- Problem A1. Let A and B be points on the same branch of the hyperbola $x y=1$. Suppose that P is a point lying between A and B on this hyperbola, such that the area of the triangle $A P B$ is as large as possible. Show that the region bounded by the hyperbola and the chord $A P$ has the same area as the region bounded by the hyperbola and the chord $P B$.
- Problem A2. Let $a_{0}=1, a_{2}=2$ and $a_{n}=4 a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of a_{2015}.
- Problem A3. Compute

$$
\log _{2}\left(\prod_{a=1}^{2015} \prod_{b=1}^{2015}\left(1+e^{2 \pi i a b / 2015}\right)\right)
$$

Here i is the imaginary unit (that is, $i^{2}=-1$).

- Problem A4. For each real number x, let

$$
f(x)=\sum_{n \in S_{x}} \frac{1}{2^{n}},
$$

where S_{x} is the set of positive integers n for which $\lfloor n x\rfloor$ is even. What is the largest real number L such that $f(x) \geq L$ for all $x \in[0,1)$? (As usual $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)

- Problem A5. Let q be an odd positive integer, and let N_{q} denote the number of integers a such that $0<a<q / 4$ and $\operatorname{gcd}(a, q)=1$. Show that N_{q} is odd if and only if q is of the form p^{k} with k a positive integer and p a prime congruent to 5 or 7 modulo 8 .
- Problem A6. Let n be a positive integer. Suppose that A, B, M are $n \times n$ matrices with real entries such that $A M=M B$, and such that A and B have the same characteristic polynomial. Prove that $\operatorname{det}(A-M X)=\operatorname{det}(B-X M)$ for every $n \times n$ matrix X with real entries.
- Problem B1. Let f be three times differentiable function (defined on \mathbb{R} and real-valued) such that f has at least five distinct zeroes. Show that $f+6 f^{\prime}+12 f^{\prime \prime}+8 f^{\prime \prime \prime}$ has at least two distinct real zeroes.
- Problem B2. Given a list of the positive integers $1,2,3,4, \ldots$, take the first three numbers $1,2,3$ and their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers $4,5,7$ and their sum 16. Continue in this way, crossing off the three smallest remaining numbers and their sum, and continue the sequence of sums produced: $6,16,27,36, \ldots$. Prove or disprove that there is some number in this sequence whose base 10 representation ends in 2015.
- Problem B3. Let S be the set of all 2×2 real matrices

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

whose entries a, b, c, d (in that order) form an arithmetic progression. Find all matrices M in S for which there is some integer $k>1$ such that M^{k} is also in S.

- Problem B4. Let T be the set of all triples (a, b, c) of positive integers for which there exist triangles with side lengths a, b, c. Express

$$
\sum_{(a, b, c) \in T} \frac{2^{a}}{3^{b} 5^{c}}
$$

as a rational number in lowest terms.

- Problem B5. Let P_{n} be the number of permutations π of $\{1,2, \ldots, n\}$ such that

$$
|i-j|=1 \text { implies }|\pi(i)-\pi(j)| \leq 2
$$

for all i, j in $\{1,2, \ldots, n\}$. Show that for $n \geq 2$, the quantity

$$
P_{n+5}-P_{n+4}-P_{n+3}+P_{n}
$$

does not depend on n and find its value.

- Problem B6. For each positive integer k, let $A(k)$ be the number of odd divisors of k in the interval $[1, \sqrt{2 k})$. Evaluate

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \frac{A(k)}{k} .
$$

