number theory.
However, there is a class of codes, including the most important geometric Goppa
codes, for which a more elementary description is now available. We will introduce
that treatment here and work out an example to give a brief first indication of how
this works. A general reference for this is the article by Hgholdt, van Lint and
Pellikaan [HvLP] from the recently published Handbook of Coding Theory.

We will begin with some motivation. The construction of codes possessing good
parameters and efficient decoding methods is the basic problem in coding theory.
The Reed-Solomon codes are among the most powerful and successful codes for
certain applications. Hence it is natural to try to generalize the construction of
Reed-Solomon codes given above to produce other, potentially even better codes.

In the Reed-Solomon case, given an f € Ly_; = Span{l,t,...,t*1} for some
k < g, we evaluated f at the nonzero elements of F, to form the entries in a
codeword of RS(k,q). The set of nonzero elements of F, is a collection of points
on the affine line and L;_; can be seen as a vector subspace of the ring R = F,[¢].
A possible extension might proceed as follows. Let S = {P;,...,P,} be a set of
points in]F; We can then follow the Reed-Solomon case to define an evaluation
mapping by

evs : Fq[X]7... :Xt] —)Fg

fe (f(Pr),..., f(Pn))

The mapping evg is clearly linear, so if L is a finite-dimensional vector subspace of
polynomials in ¢ variables, the image E = evs(L) will be a linear code in Iy, called
an evaluation code.

This gives a wvery general recipe for constructing codes, including the Reed-
Solomon codes and a number of other classes of codes (such as the Reed-Muller
codes, see [W]) that have been studied in coding theory. But there is no indica-
tion of how the S and the subspace L might be chosen to yield codes with good
parameters and efficient decoding methods. It has recently become clear that one
way to supply this missing ingredient is the notion of an order (or weight) function
on a ring. The following is a slightly simplified treatment of a special case of this
construction. Let I' C Z > be a subset of the form

L= (mi,...,mi)

={aimi+ - +agmy 1 a; € L>o}.
Given a field F' and a commutative ring R, we say that R is an F'-algebra if R
contains F' and the multiplication in R restricted to F' is the same as multiplication

in F. For instance, the polynomial ring F,[X1,..., X;] is an example of an F,-
algebra.

(5.1) Definition. Let R be a finitely-generated commutative F,-algebra with iden-
tity, and let T' be as above (for some choice of mq,... ,m¢). A surjective function

SACNAS MINICOURSE 21

p: R — {—o00} UT is said to be a order function on R if it satisfies the following
properties for all f,g € R, and A € F:
(1) p(f) = —o0 if and only if f = 0.
(2) p(Af) = p(f) for all X # 0
(3) p(f +9) 2 max{p(f), p(9)}, with equality if p(f) # p(g)-
(4) If p(f) = p(g) # —oo, then there exists A # 0 such that p(f + Ag) < p(f).
(5) p(fg) = p(f) + p(9)-

The following Proposition develops some first properties of rings with order func-
tions.

(5.2) Proposition. Let p be a order function on R.

(1) We have p(1) = 0 (the additive identity in T'), and hence p(c) = 0 for all
c#0inl,.

(2) Every R having a order function is an integral domain. (A ring R is said
to be an integral domain if it has no monzero zero-divisors, where a zero-
divisor is defined to be any element a € R such that ab = 0 for some nonzero
beR.)

(3) Every set of elements of R with distinct p values is linearly independent
over I, .

(4) There exists an Fy-basis of R consisting of elements with distinct p values.

As a first example, note that the ring R = F,[X] satisfies this definition if we
take p(f) = deg(f). Thus the Reed-Solomon code set-up is included in this larger
context.

(5.3) Ezample. Let ¢ = 4. In the collection of all polynomials in two wvariables
X1, X2 with coefficients in s, denoted F4, we consider the set R of all (finite)
linear combinations of the monomials in the set

A={XiX]:0<i<2,j>0}.

As in our construction of the finite fields I~ before, we will make this set of monomi-
als into a ring (not a field, though, since most elements will not have multiplicative
inverses). We will do this by defining appropriate sum and product operations. The
sum operation is the familiar sum of polynomials. For the product, we multiply the
factors as polynomials, then divide by the polynomial X3} + X3 + X, thinking of
the X7 as the “leading term” for the division. For instance, dividing X3 + X2 + X,
into a X} + X gives a quotient of aX; and a remainder of a X2+ aX5 + X;. Notice
that the terms that can appear in remainders are exactly the monomials in A. (In
abstract algebra, the construction we are doing here leads to the idea of the quotient
ring
Fa[X4, X0]/1,

where I = (X2 + X2 + X5) is the principal ideal generated by X7 + X2 + X».)
For each monomial in A, we have the following notion of its weight, or order:
p(X8X8) = (2,3) - (a,b) = 2a + 3b. These are distinct because of the limitation
0 < a < 2. Soin fact the set A is an example of part (4) of Proposition (5.2) above.
The set of integers we get here as p-values of monomials is precisely the subset

r=(2,3)CZ

22 SACNAS MINICOURSE

as in Definition (5.1) above. And in fact we can extend p to R by setting
p(f) = max{p(XPXL) : X¢ X} appears in f}.

We claim that this makes R into a order domain with T' = (2,3) = {2i + 3j : 4,j €
ZZO} C ZZO‘

We will now present the most important examples of evaluation codes as de-
scribed at the start of this section. The ring R = [F,[t] leading to the Reed-Solomon
codes can be thought of as the ring of polynomial functions on the line over the
field F,. If R is an order domain, there is a geometric object associated to R in
a similar way. Let R = IF,[X1,...,X:]/I has an order function p. The geometric
object associated to R is called the variety defined by the ideal I, the common zero
locus of all polynomials in [I:

X =V({) ={(a1,-..,a) GIF; : flar,...,a;) =0 forall f el}.
Since F; is finite, X is also a finite set.

(5.4) Example. We continue with the order domain introduced in Example (5.3).
To construct evaluation codes, we need to know the points in X, where X =
V(X3} 4+ X2 + X,). There are exactly eight such points with coordinates in Fy.
Writing a for a primitive element of Fy (constructed using h(a) = o> + a+1 = 0)
the eight points can be numbered as follows:

3

P = (07 0) P = (0= 1)
Py = (1,a) Py = (1,a%)
P = (a,a) Ps = (a,0?)
P, = (a?0) P = (a2,a?).

To construct codes from an order domain, we will evaluate functions from some
vector subspace L in R at the points in X. As in the Reed-Solomon case, the most
useful vector subspaces L of R will have the form L = {f € R: p(f) < m} for some
mel.

(5.5) Proposition. Let (R, p) be an order domain as above. For a € T, let L, =
{f €R:p(f) <a} and let L_y = {0}. Then L, is a finite dimensional vector
subspace of R for all a.

Proovr. Closure of each L, under sums and scalar multiples follows from parts (2)
and (3) of Definition (5.1). O

We now present some examples of evaluation codes constructed using the L,
subspaces. We will write E, = evg(L,), where evg is the evaluation mapping as
above.

Continuing with R from (5.3) and (5.4) above, The code E3 = ev(V3) is obtained
as follows. The vector space Ls is spanned by {1, X1, X2}, since p(1) =0, p(X;) =
2, p(X3) = 3, and all other monomials in A have p-value at least 4. The codewords
are obtained by evaluation at the eight points P; above. This gives the following
generator matrix for a code of block length n = 8 over Fy:

1 11 1 1 1 1 1
(10) G=1001 1 a a o* o
01 a &> a o> a a?

SACNAS MINICOURSE 23

Determining the minimum distance of the evaluation codes can be quite delicate,
since it, involves the subtle question of how many zeroes a polynomial in L, can
have at the I, -rational points on X. There are both geometric and arithmetic issues
involved. In the following simple example the geometry suffices to understand what
is going on.

Consider the F5 code over F; studied above. Each codeword is a linear combi-
nation of the three rows of the matrix G given in (10). Hence each codeword is
formed by evaluation of some linear function f = a+bX; +cXs at the 8 F;-rational
points. We can use a famous result known as Bézout’s theorem to give an upper
bound for the number for the number of zero entries in a codeword, hence a lower
bound for d. Bézout’s theorem says that over any field, if X is a the set of zeroes of
a polynomial F' of degree m in two variables, and Y is the set of zeroes of a second
polynomial G of degree n which has no factor of positive degree in common with
F, then | X NY| < mn.

Because X is defined by a polynomial of degree m = 3, it meets each line
V(a+bX;+cXs) (degree n = 1) in at most mn = 3-1 = 3 points, and hence d > 5.
Some nonzero words in Ey have weight exactly 5 since some of these lines intersect
X in exactly 3 affine F4-rational points. The bound obtained from Bézout’s theorem
using the defining equations of X is sharp in this case, but that will not always be
true.

Order domains and associated codes are a subject of current interest in coding
theory. There is a very good decoding algorithm called the Berlekamp-Massey-
Sakata (or BMS) algorithm that applies very generally. This construction looks
quite promising as a way to construct codes with good parameters and efficient
decoding methods. Although the Reed-Solomon codes have sufficed “so far” for
the engineering problems we have encountered, many experienced coding theorists
believe that it is only a matter of time before these more general codes are exploited
also in the real world.

PROBLEM SESSIONS

Problem 1. (a) According to the Singleton bound, what is the largest possible
number of codewords for a code C C T with minimum distance d = 3¢

(b) Improve this bound by showing that number of codewords in such a code is
actually fewer than 32. (Hint: consider Hamming balls of radius 1 centered about
the codewords.)

Problem 2. Let h(x) be an irreducible polynomial over F, of degree r. Prove that
h(z) divides " —' — 1 Hint: Think about what part 5 in Theorem (2.1) says about
the nonzero elements of the field - .

Problem 3. Prove that if a polynomial of degree & or less has no roots, then it
is irreducible. Is this true for polynomials of degree 4 and higher? Use the first
statement to show that the polynomial p(a) = o® + o+ 1 is irreducible over Fy.

Problem 4. Consider the field Fg obtained by using the irreducible polynomial
h(a) = a® + a + 1 from Problem 3. Write each of the elements of this field as a
linear combination of 1,a, and . Construct the addition and multiplication tables

for the elements expressed in the form 0,1,a,0a2,... ,aS.

24 SACNAS MINICOURSE

Problem 5. Show that h(a) = a* + a® + a®> + a + 1 = 0 is irreducible over Fs,
but v is not primitive for Fig.

Problem 6. Find all of the irreducible, monic, quadratic polynomials over Fs.
Which of these polynomials have roots that are primitive for Fgy ¢

Problem 7. Prove that for a,b € By, (a+b)?" = a?" +b? . (Hint: first show that
(P) is divisible by p.)

Problem 8. Consider the field Fg obtained by using the irreducible polynomial
h(a) = a® + a + 1 over Fy. Let C denote the Reed-Solomon code over Fg with
generator polynomial g(t) = (t — a)(t — a?)(t — a3)(t — a)?

(a) What are the parameters of this code (i.e., what are n, k, and d)?

(b) Construct the generator matriz for this code.

(¢) How would you encode the message consisting of the vector (1,a3,a?), i.e,
what is the corresponding code vector c?

(d) Suppose somebody hands you the vector (a3,1,a3, o, a,1,0) and claims that
it is a codeword. Verify that this is really the case without using the decoding
algorithm. Can you determine the original message vector?

Problem 9. Consider the Reed-Solomon code from the previous problem. Suppose
you receive the vector r = (17a27a4,a6,a,a,a). Assuming there are at most two
errors, what is the original codeword?

Problem 10. Consider the Reed-Solomon code RS(k,q).

(a) Prove that the rank of the generator matriz is k.

(b) Let c € =" . Prove the converse of Proposition (2.4), that is, if g(t) divides
¥(c), then ¢ is a codeword.

Problem 11. What are the generator and parity check matrices for the Reed-
Solomon code RS(3,8) where the polynomial h(a) = o® +a? + 1 is used to generate
Fs.

Problem 12. Consider the Reed-Solomon code RS(k,q). Here is an alternative
method of producing a map from the set of message vectors to the set of codewords.
Let g(t) be the generator polynomial for this code. For each message polynomial
f(t), define the corresponding codeword polynomial to be

(t) = 1 FL £ (1) — d(t),

where d(t) is the remainder upon division of t9~F=1f(t) by g(t). This method is
called systematic encoding since the original message can be read directly from an
uncorrupted codeword.

(a) From Problem 2, we know g(t) divides t~! — 1. Define

which we call the parity-check polynomial. Show that c(t)h(t) is divisible by t71 —1
if and only if ¢(t) is a codeword.
(b) Again, we consider the Reed-Solomon code RS(3,8). Given that

gt) = (t—a)t—a?)(t—a®)(t—a') =t"+ a3t +t* + at + a?,

SACNAS MINICOURSE 25

show how to encode the polynomials f(t) = 1 and f(t) = t — a. Note that this
systematic coding does not produce the same results as the evaluation map ev :
Ly —]Fgfl.

(¢) Compute the parity-check polynomial for RS(3,8). Use this to test whether
ct) =1+ at +t2+ at® +t* + at® + 15 is a codeword.

[HPL]

[HP]

[Tmm]

[MCcES]

REFERENCES

T. Hgholdt, R. Pellikaan, and J. van Lint, Algebraic Geometry Codes, Handbook of
Coding Theory (W. Huffman and V. Pless, eds.), Elsevier, Amsterdam, 1998, pp. 871-
962.

W. Cary Huffman, and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge
U. Press, Cambridge, UK.

K. Immink, Reed-Solomon Codes and the Compact Disc, Reed-Solomon Codes and their
Applications, S. Wicker and V. Bhargava, editors, IEEE Press, New York, NY, 1994,
pp- 41-59.

R. McEliece and L. Swanson, Reed-Solomon Codes and the Exploration of the Solar Sys-
tem, Reed-Solomon Codes and their Applications, S. Wicker and V. Bhargava, editors,
IEEE Press, New York, NY, 1994, pp. 25 40.

F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, North Holland,
Amsterdam.

C. Moreno, Algebraic Curves over Finite Fields, Cambridge U. Press, Cambridge, UK.
O. Pretzel, Error-Correcting Codes and Finite Fields, Oxford U. Press, Oxford, UK.
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A method for solving key
equation for decoding Goppa codes, Inform. and Control 27 (1975), 87 99.

M. Tsfasman, S.Vlddut, and T. Zink, Modular Curves, Shimura Curves and Goppa
Codes Better Than the Varshamov-Gilbert Bound, Math. Nachr. 109 (1982), 21-28.

J. van Lint, Introduction to Coding Theory, 2nd edition, Springer-Verlag, Berlin, 1992.
S. Wicker, Error Control Systems for Digital Communication and Storage, Prentice
Hall, Englewood Cliffs, N.J, 1995.

DEPARTMENT OF MATHEMATICS COLLEGE OF THE HoLy CROSS WORCESTER, MA 01610
E-mail address: little@mathcs.holycross.edu

DEPARTMENT OF MATHEMATICS LOYOLA MARYMOUNT UNIVERSITY L0OS ANGELES, CA 90045
E-mail address: emosteig@lmu.edu

