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t. Communi
ation of information often takes pla
e over noisy 
hannels.For reliability, it is often ne
essary to en
ode the transmitted information in su
h away that errors 
an be dete
ted and/or 
orre
ted when they o

ur. Designing s
hemesthat a
hieve error 
ontrol without introdu
ing undue redundan
y, and that admiteÆ
ient en
oding and de
oding, are the main goals of 
oding theory. Te
hniquesfrom algebra and geometry have 
ome to play an important role both in designing
odes and in developing en
oding and de
oding algorithms. This mini
ourse willintrodu
e the basi
 theory of error 
ontrol 
odes, illustrate this with the example ofthe Reed-Solomon 
odes, then introdu
e an important re
ent idea { the 
onstru
tionof 
odes from order domains.x1. Basi
s on Error Control CodesCoding theory and information theory are relatively new subje
ts; their foun-dations were laid by Claude Shannon in a seminal paper [S℄ in 1948. Starting inthe early 1950's many workers in 
ommuni
ations and ele
tri
al engineering havedeveloped 
oding s
hemes to ensure reliability of information transmission in areassu
h as(1) 
ommuni
ations with deep-spa
e exploration 
raft,(2) design of 
omputer memory systems,(3) the CD audio and DVD video systems,(4) wireless telephony,and many others.As 
oding theory has grown, more and more tools from algebra have 
ome tobe useful for �nding 
odes with good properties and for implementing en
odingand de
oding pro
edures. In this se
tion, we will review some basi
 de�nitions.The referen
es [HP℄, [M
WS℄, and [vLi℄ are ex
ellent sour
es for more detailedpresentations of this basi
 material.We will always 
onsider a 
ommuni
ations environment in whi
h all messages aredivided into \words" or blo
ks of a �xed length, k, formed using a �nite alphabetwith q symbols. The simplest 
ase (also the one best adapted to ele
troni
 hard-ware) is an alphabet with two symbols, the binary digits 0; 1. And indeed in most1



2 SACNAS MINICOURSEappli
ations, for instan
e in the 
odes used for the transfer of digital informationwithin 
omputer systems, and for storing information on 
ompa
t disks, digitalaudio tape, or other media and retrieving it for use at a later time, q is either 2 ora power of 2. The alphabet with exa
tly two symbols 
an be identi�ed with the�nite �eld F2 . Often, we 
onsider all k-tuples as possible words that 
an appear ina message, so the 
olle
tion of words may be identi�ed with F k2 .In order to dete
t and/or 
orre
t errors when they o

ur, some redundan
y mustbe built into the information that is a
tually transmitted over the 
hannel. Onepossible approa
h is to make the en
oded form of a message 
onsist of blo
ks orn-tuples of length n > k over the same alphabet as that used for the message itself.Then the en
oding and de
oding operations 
an be des
ribed mathemati
ally asfun
tions: E : F k2 ! F n2and D : F n2 ! F k2 [ f \error" g;where E is one-to-one, and D Æ E is the identity mapping on F k2 . The fun
tion Dwill return the \error" value on some words in the 
omplement of the image of Ethat 
annot be de
oded on the basis of the information known to the de
oder. We
all C = Im(E) the set of 
odewords , or just the 
ode, and the C obtained in thisway are 
alled blo
k 
odes of length n over the alphabet F2 .When a 
odeword x is sent over the 
hannel and a transmission error o

urs, thee�e
t is to repla
e the 
odeword x by a sum x+ e where e 2 F n2 is the error ve
tor(this is the 
omponentwise sum, using addition modulo 2). The word y = x+ e isre
eived by the de
oder, whi
h then attempts to re
over x itself. The number ofnonzero entries in e determines how many of the entries in x have been 
orrupted.In order for the error to be dete
table, x+ e must not be another 
odeword. Undermany 
ir
umstan
es (for instan
e if the probability of an error o

urring is the samein ea
h lo
ation of ea
h transmitted word), smaller numbers of nonzero entries in eare more likely than larger numbers. A good strategy is then to attempt to 
orre
terrors by �nding the 
losest 
odeword to the re
eived word (the \nearest neighbor"
odeword) in the following sense.Let x; y 2 F n2 . The Hamming distan
e between x and y is de�ned to bed(x; y) = jfi 2 f1; : : : ; ng : xi 6= yigj= number of nonzero entries in x+ y mod 2:For example, d(11000111; 10100101) = 3. Note that d(x; 0), whi
h is 
alled theweight of x, is just the number of nonzero entries in x. It is an ni
e exer
ise to showthat d(x; y) satis�es all the properties of a metri
 or distan
e fun
tion on the �niteset F n2 . In parti
ular, we have a triangle inequality :d(x; y) � d(x; z) + d(z; y)for all x; y; z 2 F n2 . If x 2 F n2 and s � 0, we write B(x; s) = fy 2 F n2 : d(x; y) � sgfor the 
losed Hamming distan
e ball of radius s 
entered at x. Using this, we havethe following fundamental statement about the error-dete
ting and error-
orre
ting
apability of 
odes.



SACNAS MINICOURSE 3(1.1) Proposition. If a 
ode C � F n2 satis�es d(x; y) � d for all distin
t pairsx; y 2 C, then any error ve
tor of weight at most d� 1 
an be dete
ted. Moreover,any error ve
tor of weight at most b(d � 1)=2
 
an be 
orre
ted by the \nearest-neighbor" de
oding fun
tion:D(y) = � E�1(x 2 C : d(y; x) is minimal) if x is unique\error" if x is not uniqueProof. First note that if d(x; y) � d for all distin
t pairs x; y 2 C, then 
hangingany 1 � r � d� 1 entries in a 
odeword never produ
es another 
odeword. Hen
eany nonzero error ve
tor of weight at most d � 1 produ
es a re
eived word that
an be distinguished from all 
odewords. So the fa
t than an error o

urred 
anbe dete
ted , even though it may not be possible to determine from y = x+ e alonewhi
h 
odeword x was intended as part of the transmitted message.For the se
ond statement, we 
laim that if d(x; x0) � d � 2s+ 1 for all distin
tpairs of 
odewords x and x0, then the balls B(x; s) and B(x0; s) must be disjoint .If not, then for y 2 B(x; s) \ B(x0; s)d(x; x0) � d(x; y) + d(y; x0) � 2sby the triangle inequality. But this 
ontradi
ts our hypothesis. Hen
e if the errorve
tor has weight s = b(d � 1)=2
 or less, the re
eived word is in B(x; s) but notin B(x0; s) for any x0 6= x, and nearest-neighbor de
oding will 
orre
t the errorsintrodu
ed in transmission. �In real-world appli
ations, the 
hara
teristi
s of the intended 
ommuni
ations
hannel (in parti
ular the probability that a symbol is transmitted in
orre
tly) playa major role in the 
hoi
e of a 
ode for a parti
ular situation. Nearest-neighborde
oding 
an fail if the re
eived word y from the 
hannel 
ontains too many errors,sin
e then y may in fa
t be farther from the intended 
odeword x than it is froma di�erent 
odeword x0. So when engineers 
ompare 
odes, the most importantparameters are� d = minx 6=y2C d(x; y), the minimum distan
e, and� R = k=n (or more generally log2(jCj)=n if jCj is not a power of 2), 
alled theinformation rate.Good 
odes are ones for whi
h R = k=n is not too small (so the 
ode is notextremely redundant), but for whi
h d is also not too small. These 
onditions are
learly somewhat in
ompatible. While it is known by a famous result known asShannon's Theorem (see [vLi℄) that there exist 
odes with information rate nearly1 for whi
h the probability of de
oding a random re
eived word in
orre
tly usingthe nearest-neighbor fun
tion is arbitrarily small, it may be ne
essary to take n verylarge (hen
e large k as well) to a
hieve this, in
reasing the amount of work (time,energy, et
.) needed to en
ode or de
ode messages. Hen
e identifying good 
odes isa deli
ate balan
ing a
t, and mu
h e�ort has been devoted both to �nding expli
itgood 
odes, and to developing theoreti
al bounds on the parameters of 
odes. Forfuture referen
e we mention two of the simplest of these bounds.(1.2) Proposition. Fix n; d and let b = b(n; d) equal the number of n-tuples inthe ball B(x; d� 1) 
entered at an arbitrary x 2 F n2 :b = d�1Xm=0�nm�:



4 SACNAS MINICOURSELet A(n; d) be the largest number of 
odewords possible for a 
ode C in F n2 withminimum distan
e d.1) (Singleton bound) A(n; d) � 2n�d+1:Hen
e for any 
ode C � F n2 with 2k 
odewords and minimum distan
e d, k �n� d+ 1.2) (Gilbert-Varshamov bound) A(n; d) � 2n=b:The proof of the Singleton Bound is obtained by deleting any �xed set of d� 1entries from all the 
odewords of C. The Gilbert-Varshamov bound follows fromthe fa
t that for a 
ode with the maximum number of 
odewords for the given n; d,there 
annot be any elements of F n2 outside the union [x2CB(x; d � 1). (If therewere, we 
ould add su
h a word to the 
ode and maintain the minimum distan
e.)While any 
olle
tion C of 
odewords in F n2 
an be 
onsidered as a 
ode, wewill restri
t our attention from now on to 
odes with some additional algebrai
stru
ture. Namely, we will 
onsider only linear blo
k 
odes, for whi
h the set Cis a k-dimensional ve
tor subspa
e of F n2 . That is, for a linear 
ode, the set of
odewords is 
losed under ve
tor sums (modulo 2, as always). The 
losure unders
alar multipli
ation required for the ve
tor spa
e stru
ture is automati
 in this
ase, be
ause the only s
alars are 0; 1 2 F2 .One reason for making this restri
tion is that, be
ause linear algebra providespowerful tools, linear 
odes with reasonable parameters are simply easier to 
on-stru
t expli
itly than 
omparably good arbitrary 
odes. The 
onstru
tion of theReed-Solomon 
odes in the next se
tion is a perfe
t example of this. In addition,linear 
odes admit both� en
oding algorithms that require mu
h less stored information, and� de
oding algorithms that are mu
h more eÆ
ientthan the methods that are available for arbitrary 
odes.For instan
e, to 
ompute the en
oding fun
tion for a 
ompletely general 
odewhere the 
odewords had no extra symmetries, it would be ne
essary to storeall 2k of the 
odewords and do some form of table look-up to �nd the 
odeword
orresponding to ea
h word x 2 F k2 in the message. While this look-up 
an bedone eÆ
iently, it requires an impra
ti
ally large amount of storage for 
odes withrealisti
 n and k for some appli
ations. (For instan
e, one of the 
odes used in theCD digital audio system 
an be viewed as a 
ode over F2 with n = 256 and k = 224.Hen
e there are 2224 di�erent 
odewords, ea
h of whi
h is a string of 256 elementsof F2{a total of over 6:4� 1060 gigabytes of information!)On the other hand, a linear 
ode C 
an be 
ompletely spe
i�ed by any basis|kve
tors instead of 2k of them. Moreover, the en
oding operation 
an be performedvia matrix multipli
ation. It is 
ustomary to write the x 2 F k2 and the 
odewordsin F n2 as row ve
tors. For any k � n matrix G whose rows form a basis for C, theformula E(x) = xG de�nes an en
oding fun
tion E : F k2 ! F n2 for C. The matrixG is 
alled a generator matrix for C.



SACNAS MINICOURSE 5Example 1. In F72 
onsider the 
ode C given by the generator matrixG = 0B� 1 0 0 0 1 1 00 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 11CAFor this 
ode, we have n = 7; k = 4; d = 3. Sin
e b(3 � 1)=2
 = 1, this 
ode 
an
orre
t any single bit error in word of length 7. How we 
an tell what d is? Forlinear 
odes, if x; y 2 C, then x� y 2 C too. Hen
eminx6=y2C d(x; y) = minx6=y2C d(x� y; 0) = minz 6=02C d(z; 0)In other words: For linear 
odes, the minimum distan
e is the same as the minimum\weight" of the nonzero 
odewords. It 
an be 
he
ked that d = 3 here by expli
itlywriting out all 15 nonzero 
odewords and noting their weights. Note that if theen
oding fun
tion E(x) = xG is used, then the four entries of x are 
opied into the�rst four entries of E(x).The 
ode given by G above has another interesting property: every word in F72is either a 
odeword, or Hamming distan
e 1 from a unique 
odeword (that is, theunion of the Hamming balls of radius 1 
entered at the 
odewords is all of F72 ). Inother words, the Hamming balls 
entered at the 
odewords are \pa
ked together"in an extremely eÆ
ient way { there is no left-over spa
e at all. There is a in�nitefamily of su
h 
odes 
ontaining this one (parameters n = 2r � 1, k = 2r � r � 1,d = 3 for all r � 1) that all have this property. They are 
alled the Hamming 
odes(see [HP℄ or [M
WS℄).A rudimentary de
oder for this 
ode would use a \
he
k matrix" H for C su
has H = 0BBBBBBB� 1 1 01 0 10 1 11 1 11 0 00 1 00 0 1
1CCCCCCCAfor whi
h the 
odewords x 2 C (written as rows) are the solutions of xH = 0.Assuming the re
eived word 
ontains no more than 1 bit error,(1) Given a re
eived word x0 
ompute s = x0H ; if s = 0, then x0 is a 
odeworditself; if not, then(2) Toggle ea
h bit in x0 in turn to get words y, until a solution of yH = 0 isfound.Even better methods are known too if we are allowed to store some pre
omputedinformation about the 
ode, for instan
e the \syndrome de
oding" method (see [HP℄or [M
WS℄).For future referen
e, generalizing the observation above, we see that if a linear
ode is given by a generator matrix of the form G = (I jB) where I is a k�k identitymatrix, and B is a k � (n � k) blo
k, then the �rst k entries in E(x) = xG willbe the entries from x itself. En
oding fun
tions for whi
h all the symbols of the



6 SACNAS MINICOURSEinput word appear un
hanged in some 
omponents of the 
orresponding 
odewordare said to be systemati
 en
oders . It is 
ustomary to 
all those 
omponents of the
odewords the information positions . The remaining 
omponents of the 
odewordsare 
alled parity 
he
ks . This name 
omes from the fa
t that one simple error-dete
tion s
heme for binary 
odes is to require that all 
odewords have an even (orodd) number of nonzero digits. To ensure this, one 
ould simply append another0 or 1 to ea
h message word to adjust the parity of the number of 1's. If one biterror (in fa
t, any odd number of errors) is introdu
ed in transmission, that fa
t
an be re
ognized by 
ounting the number of 1's in the re
eived word. A similars
heme, in whi
h an extra 
he
k digit is added to 
redit 
ard numbers, is used todete
t transmission errors when your 
redit is 
he
ked during pur
hases.Systemati
 en
oders are sometimes desirable from a pra
ti
al point of view be-
ause the information positions 
an be 
opied dire
tly from the word to be en
oded;only the parity 
he
ks need to be 
omputed. There are 
orresponding savings inthe de
oding operation as well. If information is systemati
ally en
oded and it isdetermined that no errors o

ur in transmission, the words in the message 
an beobtained dire
tly from the re
eived words by simply removing the parity 
he
ks. Itis perhaps worthwhile to emphasize again at this point that the goal of the 
odings
hemes we are 
onsidering here is primarily reliability of information transmission,not se
re
y! x2. Reed-Solomon CodesIn this se
tion we will study the 
onstru
tion of a 
lass of 
odes having very goodproperties. These 
odes were �rst 
onstru
ted in 1960 by Irving Reed and GustaveSolomon, so they are known as Reed-Solomon 
odes. Our presentation will be quitesimilar to the original way these 
odes were 
onstru
ted.To des
ribe the Reed-Solomon 
odes, we need to introdu
e expli
it �elds largerthan F2 = f0; 1g to be used as 
ode alphabets. Sti
king to the binary setting,we might take the set of strings of 0; 1's of a �xed length r as the alphabet. Forinstan
e, strings of length r = 4 would give 24 distin
t symbols:0000; 0001; 0010; 0011; 0100; 0101; 0110; 0111;1000; 1001; 1010; 1011; 1100; 1101; 1110; 1111:In order to work with the set-up of linear 
odes, though, this set must be given thestru
ture of a �eld.As a qui
k review, we now mention a few de�nitions. A set R with two binaryoperations, `+' (addition) and `�' (multipli
ation), is 
alled a 
ommutative ring ifthere exist two distin
t elements 0; 1 2 R su
h that for all a; b; 
 2 R� (Commutativity) a+ b = b+ a, a � b = b � a� (Asso
iativity) (a+ b) + 
 = a+ (b+ 
), (a � b) � 
 = a � (b � 
)� (Identity) a+ 0 = a, a � 1 = a� (Additive Inverses) 8a 2 R, 9(�a) 2 R su
h that a+ (�a) = 0� (Distributivity) a � (b+ 
) = (a � b) + (a � 
)If R has the additional property that ea
h nonzero element has a multipli
ativeinverse, then R is 
alled a �eld. Common examples of �elds are Q, R and C , thoughwe will fo
us on �nite �elds.



SACNAS MINICOURSE 7We now des
ribe how to make strings of binary symbols into a �eld. We 
aninterpret a string �3�2�1�0 (�i 2 F2 ) as a polynomial in a new variable �:(1) �3�3 + �2�2 + �1�+ �0The set of all 16 su
h expressions will be denoted by F16 , though we need to dosome work to show that this is a
tually has the stru
ture of a �eld.The addition operation presents no problems { we will use the usual polynomialaddition (same as ve
tor addition in F42 ). We also need a multipli
ation operationand the key point is that we know how to multiply polynomials. For example,(�3 + 1)(�2 + 1) = �5 + �3 + �2 + 1:But of 
ourse the degree of the produ
t is too large here. To redu
e to the properrange of degrees � 3, we 
an divide by some polynomial of degree 4 in � (using\polynomial long division") and take the remainder of the produ
t (re
all that theremainder is either 0 or of degree stri
tly less than the degree of the divisor, be
ausethe division pro
ess 
ontinues until the leading term of the divisor is larger thanthe degree of the remaining intermediate dividend).This mu
h works for any divisor polynomial h(�) of degree 4. But, do we alwaysget a �eld this way? The answer is no. For instan
e, if h(�) = �4 + 1, then(�2 + 1)(�2 + 1) = �4 + 1, so when we divide, the remainder will work out to bezero! On the other hand a �eld 
annot have nonzero elements a; b su
h that ab = 0.So we must take an irredu
ible polynomial h(�) as our divisor { one whi
h doesnot fa
tor into a produ
t of polynomials of positive degree. (These are analogousto the prime numbers in the integers.)For instan
e, it 
an be 
he
ked that h(�) = �4 + � + 1 is irredu
ible. On
eagain, multipli
ation is polynomial multipli
ation of the expressions (1), followedby redu
tion using the basi
 relation �4 + �+1 = 0. For instan
e, on our exampleabove, this yields(�3 + 1)(�2 + 1) = �5 + �3 + �2 + 1= �(�4 + �+ 1) + �3 + �+ 1 by division(re
all { the 
oeÆ
ients are integers mod 2!) Hen
e, in F16 (
onstru
ted usingh(�) = �4 + �+ 1), we have(�3 + 1)(�2 + 1) = �3 + �+ 1:One easy way to see that this method satis�es properties needed to see we havea �eld is to 
he
k that the powers 1; �; �2; : : : ; �14 are all distin
t, and �15 = 1.Hen
e� The powers of � give all the nonzero elements of F16 , and� Ea
h element �k has a multipli
ative inverse �15�k.We 
all � a primitive element for F16 .The following theorem shows that we 
an 
onstru
t �nite �elds of all sizes prwhere p is a prime number, and r � 1. These are sometimes 
alled Galois �eldsafter the 19th 
entury Fren
h mathemati
ian �Evariste Galois, who dis
overed them.



8 SACNAS MINICOURSE(2.1) Theorem. Let p be prime in Z.(1) The set of integers mod p is a �eld denoted Fp .(2) For all p and all r � 1, there are irredu
ible polynomials of degree r with
oeÆ
ients in Fp .(3) Let h(�) be an irredu
ible polynomial of degree r with 
oeÆ
ients in Fp . Theset of polynomials of degree � r � 1 in � with 
oeÆ
ients in Fp , under theusual addition and multipli
ation de�ned by f(�) �g(�) = f(�)g(�)h, whereF h denotes the remainder on division by h, is a �eld of size pr denotedFp [�℄=hh(�)i.(4) Di�erent 
hoi
es of irredu
ible h of the same degree yield isomorphi
 �elds,whi
h are all denoted Fpr .(5) Every �eld Fpr has a primitive element (an element � whose powers yieldall nonzero elements of Fpr ).Proofs may be found in [HP℄, [P℄, or standard texts on abstra
t algebra. Ex-tensive tables of irredu
ible polynomials in Fp [x℄ have been 
ompiled to provide
onstru
tions of these �elds for use in 
oding theory and other areas. See [M
WS℄,for instan
e.We will use this fa
t in the following way. Suppose we want to 
onstru
t 
odesattaining the Singleton bound over a �xed �nite �eld A = Fq , where q = pr forsome r � 1. (These are 
alled MDS, or \maximum distan
e separable," 
odes).Restri
ting to 
odes of length n = q, there is a way to do this using a basi
 fa
tabout polynomials over a �eld. Fix an integer k � q. Polynomials of degree < khave at most k � 1 roots in Fq , and some have pre
isely that many roots.We 
an use that observation and write Lk for the set of all polynomials in Fq [x℄of degree < k. We will always assume k < q here. Lk is a ve
tor spa
e over Fq ofdimension k. For ea
h polynomial f 2 Lk, we 
onstru
t a word in Fqq by evaluatingf at the elements of Fq , to get a q-tuple (letting � be a primitive element),(f(0); f(1); f(�); : : : ; f(�q�2))(re
all �q�1 = 1). When we do this, we get a word with(1) at most k � 1 zero entries, hen
e(2) at least q� (k� 1) = q� k+1 = n� k+1 nonzero entries (and some haveexa
tly k � 1 zero entries).The set of all su
h words is a linear 
ode sin
e Lk is a ve
tor spa
e, and theevaluation mapping is linear. Hen
e the resulting 
ode will have minimum distan
ed = n� k + 1 (if k is small relative to q).Using all q elements 0; 1; �; : : : ; �q�2 of Fq , we get the so-
alled extended Reed-Solomon 
odes. The Reed-Solomon 
odes themselves 
ome from evaluating only atthe nonzero elements of the �eld (omitting the f(0) entry to get a word in Fq�1q ).Summarizing, we have the following result.(2.2) Theorem. We write Fq [x℄ for the ring of all polynomials in x with 
oeÆ-
ients in Fq . Pi
k a primitive element � for Fq , and write the nonzero elements ofFq as 1; �; : : : ; �q�2



SACNAS MINICOURSE 9Let k < q and Lk = ff 2 Fq [x℄ : deg f < kg. Writeev : Lk ! Fq�1qf 7! (f(1); f(�); : : : ; f(�q�2)):Then Im(ev) is a linear 
ode with n = q � 1, dimension k, and minimum distan
ed = n�k+1 = q�k, 
alled a Reed-Solomon 
ode, RS(k; q). All Reed-Solomon 
odesrea
h the Singleton bound by 
onstru
tion { they are MDS 
odes: k = n� d+1, ord = n� k + 1.For example, using the standard monomial basisf1; x; x2; x3; : : : ; xk�1gfor Lk, the Reed-Solomon 
ode RS(3; 16) (parameters: n = 15; k = 3; d = 13 overF16 , so 163 = 4096 distin
t 
odewords) has generator matrixG = 0� 1 1 1 � � � 1 1 � � � 11 � �2 � � � �7 �8 � � � �141 �2 �4 � � � �14 � � � � �131A :Reed-Solomon 
odes are probably the most 
ommonly used 
odes in 
ertain sit-uations where errors tend to o

ur in \bursts" rather than randomly. This in
ludes
ommuni
ation to and from deep-spa
e exploration 
raft, the CD digital audiosystem, and many other appli
ations. Reed-Solomon 
odes are an important 
om-ponent of the 
oding te
hniques used there (but also not the whole story|see thepapers [M
ES℄ and [Imm℄ for instan
e). There are several reasons for this. The�rst reason is that Reed-Solomon and other blo
k 
odes 
an 
orre
t relatively longbursts of errors on the bit level, even if the minimum distan
e d is relatively small.To see the idea, note that the entries of a 
odeword for a blo
k 
ode over a �eld F2rmay be represented as strings of r bits: If F2r = F2 [�℄=hh(�)i, where h irredu
ibleof degree r, then an element �r�1�r�1 + � � � + �1� + �0 of F2r 
an be identi�edwith the ve
tor (�r�1; : : : ; �1; �0) 2 F r2 . Under this identi�
ation, a Reed-Solomon
odeword is represented by a string of (2r � 1)r bits. A burst of 2r 
onse
utivebit errors, for instan
e, will 
hange at most three of the entries of the 
odeword,when they are viewed as elements of F2r . Hen
e by Proposition (1.1) if d � 7, forinstan
e, then any 
onse
utive burst of 2r bit errors 
an be 
orre
ted. On the otherhand, if the errors are lo
ated in 2r arbitrary entries in the word, they may not be
orre
table with a 
ode of that minimum distan
e.The last, and most important, reason that Reed-Solomon 
odes are attra
tiveis that they have additional algebrai
 stru
ture that greatly fa
ilitates the en-
oding and de
oding operations. To see the idea, 
onsider the generator matrixG for the Reed-Solomon 
ode RS(k; q) 
onstru
ted by evaluating the monomialsf1; x; x2; : : : ; xk�1g at the �` 2 Fq n f0g. The ith row of G has the form((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1):Cy
li
ally permuting this row, we obtain((�q�2)i�1; (1)i�1; (�)i�1; : : : ; (�q�3)i�1);



10 SACNAS MINICOURSEwhi
h is equal to�(i�1)(q�2) � ((1)i�1; (�)i�1; (�2)i�1; : : : ; (�q�2)i�1)be
ause �q�1 = 1. Thus, a 
y
li
 permutation of the ith row yields a s
alar mul-tiple of the same row|it is also one of the Reed-Solomon 
odewords! The 
y
li
permutation is a linear mapping S on F q�1q , and we have just seen that there is abasis of RS(k; q) 
onsisting of eigenve
tors for S. It follows that the Reed-Solomon
ode RS(k; q) is invariant under S, sin
e all the 
odewords are linear 
ombinationsof the rows of G.Linear 
odes C � F nq that are invariant under the 
y
li
 permutationS : F nq ! F nq(x1; x2 : : : ; xn) 7! (xn; x1; : : : ; xn�1)are 
alled 
y
li
 
odes . The observations above give the proof of the following fa
t.(2.3) Proposition. For all q and all k < q, the Reed-Solomon 
ode RS(k; q) is
y
li
.To understand the full meaning of this observation, we need to make one furtheridenti�
ation. Namely, given a 
odeword 
 2 RS(k; q):
 = (
0; 
1; : : : ; 
q�2) = (f(1); f(�); : : : ; f(�q�2));where f 2 Lk � Fq [x℄, we 
an use the entries in 
 as the 
oeÆ
ients in anotherpolynomial in a new variable t. We write  (
) for this polynomial:(2)  (
) = 
0 + 
1t+ � � �+ 
q�2tq�2:and 
all it the \polynomial form" of the Reed-Solomon 
odeword 
.It follows from the algebra of this situation that the polynomial forms  (
) ofthe 
odewords 
 2 RS(k; q) are all divisible by a polynomial 
alled the generatorpolynomial for the Reed-Solomon 
ode. (This follows from fa
ts about the algebraof polynomials developed in the next se
tion. Unfortunately, we do not have thetime to go into this in detail; see [HP℄ or [P℄ for full details.)To identify the generator polynomial for C = RS(k; q), we may pro
eed asfollows. From (2), every element of  (C) has the form (
) = 
0 + 
1t+ � � �+ 
q�2tq�2where we obtain the 
oeÆ
ients 
i = k�1Xj=0 aj(�i)jby evaluating some �xed f(x) =Pk�1j=0 ajxj at x = �i for i = 0; : : : ; q � 2. Substi-tuting these expressions for 
i into  (
) and inter
hanging the order of summationwe see:(3)  (
) = q�2Xi=00�k�1Xj=0 aj(�i)j1A ti= k�1Xj=0 aj  q�2Xi=0(�jt)i! :



SACNAS MINICOURSE 11In Fq , the roots of 0 = 1 + z + z2 + � � � + zq�2 are pre
isely the z 6= 0; 1. Hen
ethe inner sum in the last line of (3) is equal to zero provided that ajt 6= 0; 1. Thewhole sum equals zero if �j t 6= 0; 1 for all j = 0; : : : ; k � 1, or equivalently if t 2f�; �2; : : : ; �q�k�1g. Sin
e 
 2 RS(k; q) was arbitrary, this 
omputation shows thatfor all 
,  (
) from (2) (viewed as a polynomial in Fq [t℄) has t = �; �2; : : : ; �q�k�1as roots. Consequently, every  (
) is divisible by(4) g(t) = (t� �)(t � �2) � � � (t� �q�k�1):In fa
t, we have:(2.4) Proposition. The polynomial g(t) from (4) is the generator polynomial forRS(k; q).Sin
e the minimum distan
e of a Reed-Solomon 
ode satis�es d = q � k, thegenerator polynomial 
an also be written asg(t) = (t� �)(t� �2) � � � (t� �d�1):For example, the Reed-Solomon 
ode RS(3; 16) from above hasg(t) = (t� �)(t � �2)(t� �3) � � � (t� �12)sin
e d = 15� 3 + 1 = 13.x3. The Eu
lidean Algorithm for PolynomialsIn this se
tion, we will introdu
e another key aspe
t of the algebra of polynomialsin one variable over a �eld, the Eu
lidean Algorithm. This pro
ess for 
omputing agreatest 
ommon divisor goes ba
k to the an
ient Greeks, and was used �rst in the
ase of ordinary integers. The ring of integers Z and the polynomial rings Fq [x℄ havemany of the same properties, be
ause both have well-behaved division algorithms.We have already used polynomial division in 
onstru
ting our �nite �elds. Here isa pre
ise statement of the 
hara
terization of the quotient and remainder.(3.1) Theorem. (Division algorithm in Fq [x℄) Let f(x); g(x) be nonzero polyno-mials in Fq [x℄. Then there exist unique polynomials q(x) and r(x) satisfyingf(x) = q(x)g(x) + r(x);where either r(x) is the zero polynomial, or else deg(r(x)) < deg(g(x)).(Note: the degree of a polynomial is by de�nition the largest power of the variableappearing with a nonzero 
oeÆ
ient in the polynomial. The degree is not de�nedfor the zero polynomial, and that is why the theorem is stated in the way givenhere.)The �rst 
onsequen
e of this division algorithm 
on
erns spe
ial subsets of thepolynomial ring 
alled ideals. An ideal I � Fq [x℄ is a nonempty subset that is 
losedunder sums, and also 
losed under multipli
ation by all polynomials. That is, iff; g 2 I , then f + g 2 I . Moreover, if f 2 I and h is any polynomial, then hf 2 I .For example, let � 2 Fq . Then the set I of all polynomials f 2 Fq [x℄ satisfyingf(�) = 0 is an ideal in Fq [x℄. It is easy to 
he
k that both de�ning propertiesare satis�ed here: If f(�) = 0 and g(�) = 0, then (f + g)(�) = f(�) + g(�) = 0.Moreover, if h is any polynomial (hf)(�) = h(�)f(�) = h(�) � 0 = 0.Theorem (3.1) implies the following statement about ideals.



12 SACNAS MINICOURSE(3.2) Theorem. Every ideal I in Fq [x℄ is generated by a single polynomial g(x)in the sense that I = fq(x)g(x) : q(x) 2 Fq [x℄g:Before pro
eeding to the proof, we note that ideals of the form des
ribed here {ideals generated by a single element of the ring { are 
alled prin
ipal ideals. So thisTheorem says that every ideal in the polynomial ring Fq [x℄ is prin
ipal. There isalso a 
orresponding statement in the ring of integers. Moreover, it is this fa
t thatunderlies the existen
e of the generator polynomial for Reed-Solomon and other
y
li
 
odes as in Proposition (2.4).Proof. If I = f0g, then the zero polynomial a
ts as the generator g(x). Sofrom now on, we assume that I 
ontains nonzero polynomials. Let g(x) be thenonzero moni
 (leading 
oeÆ
ient 1) polynomial of minimal degree in I . It is easyto see that g(x) is unique, sin
e if there were two moni
 polynomials of minimumdegree in I , then their di�eren
e would be in I , but of smaller degree. Now letf(x) be any other polynomial in I , and apply the division algorithm (3.1). We getf(x) = q(x)g(x)+r(x) where either r(x) is the zero polynomial, or else deg(r(x)) <deg(g(x)). But this equation implies that r(x) = f(x) � q(x)g(x). So by theproperties of an ideal, r(x) 2 I . The polynomial r(x) 
annot have smaller degreethan g(x), sin
e we 
hose g(x) to have minimal degree among the nonzero elementsof I . Therefore, r(x) = 0, whi
h shows that f(x) = q(x)g(x). Hen
e I is 
ontainedin the set of multiples of g(x). But the other in
lusion is automati
 by the de�nitionof an ideal. Hen
e we have the equality of sets 
laimed in the statement of thetheorem. �Another way to make an ideal in Fq [x℄ is to 
onsider all \linear 
ombinations"of any two given polynomials with polynomial 
oeÆ
ents:hf(x); g(x)i = fa(x)f(x) + b(x)g(x) : a(x); b(x) 2 Fq [x℄g:Theorem (3.2) says that these ideals are prin
ipal ideals too, and the generatorpolynomial d(x) for this ideal hf(x); g(x)i is 
alled the greatest 
ommon divisor, orGCD, of f(x) and g(x). The Eu
lidean Algorithm is a method for 
omputing thisgreatest 
ommon divisor, and an extension provides the polynomials a(x); b(x) too.The Eu
lidean Algorithm works as follows to 
ompute the GCD of two polyno-mials f(x) and g(x). We begin by assuming deg(f(x)) � deg(g(x)) and we divideg(x) into f(x) using (3.1). Then we divide the remainder from the �rst division intog(x), the remainder from the se
ond division into the �rst remainder, and so on,until a zero remainder o

urs. (This must happen eventually, sin
e the degree ofthe remainder de
reases at ea
h step.) In symbols, we 
an write the 
omputationsas follows: f(x) = q0(x)g(x) + r1(x)g(x) = q1(x)r1(x) + r2(x)r1(x) = q2(x)r2(x) + r3(x)...rk�1(x) = qk(x)rk(x) + 0Then the last nonzero remainder is the GCD: d(x) = rk(x).



SACNAS MINICOURSE 13Here is an example. Consider the polynomials f(x) = x6 + x5 + x3 + x2 andg(x) = x6 + x4 + x+ 1 in F2 [x℄. Carrying out the pro
ess above, we �nd:f(x) = 1 � g(x) + x5 + x4 + x3 + x2 + x+ 1g(x) = (x + 1)(x5 + x4 + x3 + x2 + x+ 1) + x4 + xx5 + x4 + x3 + x2 + x+ 1 = (x + 1)(x4 + x) + x3 + 1x4 + x = x(x3 + 1) + 0The sequen
e of remainders isr1(x) = x5 + x4 + x3 + x2 + x+ 1r2(x) = x4 + xr3(x) = x3 + 1r4(x) = 0So the last nonzero remainder r3(x) = x3 + 1 is the GCD d(x) of f(x) and g(x).(In fa
t f(x) = (x3 + x2)d(x) and g(x) = (x3 + x + 1)d(x), so d(x) is a 
ommondivisor of f(x) and g(x)).In the next se
tion, we will see that a very good de
oding algorithm for Reed-Solomon 
odes is based on the kind of 
omputations done here, and in the following\extended" version of the Eu
lidean Algorithm that 
omputes d(x) together withthe a(x); b(x) that give d(x) = a(x)f(x)+b(x)g(x). We �rst introdu
e the notationf(x) = r�1(x) and g(x) = r0(x) to give a uniform form for the steps in the su

essivedivisions. So every line of the above des
ription 
an be written asrk�1(x) = qk(x)rk(x) + rk+1(x)for k = 0; 1; 2; : : : . Then the statement of the Extended Eu
lidean Algorithm is asfollows.(3.3) Algorithm. Input : nonzero f(x); g(x)Output : d(x); a(x); b(x)r�1 := f ; r0 := ga�1 := 1; a0 := 0b�1 := 0; b1 := 1k := 0WHILE rk 6= 0 DOdivide rk into rk�1 : rk�1 = qkrk + rk+1ak+1 := ak�1 � qkakbk+1 := bk�1 � qkbkk := k + 1



14 SACNAS MINICOURSENote: The polynomials a(x); b(x), and d(x) are the �nal values ak(x), bk(x), andrk(x), respe
tively.We will present a ni
e tabular format for organizing and 
arrying out these
al
ulations in the mini
ourse. This format is shown in the following example.With the polynomials f(x) = x6 + x5 + x3 + x2 and g(x) = x6 + x4 + x + 1 asin our previous example, we get the following results:k rk qk ak bk�1 x6 + x5 + x3 + x2 1 00 x6 + x4 + x+ 1 1 0 11 x5 + x4 + x3 + x2 + x+ 1 x+ 1 1 12 x4 + x x+ 1 x+ 1 x3 x3 + 1 x x2 x2 + x+ 1We have (x2)f(x) + (x2 + x+ 1)g(x) = x3 + 1in F2 [x℄ as 
laimed.Complete proofs for the Extended Eu
lidean Algorithm 
an be found in manyabstra
t and 
omputational algebra texts.x4. Reed-Solomon De
odingWe now turn to the de
oding problem for Reed-Solomon 
odes. Several di�erentbut related extremely eÆ
ient de
oding algorithms for Reed-Solomon and related
odes have been developed. And indeed, the fa
t that they are available is one majorreason for the Reed-Solomon 
odes' popularity. One well-known method is due toBerlekamp and Massey. It is very 
ommonly used in pra
ti
e (see [M
WS℄). Otheralgorithms paralleling the Eu
lidean algorithm for the GCD of two polynomialshave also been 
onsidered ([SKHN℄, [P℄), and we will study that approa
h here.For simpli
ity we will assume that the minimum distan
e of our Reed-Solomon
ode C is odd: d = 2s + 1. Then by Proposition 1, any s or fewer errors in are
eived word should be 
orre
table.Let 
 = Pq�2j=0 
jtj be a 
odeword of C, in the polynomial representation from(2). In Fq [t℄, 
 is divisible by the generator polynomialg = (t� �)(t � �2) � � � (t� �d�1):Suppose that 
 is transmitted, but some errors are introdu
ed, so that the re
eivedword is r = 
+ e for some e =Pi2L eiti. L is 
alled the set of error lo
ations , andwe assume jLj � s. The 
oeÆ
ients ei are known as the error values .De
oding Problem. Given the re
eived word r, determine the set of error lo
a-tions L and the error values ei for the error polynomial e with s or fewer nonzeroterms (if su
h a polynomial exists).On
e we �nd e, the de
oding fun
tion will return E�1(r � e). To solve thisproblem we will pro
eed as follows. First, we 
an try to determine whether errorshave o

urred by 
omputing the values of the polynomial form of the re
eived wordat �; : : : ; �d�1. If r(�j ) = 0 for all j = 1; : : : ; d � 1, then r is divisible by g, andassuming s or fewer errors have o

urred, r must be the 
odeword we intended to



SACNAS MINICOURSE 15send. The values sj = r(�j) are 
alled the syndromes of the re
eived word. Notethat sj = r(�j ) = 
(�j) + e(�j) = e(�j);sin
e 
 is a multiple of g. Hen
e the sj are the values of the error polynomial forj = 1; : : : ; d� 1.The syndromes may be used as the 
oeÆ
ients in a polynomialS(u) = d�1Xj=1 sjuj�1;
alled the syndrome polynomial for the re
eived word r. Its degree is d� 2 or less.By extending the de�nition of sj = e(�j) to all exponents j we 
an also 
onsiderthe formal power series bS(u) = 1Xj=1 sjuj�1:Suppose we knew the error polynomial e for a re
eived word with s or fewererrors. Then as noted above, sj = Pi2L ei(�j)i = Pi2L ei(�i)j : By ex
hangingthe order of summation, then summing formal geometri
 series, bS(u) 
an be writtenas
(5) bS(u) = 1Xj=1 sjuj�1=Xi2L ei0� 1Xj=1(�i)juj�11A=Xi2L ei�i(1� �iu)= w(u)`(u) ;where ` =Yi2L(1� �iu)and w =Xi2L ei�i Yj 6=ij2L (1� �ju):The roots of ` are pre
isely the ��i for i 2 L. Sin
e the error lo
ations 
an bedetermined easily from these roots, ` is 
alled the error lo
ator polynomial . Turningto the numerator w, we see thatdegw � deg `� 1:In addition, if i 2 L, w(��i) = ei�i Yj 6=i;j2L(1� �j��i) 6= 0:



16 SACNAS MINICOURSEHen
e w has no roots in 
ommon with `. From this we dedu
e the importantobservation that the polynomials w and ` must be relatively prime (that is, theirGCD is 1).Similarly, if we 
onsider the \tail" of the series bS,(6) bS(u)� S(u) = 1Xj=d Xi2L ei(�i)j!uj�1= ud�1 � g(u)`(u) ;where g =Xi2L ei�id Yj 6=ij2L (1� �ju):The degree of g is also at most deg `� 1.Combining (5) and (6), and writing d� 1 = 2s we obtain the relation(7) w = `S + u2sg:The equation (7) is 
alled the key equation for de
oding.The derivation of the key equation (7) assumed the error polynomial e wasknown. But now 
onsider the situation in an a
tual de
oding problem, assumingthat no more than s errors o

urred. Given the re
eived word r, S is 
omputed.Consider the key equation (7) as a relation between the known polynomials S; u2s,and unknowns 
;�;�: 
 = �S + u2s�:Suppose a solution (
;�;�) of the key equation is found, whi
h satis�es the follow-ing degree 
onditions :(8) deg � � sdeg
 < deg �;and in whi
h 
;� are relatively prime. We 
laim that in su
h a solution � mustbe a fa
tor of uq�1 � 1, and its roots give the inverses of the error lo
ations. Thisis a 
onsequen
e of the following uniqueness statement.(4.1) Theorem. Suppose that s or fewer errors o

ur in the re
eived word r, andlet S be the 
orresponding syndrome polynomial. Up to a 
onstant multiple, thereexists a unique solution (
;�;�) of (7) that satis�es the degree 
onditions (8), andfor whi
h 
 and � are relatively prime.Proof. The existen
e of a solution follows from Algorithm (4.2) below. As above,the a
tual error lo
ator ` and the 
orresponding w; g give one su
h solution. Let(
;�;�) be any other. Start withw = `S + u2sg
 = �S + u2s�;



SACNAS MINICOURSE 17multiply the se
ond by `, the �rst by � and subtra
t. We obtainw� = 
`+ u2s(g�� `�):Sin
e the degree 
onditions (8) are satis�ed for both solutions, w� and 
` area
tually polynomials of degree at most 2s� 1, so it follows thatw� = 
`(and g� = `�). Sin
e both pairs (w; `) and (
;�) are relatively prime, they 
andi�er only by a 
onstant multiple. �Given a solution of (7) for whi
h the degree 
onditions (8) are satis�ed, workingba
kwards, we 
an determine the roots of � = 0 in Fqnf0g, and hen
e the errorlo
ations|if ��i appears as a root, then i 2 L is an error lo
ation. Finally, theerror values 
an be determined by the following observation.Let (w; `; g) be the solution of (7) in whi
h the a
tual error lo
ator polynomial` (with 
onstant term 1) appears. If i 2 L, then(9) w(��i) = �iei�i(��i)where �i =Qj 6=i(1��ju). (This is 
alled the Forney formula.) Hen
e we 
an solvefor ei, on
e we know the error lo
ations.Theorem (4.1) and the pre
eding dis
ussion show that solving the de
oding prob-lem 
an be a

omplished by solving the key equation (7).We will see that this 
an be done by adapting the Eu
lidean Algorithm for theGCD of two polynomials from x3.(4.2) Algorithm. The following algorithm will solve the key equation (7) and
orre
tly de
ode RS(k; q), provided the weight of the error is at most bd�12 
 =b q�k�12 
. We assume d = 2s+ 1.Input : r; � primitive elementOutput : eFOR j FROM 1 TO 2s DOsj := r(�j )S := 2sXj=1 sjuj�1



18 SACNAS MINICOURSEIF S 6= 0 THENr�1 := u2s; r0 := Sg�1 := 1; g0 := 0`�1 := 0; `0 := 1k := 0WHILE deg(rk) � s DOdivide rk into rk�1 : rk�1 = qkrk + rk+1gk+1 := gk�1 � qkgk`k+1 := `k�1 � qk`kk := k + 1IF rk 6= 0 THENdetermine roots of `k(u) = 0�nd ei using Forney Formula (9)ELSEe := 0Note: The �nal values (gk(u); `k(u)) 
an be shown to be (g(u); `(u)) from (7),up to a 
onstant multiple, and the �nal value rk is w. So the roots of `k(u) are theinverses of the error lo
ations.We demonstrate this with an example. Use the �eld F8 (with h(�) = �3+�+1as the problems below), and the Reed-Solomon 
ode RS(3; 8), whi
h has d = n�k + 1 = 7� 3 + 1 = 5, so s = 2. Suppose the 
odeword
 = ev(1) = (1; 1; 1; 1; 1; 1; 1)is sent, but it is 
orrupted by errors to yieldr = (1; �; 1; 1; 1; 1; �2 + 1);or in polynomial formr = 1 + �t+ t2 + t3 + t4 + t5 + (�2 + 1)t6:The �rst step is to 
ompute the syndromes and the 
orresponding syndromepolynomial S(u). For instan
e,s1 = r(�) = 1 + �2 + �2 + �3 + �4 + �5 + �6(�2 + 1)= 1 + (� + 1) + (�2 + �) + (�2 + �+ 1) + (�2 + �+ 1)= �2Similarly, s2 = �4; s3 = 0; s4 = �4;So S(u) = �2 + �4u+ �4u3



SACNAS MINICOURSE 19(note the shift in indexing, as in the de�nition of S above).We now begin the Eu
lidean algorithm to �nd the g
d of u2t = u4 and S(u),keeping tra
k of the remainders rk, and gk; `k. In the �rst division:u4 = �3uS + (u2 + �5u)so q0 = �3u and r1 = u2 + �5u. Hen
eg1 = g�1 � q0g0 = 1 `1 = `�1 � q0`0 = �3u:We 
ontinue in the same way (only one more step is needed in the WHILE loopin (4.2) in this small example), and obtain the results 
olle
ted in the followingtable k qk rk gk `k�1 u4 1 00 �3u �4u3 + �4u+ �2 0 11 �4u+ �2 u2 + �5u 1 �3u2 �5u+ �2 �4u+ �2 u2 + �5u+ 1Here w = �5u+ �2:We stop here sin
e deg(r2) = 1 < 2 = s. The next step is to �nd the roots of`2(u) = u2 + �5u+ 1 = 0:This 
an be done either by exhaustive sear
h, or by fa
toring. We �ndu2 + �5u+ 1 = (1 + �u)(1 + �6u);so the roots are u = �6; �. But by the de�nition of the error lo
ator polynomial,the lo
ations of the errors are found from the inverses: � = ��6 and �6 = ��1, sothe errors o

urred in lo
ations 1 and 6. Finally we use the Forney Formula (9) todetermine the error values e1 and e6: with u = � = ��6, (9) says:w(��1) = �e1�1(�6) = �e1(1� �5) = �5e1:Sin
e w(u) = �5u+ �2, it follows that w(��1) = �, and so e1 = �3. Similarly,w(��6) = �6e6�6(�) = �6e6(1� �2) = �5e6and w(��6) = 1, and so e6 = �2. Thene(t) = �3t+ �2t6and r(u) + e(u) =  (
) = 1 + t+ t2 + � � �+ t6.



20 SACNAS MINICOURSEx5. Codes from Order DomainsA 
ertain type of generalization of Reed-Solomon 
odes, known as geometri
Goppa 
odes have been intensively studied in 
oding theory re
ently. These arenamed after their dis
overer, V. D. Goppa. Some of these 
odes have extremelygood parameters and the 1982 paper [TVZ℄ establishing this fa
t was a majorlandmark in the history of 
oding theory. The original formulation of the geometri
Goppa 
odes required many notions from the 
lassi
al theory of algebrai
 
urves orfun
tion �elds of trans
enden
e degree one, as well as topi
s from number theory.However, there is a 
lass of 
odes, in
luding the most important geometri
 Goppa
odes, for whi
h a more elementary des
ription is now available. We will introdu
ethat treatment here and work out an example to give a brief �rst indi
ation of howthis works. A general referen
e for this is the arti
le by H�holdt, van Lint andPellikaan [HvLP℄ from the re
ently published Handbook of Coding Theory.We will begin with some motivation. The 
onstru
tion of 
odes possessing goodparameters and eÆ
ient de
oding methods is the basi
 problem in 
oding theory.The Reed-Solomon 
odes are among the most powerful and su

essful 
odes for
ertain appli
ations. Hen
e it is natural to try to generalize the 
onstru
tion ofReed-Solomon 
odes given above to produ
e other, potentially even better 
odes.In the Reed-Solomon 
ase, given an f 2 Lk�1 = Spanf1; t; : : : ; tk�1g for somek < q, we evaluated f at the nonzero elements of Fq to form the entries in a
odeword of RS(k; q). The set of nonzero elements of Fq is a 
olle
tion of pointson the aÆne line and Lk�1 
an be seen as a ve
tor subspa
e of the ring R = Fq [t℄.A possible extension might pro
eed as follows. Let S = fP1; : : : ; Png be a set ofpoints in F tq . We 
an then follow the Reed-Solomon 
ase to de�ne an evaluationmapping by evS : Fq [X1; : : : ; Xt℄! Fnqf 7! (f(P1); : : : ; f(Pn)):The mapping evS is 
learly linear, so if L is a �nite-dimensional ve
tor subspa
e ofpolynomials in t variables, the image E = evS(L) will be a linear 
ode in Fnq , 
alledan evaluation 
ode.This gives a very general re
ipe for 
onstru
ting 
odes, in
luding the Reed-Solomon 
odes and a number of other 
lasses of 
odes (su
h as the Reed-Muller
odes, see [W℄) that have been studied in 
oding theory. But there is no indi
a-tion of how the S and the subspa
e L might be 
hosen to yield 
odes with goodparameters and eÆ
ient de
oding methods. It has re
ently be
ome 
lear that oneway to supply this missing ingredient is the notion of an order (or weight) fun
tionon a ring. The following is a slightly simpli�ed treatment of a spe
ial 
ase of this
onstru
tion. Let � � Z�0 be a subset of the form� = hm1; : : : ;mti= fa1m1 + � � �+ atmt : ai 2 Z�0g:Given a �eld F and a 
ommutative ring R, we say that R is an F -algebra if R
ontains F and the multipli
ation in R restri
ted to F is the same as multipli
ationin F . For instan
e, the polynomial ring Fq [X1; : : : ; Xt℄ is an example of an Fq -algebra.(5.1) De�nition. Let R be a �nitely-generated 
ommutative Fq -algebra with iden-tity, and let � be as above (for some 
hoi
e of m1; : : : ;mt). A surje
tive fun
tion



SACNAS MINICOURSE 21� : R ! f�1g [ � is said to be a order fun
tion on R if it satis�es the followingproperties for all f; g 2 R, and � 2 Fq :(1) �(f) = �1 if and only if f = 0.(2) �(�f) = �(f) for all � 6= 0.(3) �(f + g) � maxf�(f); �(g)g, with equality if �(f) 6= �(g).(4) If �(f) = �(g) 6= �1, then there exists � 6= 0 su
h that �(f + �g) � �(f).(5) �(fg) = �(f) + �(g).The following Proposition develops some �rst properties of rings with order fun
-tions.(5.2) Proposition. Let � be a order fun
tion on R.(1) We have �(1) = 0 (the additive identity in �), and hen
e �(
) = 0 for all
 6= 0 in Fq .(2) Every R having a order fun
tion is an integral domain. (A ring R is saidto be an integral domain if it has no nonzero zero-divisors, where a zero-divisor is de�ned to be any element a 2 R su
h that ab = 0 for some nonzerob 2 R.)(3) Every set of elements of R with distin
t � values is linearly independentover Fq .(4) There exists an Fq -basis of R 
onsisting of elements with distin
t � values.As a �rst example, note that the ring R = Fq [X ℄ satis�es this de�nition if wetake �(f) = deg(f). Thus the Reed-Solomon 
ode set-up is in
luded in this larger
ontext.(5.3) Example. Let q = 4. In the 
olle
tion of all polynomials in two variablesX1; X2 with 
oeÆ
ients in F4 , denoted F4 , we 
onsider the set R of all (�nite)linear 
ombinations of the monomials in the set� = fX i1Xj2 : 0 � i � 2; j � 0g:As in our 
onstru
tion of the �nite �elds Fpr before, we will make this set of monomi-als into a ring (not a �eld, though, sin
e most elements will not have multipli
ativeinverses). We will do this by de�ning appropriate sum and produ
t operations. Thesum operation is the familiar sum of polynomials. For the produ
t, we multiply thefa
tors as polynomials, then divide by the polynomial X31 + X22 + X2, thinking ofthe X31 as the \leading term" for the division. For instan
e, dividing X31 +X22 +X2into �X41 +X1 gives a quotient of �X1 and a remainder of �X22 +�X2+X1. Noti
ethat the terms that 
an appear in remainders are exa
tly the monomials in �. (Inabstra
t algebra, the 
onstru
tion we are doing here leads to the idea of the quotientring F4 [X1; X2℄=I;where I = hX31 +X22 +X2i is the prin
ipal ideal generated by X31 +X22 +X2.)For ea
h monomial in �, we have the following notion of its weight, or order:�(Xa1Xb2) = (2; 3) � (a; b) = 2a + 3b. These are distin
t be
ause of the limitation0 � a � 2. So in fa
t the set � is an example of part (4) of Proposition (5.2) above.The set of integers we get here as �-values of monomials is pre
isely the subset� = h2; 3i � Z



22 SACNAS MINICOURSEas in De�nition (5.1) above. And in fa
t we 
an extend � to R by setting�(f) = maxf�(Xa1Xb2) : Xa1Xb2 appears in fg:We 
laim that this makes R into a order domain with � = h2; 3i = f2i+ 3j : i; j 2Z�0g � Z�0.We will now present the most important examples of evaluation 
odes as de-s
ribed at the start of this se
tion. The ring R = Fq [t℄ leading to the Reed-Solomon
odes 
an be thought of as the ring of polynomial fun
tions on the line over the�eld Fq . If R is an order domain, there is a geometri
 obje
t asso
iated to R ina similar way. Let R = Fq [X1; : : : ; Xt℄=I has an order fun
tion �. The geometri
obje
t asso
iated to R is 
alled the variety de�ned by the ideal I , the 
ommon zerolo
us of all polynomials in I :X = V(I) = f(a1; : : : ; at) 2 F tq : f(a1; : : : ; at) = 0 for all f 2 Ig:Sin
e Fq is �nite, X is also a �nite set.(5.4) Example. We 
ontinue with the order domain introdu
ed in Example (5.3).To 
onstru
t evaluation 
odes, we need to know the points in X , where X =V(X31 + X22 + X2). There are exa
tly eight su
h points with 
oordinates in F4 .Writing � for a primitive element of F4 (
onstru
ted using h(�) = �2+�+1 = 0),the eight points 
an be numbered as follows:P1 = (0; 0) P2 = (0; 1)P3 = (1; �) P4 = (1; �2)P5 = (�; �) P6 = (�; �2)P7 = (�2; �) P8 = (�2; �2):To 
onstru
t 
odes from an order domain, we will evaluate fun
tions from someve
tor subspa
e L in R at the points in X . As in the Reed-Solomon 
ase, the mostuseful ve
tor subspa
es L of R will have the form L = ff 2 R : �(f) � mg for somem 2 �.(5.5) Proposition. Let (R; �) be an order domain as above. For a 2 �, let La =ff 2 R : �(f) � ag and let L�1 = f0g. Then La is a �nite dimensional ve
torsubspa
e of R for all a.Proof. Closure of ea
h La under sums and s
alar multiples follows from parts (2)and (3) of De�nition (5.1). �We now present some examples of evaluation 
odes 
onstru
ted using the Lasubspa
es. We will write Ea = evS(La), where evS is the evaluation mapping asabove.Continuing with R from (5.3) and (5.4) above, The 
ode E3 = ev(V3) is obtainedas follows. The ve
tor spa
e L3 is spanned by f1; X1; X2g, sin
e �(1) = 0, �(X1) =2, �(X2) = 3, and all other monomials in � have �-value at least 4. The 
odewordsare obtained by evaluation at the eight points Pi above. This gives the followinggenerator matrix for a 
ode of blo
k length n = 8 over F4 :(10) G = 0� 1 1 1 1 1 1 1 10 0 1 1 � � �2 �20 1 � �2 � �2 � �21A :
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e of the evaluation 
odes 
an be quite deli
ate,sin
e it involves the subtle question of how many zeroes a polynomial in La 
anhave at the Fq -rational points on X . There are both geometri
 and arithmeti
 issuesinvolved. In the following simple example the geometry suÆ
es to understand whatis going on.Consider the E3 
ode over F4 studied above. Ea
h 
odeword is a linear 
ombi-nation of the three rows of the matrix G given in (10). Hen
e ea
h 
odeword isformed by evaluation of some linear fun
tion f = a+bX1+
X2 at the 8 F4 -rationalpoints. We 
an use a famous result known as B�ezout's theorem to give an upperbound for the number for the number of zero entries in a 
odeword, hen
e a lowerbound for d. B�ezout's theorem says that over any �eld, if X is a the set of zeroes ofa polynomial F of degree m in two variables, and Y is the set of zeroes of a se
ondpolynomial G of degree n whi
h has no fa
tor of positive degree in 
ommon withF , then jX \ Y j � mn.Be
ause X is de�ned by a polynomial of degree m = 3, it meets ea
h lineV(a+bX1+
X2) (degree n = 1) in at most mn = 3 �1 = 3 points, and hen
e d � 5.Some nonzero words in E2 have weight exa
tly 5 sin
e some of these lines interse
tX in exa
tly 3 aÆne F4 -rational points. The bound obtained from B�ezout's theoremusing the de�ning equations of X is sharp in this 
ase, but that will not always betrue.Order domains and asso
iated 
odes are a subje
t of 
urrent interest in 
odingtheory. There is a very good de
oding algorithm 
alled the Berlekamp-Massey-Sakata (or BMS) algorithm that applies very generally. This 
onstru
tion looksquite promising as a way to 
onstru
t 
odes with good parameters and eÆ
ientde
oding methods. Although the Reed-Solomon 
odes have suÆ
ed \so far" forthe engineering problems we have en
ountered, many experien
ed 
oding theoristsbelieve that it is only a matter of time before these more general 
odes are exploitedalso in the real world. Problem SessionsProblem 1. (a) A

ording to the Singleton bound, what is the largest possiblenumber of 
odewords for a 
ode C � F 82 with minimum distan
e d = 3?(b) Improve this bound by showing that number of 
odewords in su
h a 
ode isa
tually fewer than 32. (Hint: 
onsider Hamming balls of radius 1 
entered aboutthe 
odewords.)Problem 2. Let h(x) be an irredu
ible polynomial over Fp of degree r. Prove thath(x) divides xpr�1 � 1 Hint: Think about what part 5 in Theorem (2.1) says aboutthe nonzero elements of the �eld Fpr .Problem 3. Prove that if a polynomial of degree 3 or less has no roots, then itis irredu
ible. Is this true for polynomials of degree 4 and higher? Use the �rststatement to show that the polynomial p(�) = �3 + �+ 1 is irredu
ible over F2 .Problem 4. Consider the �eld F8 obtained by using the irredu
ible polynomialh(�) = �3 + � + 1 from Problem 3. Write ea
h of the elements of this �eld as alinear 
ombination of 1; �, and �2. Constru
t the addition and multipli
ation tablesfor the elements expressed in the form 0; 1; �; �2; : : : ; �6.



24 SACNAS MINICOURSEProblem 5. Show that h(�) = �4 + �3 + �2 + � + 1 = 0 is irredu
ible over F2 ,but � is not primitive for F16 .Problem 6. Find all of the irredu
ible, moni
, quadrati
 polynomials over F3 .Whi
h of these polynomials have roots that are primitive for F9?Problem 7. Prove that for a; b 2 Fpr , (a+ b)pr = apr + bpr . (Hint: �rst show that�pk� is divisible by p.)Problem 8. Consider the �eld F8 obtained by using the irredu
ible polynomialh(�) = �3 + � + 1 over F2 . Let C denote the Reed-Solomon 
ode over F8 withgenerator polynomial g(t) = (t� �)(t� �2)(t� �3)(t� �4)?(a) What are the parameters of this 
ode (i.e., what are n, k, and d)?(b) Constru
t the generator matrix for this 
ode.(
) How would you en
ode the message 
onsisting of the ve
tor (1; �3; �2), i.e,what is the 
orresponding 
ode ve
tor 
?(d) Suppose somebody hands you the ve
tor (�3; 1; �3; �; �; 1; 0) and 
laims thatit is a 
odeword. Verify that this is really the 
ase without using the de
odingalgorithm. Can you determine the original message ve
tor?Problem 9. Consider the Reed-Solomon 
ode from the previous problem. Supposeyou re
eive the ve
tor r = (1; �2; �4; �6; �; �; �). Assuming there are at most twoerrors, what is the original 
odeword?Problem 10. Consider the Reed-Solomon 
ode RS(k,q).(a) Prove that the rank of the generator matrix is k.(b) Let 
 2 Fq�1q . Prove the 
onverse of Proposition (2.4), that is, if g(t) divides (
), then 
 is a 
odeword.Problem 11. What are the generator and parity 
he
k matri
es for the Reed-Solomon 
ode RS(3,8) where the polynomial h(�) = �3+�2+1 is used to generateF8 .Problem 12. Consider the Reed-Solomon 
ode RS(k,q). Here is an alternativemethod of produ
ing a map from the set of message ve
tors to the set of 
odewords.Let g(t) be the generator polynomial for this 
ode. For ea
h message polynomialf(t), de�ne the 
orresponding 
odeword polynomial to be
(t) = tq�k�1f(t)� d(t);where d(t) is the remainder upon division of tq�k�1f(t) by g(t). This method is
alled systemati
 en
oding sin
e the original message 
an be read dire
tly from anun
orrupted 
odeword.(a) From Problem 2, we know g(t) divides tq�1 � 1. De�neh(t) = tq�1 � 1g(t) ;whi
h we 
all the parity-
he
k polynomial. Show that 
(t)h(t) is divisible by tq�1�1if and only if 
(t) is a 
odeword.(b) Again, we 
onsider the Reed-Solomon 
ode RS(3,8). Given thatg(t) = (t� �)(t � �2)(t� �3)(t� �4) = t4 + �3t3 + t2 + �t+ �3;
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ode the polynomials f(t) = 1 and f(t) = t � �. Note that thissystemati
 
oding does not produ
e the same results as the evaluation map ev :Lk ! Fq�1q .(
) Compute the parity-
he
k polynomial for RS(3,8). Use this to test whether
(t) = 1 + �t+ t2 + �t3 + t4 + �t5 + t6 is a 
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