
To the Student

Mathematics is unique among human intellectual endeavors; it is not
art, philosophy, or science, but it shares certain features with each. The
example of digital data storage will help convey the nature and uses of
mathematics and the flavor of the material covered in this book.

Computers store, manipulate, and transmit data as bits or binary
digits. Physically, bits have been represented and conveyed in a vast
array of schemes from historical to modern, including

• Shaking or nodding one’s head.

• Dots and dashes in Morse code.

• Holes and “no-holes” in a paper strip: punch cards, ticker tape.

• Magnetic domains: floppy and ZIP disks, PC hard drives.

• Light and dark spots or bands: compact disks, UPC symbols,
QR codes.

• Charged and uncharged capacitors: flash memory, RAM.

A mathematician or theoretical computer scientist sees no essential
difference between these schemes: The central mathematical “object”
is a pair of contrasting states. Depending on context, the states might
be called (and, in actual practice, are called) “zero and one”, “false
and true”, “white and black”, “no and yes”, “open and closed”, “low
and high”, or “off and on”.

Mathematical abstraction extends beyond data, however, encom-
passing the operations performed on objects.

Binary arithmetic. Think of 0 as representing an arbitrary even
integer, and 1 as representing an arbitrary odd integer; namely, identify
an integer with its remainder on division by 2. The sum of two odd
integers is even (“1 + 1 = 0”), the product of an even and an odd
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ii INTRODUCTION TO PROOFS

integer is even (“0 · 1 = 0”), and so forth. These relationships may be
tabulated as

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Boolean logic. Think of F as representing an arbitrary “false”
assertion (such as “2 + 2 = 5”) and T as representing an arbitrary
“true” sentence (such as “1 + 1 = 2”). Since, e.g., “2 + 2 = 5 or
1 + 1 = 2, but not both” is true, we write “F xor T = T”. (“xor”
stands for “exclusive or”: one statement is true, but not both.) Since
“2 + 2 = 5 and 1 + 1 = 2” is false, we write “F and T = F”. Tabulating
the “truth value” of the statements made by conjoining two statements,
according to whether or not each statement is true or false,

xor F T

F F T
T T F

and F T

F F F
T F T

Abstract implementation. The truly mathematical observation
is the entries of these pairs of tables correspond : Under the corre-
spondence even-False and odd-True, “addition (mod 2)” corresponds
to “xor”, and “multiplication (mod 2)” corresponds to “and”. The ta-
bles above are different “implementations” of the same abstract struc-
ture, which we might denote by

∨ ◦ •
◦ ◦ •
• • ◦

∧ ◦ •
◦ ◦ ◦
• ◦ •

These three pairs of tables exemplify an abstract relationship, known
as “isomorphism”, between operations on pairs of contrasting states.
Any logical consequence that holds for one implementation necessar-
ily holds for other implementations. For example, if we let variables
x and y stand for either of two contrasting states, and we denote by x′

the state unequal to x, then the identities

(x′)′ = x, x ∨ y = (x ∧ y′) ∨ (x′ ∧ y) = x′ ∨ y′

hold regardless of what values are assigned to x and y, and, more
significantly, no matter which implementation is used. In this fash-
ion, mathematical structures can be studied and organized with their
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extraneous details set aside. More subtle patterns can sometimes be
discerned in the abstraction, leading to a deeper understanding of the
original structures.

Among of the most remarkable internal features of mathematics is
its absoluteness: the perfect and intricate logical meshing of truth even
when drawn from widely separated sub-disciplines, the universality of
theorems across cultures, the sense among mathematicians that their
work describes an objective (if non-physical) reality.

As a language, mathematics is unparalleled in its ability to express
features of the natural world, often with astounding accuracy. At the
same time, mathematics has no known a priori connection to the real
world. The objects of mathematics are idealized concepts (such as “a
pair of contrasting states”), and do not have physical existence in the
same way stars, molecules, or people do. Conversely, stars, molecules,
and people are not mathematical objects, though they do possess at-
tributes that can be modeled by mathematical concepts.

This book was written to help you bridge the gap between infor-
mal intuition and the more formal language and framework of modern
mathematics. Learning mathematics requires active preparation and
participation from you, but offers continual rewards, including deep-
ened comprehension of the natural world and the sheer enjoyment of
mathematical beauty.

Practice reading actively, with a pencil and scratch paper. When
you encounter a new definition, try to construct examples and non-
examples before reading further, and ask yourself how you might test
an object to see if it satisfies the definition.

Develop the habit of filling in the missing steps of calculations and
omitted “standard” steps of proofs. When you first read the state-
ment of a theorem, pause to think about what the theorem claims, and
whether or not you believe the assertion. Try to sketch out an argument
on your own before reading the book’s proof.

Situate new general concepts and examples in the context of your
existing mathematical knowledge. Pay attention to the overall struc-
ture of proofs, not merely to the details. Look for commonalities in
arguments, and be sure you are able to use these strategies yourself.
Your repertoire of proof techniques and other mathematical idioms will
grow steadily.

Work on mathematics outside of class every day, rather than in one
or two long “marathon sessions” per week. Don’t become discouraged if
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new ideas don’t immediately “click”. Re-read confusing passages after a
day or two. Speak with classmates and your instructor for clarification
as necessary. At the same time, develop intellectual self-reliance. The
more mathematics you have made your own, the easier learning new
mathematics becomes.

Above all, cultivate the enjoyment of thinking about new ideas, solv-
ing problems, and finding meaningful connections between seemingly
disparate concepts. The greatest reward of your mathematical studies
will, ideally, be a deeper experience of life itself.
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Part I

The Language of
Mathematics
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Chapter 1

Logic and Proofs

Mathematics admits no “absolute truth”. Instead, most mathemati-
cians work within the axiom system known as Zermelo-Fraenkel with
choice, or ZFC for short. ZFC formalizes the concept of a set, an ab-
straction of a collection of objects, called elements. For now, the details
of ZFC are unimportant. This chapter describes the basic rules of logic.
Chapter 2 provides an informal introduction to ZFC.

ZFC is believed to be logically consistent, and the “correctness” of
mathematical statements is evaluated according to “provability” and
“logical consistency” with respect to ZFC. Theorems proved in ZFC
are said colloquially to be “true”. Strictly speaking, however, mathe-
maticians do not find metaphysical truths, but instead deduce logical
conclusions starting from assumptions called hypotheses.

1.1 Statements and Negations

A statement is a sentence having a truth value, T (True) or F (False).
Contact with the external world can be made via experience, but in
mathematics true and false may be viewed as undefined terms.

As noted earlier, the basic objects of ZFC are sets, collections of
elements. The examples below refer to the set of integers, or whole
numbers: 0, 1, −1, 2, −2, and so forth.

Example 1.1. −4 is an even integer.

The decimal expansion of π is non-repeating and contains the string
‘999999’. (True)

2 + 2 = 5. (False)

3
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Example 1.2. Sentences that are not statements include “n is an even
integer” (whose truth value depends on n) “101000 is a large number”
(“large” has not been given a mathematical definition), and the self-
referential examples, “This sentence is true” (whose truth value must
be specified as an axiom) and “This sentence is false” (which cannot
be consistently assigned a truth value).

1.2 Negation and Logical Connectives

Conventionally, abstract statements are denoted P and Q.

Not. The negation of a statement P is its logical opposite ¬P . You
may regard the negation as P preceded by the clause “It is not the case
that. . . ”, but usually a more pleasant wording can be found.

Example 1.3. P : 2 + 2 = 4. ¬P : 2 + 2 6= 4.

Let P and Q be statements. New statements can be constructed
using the “logical connectives” and, or, and implies.

And. The statement “P and Q” has its ordinary meaning: The
compound statement is true provided both P and Q are true, and is
false otherwise.

Example 1.4. 2 + 2 = 4 and 0 < 1. (True)
2 + 2 = 5 and 0 < 1. (False)
2 + 2 = 5 and 1 < 0. (False)

Or. The statement “P or Q” always has the “inclusive” meaning
in mathematics: P is true, or Q is true, or both.

Example 1.5. 2 + 2 = 4 or 0 < 1. (True)
2 + 2 = 5 or 0 < 1. (True)
2 + 2 = 5 or 1 < 0. (False)

Remark 1.6. In colloquial English, “or” is frequently used in the “ex-
clusive” sense. The sentence “You will earn a 70% on the final exam or
you will not pass the course” is conventionally interpreted to mean “If
you earn a 70% on the final exam, then you will pass the course, and
if you do not earn a 70%, then you will not pass.”

Mathematicians and computer scientists denote “exclusive or” by
“xor” to distinguish it from “or”. The statement “P xor Q” means
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P is true, or Q is true, but not both. When needed, “P xor Q” can be
expressed as “(P or Q) and ¬(P and Q)”. In this book, xor does not
appear again.

Implies.A statement of the form “If P then Q”, also read “P im-
plies Q”, is a logical implication. P is called the hypothesis of the
implication, Q the conclusion.

By definition, a logical implication “P implies Q” is true provided
Q is true whenever P is true. In other words, “P implies Q” is false
precisely when P is true and Q is false.

Example 1.7. If 1 6= 0, then 12 6= 0. (True)
If 1 6= 0, then 12 = 0. (False)
If 1 = 0, then 0 = 0. (True)
If 1 = 0, then 12 = 0. (True)

Logical implication plays a central role in mathematics. If “P im-
plies Q” is true, we say the implication is valid, and view Q as being
deduced or derived from P . The definition of valid implication ensures
that by starting with true hypotheses and making valid deductions, we
obtain only true conclusions, not falsehoods.

There are two noteworthy and potentially confusing consequences
of this convention. First, it is valid (not logically erroneous) to deduce
an arbitrary conclusion from a false hypothesis. An implication with
false hypothesis is said to be vacuous. Humorous examples abound: “If
1 = 0, then money grows on trees.”

In particular, the third and fourth implications of the preceding
example are vacuous. Note that in each case, we can give a proof.
If 1 = 0, then subtracting this equation from itself gives 0 = 0, which
proves the third statement. To prove the fourth statement, square both
sides, obtaining 12 = 02 = 0.

Second, a valid implication need not connect causally related state-
ments. The implication “If 0 = 0, then 2 is an even integer” is valid
because both the hypothesis and conclusion are true, but is effectively
a non sequitur ; the conclusion does not “follow” from the hypothesis
in any obvious sense. A valid implication does not, of itself, constitute
a proof. In the example at hand, we know the implication is valid only
because there exists a separate proof, consisting of implications whose
validity can be checked directly.

In these two senses, mathematicians are liberal in deeming an im-
plication to be valid. Again, “validity” is the weakest criterion that
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excludes the act of drawing a false conclusion from a true hypothesis.

Remark 1.8. If, in some axiom system, some statement P and its nega-
tion ¬P are both true, then every statement Q is provable, since either
“P implies Q” or “¬P implies Q” is vacuously true. The pair {P, ¬P}
is called a logical contradiction. An axiom system is inconsistent if a
contradiction can be derived in it.

Work of K. Gödel in the 1930s showed ZFC cannot be proved consis-
tent without using some other (“more powerful”) axiom system whose
consistency is unknown. However, if there is a contradiction in ZFC,
there is a contradiction in ordinary arithmetic.

Belief in the consistency of ZFC is about as close as mathematics
gets to an “article of faith”.

In this book, and throughout mathematics in practice, valid deduc-
tions do actually link causally related statements. Most implications
involve classes of objects, and assert that every object satisfying some
condition must also satisfy some other condition.

Negation and Conjunctions

If P and Q are statements, then the statement “P and Q” is false if at
least one of P and Q is false. If someone assures you two statements are
both true, only one has to be false for the assurance to be unfounded.
Formally, the compound statements

¬(P and Q), (¬P ) or (¬Q)

express the same logical condition.
Analogously, if someone assures you at least one statement of two

is true, then both must be false for the assurance to be unfounded.
Formally, the compound statements

¬(P or Q), (¬P ) and (¬Q)

express the same logical condition.
Together, the two preceding relationships are known as De Morgan’s

laws, after the 19th Century English logician A. De Morgan. Loosely,
the conjunctions “and” and “or” are interchanged by negation, perhaps
contrary to first impression.

Consequently, the order of negation and a connective matters:

Example 1.9. The integers 1 and 0 are not both zero. (True.)
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The integers 1 and 0 are both not zero. (False.)
The integers 1 and −1 are both not zero. (True.)

Remark 1.10. All too frequently, one sees humorous ambiguities of the
type “While driving, teens should not use cell phones and obey traffic
laws”. To avoid confusion, this sentence should be phrased “While
driving, teens should obey traffic laws and not use cell phones” (placing
the negation where it clearly applies only to one clause) or “While
driving, teens should not use cell phones, and should obey traffic laws”
(explicitly delimiting the negation).

In formal logic, “¬P and Q” means “(¬P ) and Q”.

1.3 Quantification

To accommodate classes of objects in the framework of statements, we
allow statements to contain variables standing for elements of a set, so
long as each variable is “quantified”, accompanied by the phrase “for
every” or “there exists”. The quantifiers are crucial; pay close attention
to them while reading, and do not omit them when thinking and writing.

Example 1.11. For every integer n, n2 − n is an even integer. (True)
For every integer n, n2 ≥ 0. (True)
For every integer n, n2 = 1. (False)

The preceding “for every” statements involve universal quantifica-
tion. Each statement encapsulates multiple statements. For example,
the first statement of the preceding example encapsulates an infinite
collection of statements, one for each integer: 02− 0 is an even integer;
12− 1 is an even integer; (−1)2− (−1) is an even integer; and so forth.

Example 1.12. There exists an integer n such that n2 = 1. (True)
There exists an integer n such that n2 = 2. (False)
There exists an n such that both n and n+ 1 are even. (False)

The preceding “there exists” statements involve existential quan-
tification. Again, each encapsulates multiple statements. For example,
the third expresses that at least one truism is found among the state-
ments: 0 and 1 are both even; 1 and 2 are both even; −1 and 0 are
both even; and so forth. The compound statement is false because
every individual statement is false.

Remark 1.13. The statements of the preceding examples contain only
“bound” (i.e., quantified) variables.
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Sentences containing “free” or “unbound” variables (such as “n is
an even integer” or “x2+x−2 = 0”) are not statements. However, sen-
tences containing unbound variables play the useful role of conditions in
mathematics, selecting objects (perhaps integers n or real numbers x)
for which the resulting statement is true.

Many mathematical theorems take the universally quantified form
“For every x satisfying P (x), condition Q(x) is true”. For stylistic
variety, such statements may be worded as implications involving “ar-
bitrary” values of variables.

Example 1.14. If x is a real number such that x2 + x − 2 = 0, then
x = 1 or x = −2. (True)

If n is an integer, then there exist unique integers q and r such that
n = 4q + r and 0 ≤ r < 4. (True)

If a, b, and c are positive integers, then a3 + b3 6= c3. (True)

Quantifiers and Negation

The universal quantifier “for every” may be viewed as an enhancement
of the “and” conjunction: “For every integer n, the condition P (n) is
true” means that the infinitely many statements P (0), P (1), P (−1), and
so forth, are all true.

The existential quantifier “there exists” may be viewed similarly as
an enhancement of “or”: “There exists an integer n such that the con-
dition P (n) is true” means that among the infinitely many statements
P (0), P (1), P (−1), . . . , at least one is true.

Example 1.15. Logical negation “converts” a “for every” statement
into a “there exists” statement of negations, and converts a “there
exists” statement into a “for every” statement of negations:
P : For every integer n, n2 ≥ 0.
¬P : There exists an integer n such that n2 < 0.

P : There exist integers m and n such that m2 + n2 = 8.
¬P : For all integers m and n, m2 + n2 6= 8.

This type of linguistic transformation needs to become second na-
ture. Particularly, a positive assertion regarding a class of objects can
be disproved by finding a counterexample, but cannot be proved by
finding an example.
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Remark 1.16. When the hypothesis of a logical implication contains
a variable but no quantifier is explicitly present, the convention is to
read “for every”. For example, “If x > 0 then x2 > 0” should be read
“For every real number x, if x > 0 then x2 > 0” (assuming the context
dictates real numbers as opposed to, say, integers).

If an implicitly-quantified statement is negated, the existential quan-
tifier must be added explicitly: “There exists a real number x > 0 such
that x2 ≤ 0”.

To avoid confusion, including your own, include logical quantifiers
explicitly. This book makes a special effort to set a good example.

Implications, and Multiple Quantifiers

Among the most subtle conditions in mathematics are those contain-
ing multiple quantifiers. Elementary algebra seldom ventures into this
territory, but analysis, the mathematics underlying and extending dif-
ferential and integral calculus, is built upon definitions and theorems
of this type. When you encounter multiply-quantified statements, slow
down and read several times to ensure you thoroughly understand the
dependencies implicit in the ordering.

Example 1.17. For every integer n, there exists an integerM such that
n ≤M . (True; every integer n is smaller than some other integer M .)

There exists an integer M such that for every integer n, n ≤ M .
(False; there is no largest integer M , i.e., no integer that is greater than
every other integer n.)

1.4 Truth Tables and Applications

The logical operators (“not”, “and”, “or”, and “implies”) introduced
above are neatly summarized by truth tables :

P Q ¬P P and Q P or Q P implies Q

T T F T T T
T F F F T F
F T T F T T
F F T F F T

Truth tables furnish a useful tool for studying sentences built of
other statements and logical connectives. This section gives a few ap-
plications.
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Logical Equivalence. Two statements P and Q are logically equiv-
alent if each implies the other: P implies Q and Q implies P . For
brevity, we may write P iff Q, “iff” being short for “if and only if”. A
truth table calculation shows P and Q are equivalent precisely when
they have the same truth value:

P Q P implies Q Q implies P P iff Q

T T T T T
T F F T F
F T T F F
F F T T T

The Converse. The implications “P impliesQ” and “Q implies P”
are said to be converse to each other. The preceding table shows these
implications are not equivalent.

The Contrapositive. The implications “P impliesQ” and “¬Q im-
plies ¬P” are said to be contrapositive to each other. An implication
and its contrapositive are logically equivalent:

P Q P implies Q ¬Q ¬P ¬Q implies ¬P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

This fact of logic should become second nature to you. Many implica-
tions are easier to understand and prove in contrapositive form.

Example 1.18. In each statement, x stands for a real number. Let
P be the statement “x2 − 1 6= 0” and Q be the statement “x 6= 1”.

The implication P implies Q is true, but may require a few seconds’
thought to see.

The converse implication, “If x 6= 1, then x2 − 1 6= 0” is an invalid
deduction. The number x = −1 is a counterexample: It satisfies the
converse hypothesis Q, but not the converse conclusion P .

The contrapositive reads, “If x = 1, then x2 − 1 = 0.” This impli-
cation is obviously true, and on general grounds its truth implies the
truth of P implies Q.

Example 1.19. In each statement below, n is a positive integer. A
positive integer n is said to be prime if n > 1, and if n has no positive
divisors other than 1 and n.



CHAPTER 1. LOGIC AND PROOFS 11

Direct implication: If n is a prime, then n = 2 or n is odd. (True.)
Converse: If n = 2 or n is odd, then n is a prime. (False: n = 1

and n = 9 are the two smallest of infinitely many counterexamples.)
Contrapositive: If n 6= 2 and n is not odd, then n is not prime.

(True. Every such integer has the form n = 2k for some integer k > 1.)

One final example, drawn from analysis rather than from algebra,
will illustrate the power of the contrapositive.

Example 1.20. In each statement, x ≥ 0 is a real number, and n is a
positive integer.

Direct implication: If x < 1/n for every n, then x = 0.
Converse: If x = 0, then x < 1/n for every n.
Contrapositive: If x > 0, then there exists an n such that 1/n ≤ x.
It turns out that all three statements are true. The second is easily

seen, even though the conclusion consists of infinitely many statements:
0 < 1, 0 < 1/2, 0 < 1/3, etc.

The third statement is true, and not difficult to see; informally,
1/k → 0 as k → ∞, so if x > 0, there is some positive integer n such
that 1/n ≤ x.

The direct implication is therefore true, since its contrapositive is
true. However, the direct implication exhibits a new phenomenon: The
hypothesis consists of infinitely many statements, x < 1, x < 1/2,
x < 1/3, etc., but no finite number of these statements implies the
conclusion. Indeed, if we assume only finitely many inequalities of the
form x < 1/n, there is a largest denominator, say N , and our collection
of inequalities is equivalent to the single inequality x < 1/N , which
does not imply x = 0.

Exercises

Exercise 1.1. In each pair P , Q of conditions, n represents an integer.
(i) Give the negations of P and Q, and (ii) Form the implication P im-
plies Q, its converse, and its contrapositive, and determine whether
each is true.

(a) P : n2 − 4 = 0. Q: n = 2.

(b) P : n is even. Q: n is an integer multiple of 4.

(c) P : n is even. Q: n is the square of an even integer.
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Exercise 1.2. Let P and Q be arbitrary statements. Use a truth table
to prove that “P implies Q” is logically equivalent to “¬P or Q”.

Exercise 1.3. Let P , Q, and R be arbitrary statements. Use a truth
table to prove the following pairs of statements are logically equivalent:

(a) “¬(P or Q)” and “¬P and ¬Q”.

(b) “¬(P and Q)” and “¬P or ¬Q”.

(c) “(P or Q) and R” and “(P and R) or (Q and R)”.

(d) “(P and Q) or R” and “(P or R) and (Q or R)”.

Exercise 1.4. A game-show host presents the contestant with the
equation “a2 + b2 = c2”. The contestant replies, “What is the Pythag-
orean theorem?”

Why is the contestant’s reply logically deficient? Modify it to give
a mathematically satisfactory question.

Exercise 1.5. The President, a law-abiding citizen who always tells the
truth, has time for one more Yes/No question at a press conference. In
an attempt to embarrass the President, a reporter asks, “Have you
stopped offering illegal drugs to visiting Heads of State?”

(a) Which answer (“Yes” or “No”) is logically truthful?

(b) Suppose the President answers “Yes”. Can the public conclude
that the President has offered illegal drugs to visiting Heads of
State? What if the answer is “No”?

(c) Explain why both answers are embarrassing.

If the President were a Zen Buddhist she might reply “mu” (pronounced
“moo”), meaning “Your question is too flawed in its hypotheses to
answer meaningfully.”

Exercise 1.6. Each of the following quotes has a logically humorous
aspect. Explain why each statement is awkward, and either find a more
natural alternative that conveys the same meaning or determine what
the speaker probably intended to say.

(a) Is anybody here Pope? (Stand-up comedian Jim Gaffigan.)
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(b) We will have the best-educated Americans in the world. (Then
Vice-President Dan Quayle.)

Exercise 1.7. Grasping the correct usage of the phrases “for every”,
“there exists”, and “such that” can be tricky. Explain why each of the
following is anomalous, and determine the presumed meaning.

(a) There exists a real number x such that 2 + 2 = 4.

(b) If δ > 0 for every δ such that δ > 1, then 0 < 1 < δ2.

(c) If y = x2 for every x > 0, then y > 0.

Exercise 1.8. The human brain has evolved to detect “cheating”—
behavior violating established rules. These rules may have logical for-
mulations, but the “cheating” interpretation can be remarkably easier
to “see”.

(a) Each card in a deck is printed with a letter “D” or “N” on one
side and a number between 16 and 70 on the other. Your job is to
assess whether or not cards satisfy the criterion: “Every ‘D’ card
has a number greater than or equal to 21 printed on the reverse.”
You are also to separate cards that satisfy this criterion from those
that do not.

Write the criterion as an “If. . . , then. . . ” statement, and determine
which of the following cards satisfy the criterion:

20 46 16 25

D D N N
(i) (ii) (iii) (iv)

(b) You are shown four cards:

18 35 D N
(i) (ii) (iii) (iv)

Which cards must be turned over to determine whether or not they
satisfy the criterion of part (a)?
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(c) The legal drinking age in a certain state is 21. Your job at a
gathering is to ensure that no one under 21 years of age is drinking
alcohol, and to report those that are. A group of four people consists
of a 20 year old who is drinking, a 46 year old who is drinking,
a 16 year old who is not drinking, and a 25 year old who is not
drinking. Which of these people is/are violating the law?

After reporting this incident, you find four people at the bar: An
18 year old and a 35 year old with their backs to you, and two people
of unknown age, one of whom is drinking. From which people do you
need further information to see whether or not they are violating
the law?

(d) Explain why the card question is logically equivalent to the drink-
ing question. Which did you find easier to answer correctly?



Chapter 2

An Introduction to Sets

Modern mathematics is built on the concept of a “set”, a collection
of “elements”. These primitive notions will serve in lieu of definitions.
This chapter informally introduces the set of complex numbers, con-
nects sets with the basics of logic, and gives advice on constructing and
writing mathematical proofs.

2.1 Sets and Set Operations

Example 2.1. The collection of all integers (whole numbers) is a set.
Its elements are 0, 1, −1, 2, −2, and so forth. The set of integers is
denoted Z, from the German Zahl (number). Properties of the integers
are developed formally in Chapter 3.

Example 2.2. The collection of “prime numbers”, integers p greater
than 1 that have no divisors other than 1 and p, is a set. The numbers
2, 5, and 213466917− 1 are elements, while 4 and 213466917 = 2 · 213466916
are not.

Example 2.3. The set of periodic table entries in the year 1960 has
102 elements. “Hydrogen”, “promethium”, and “astatine” are elements
of this set, while “Massachusetts”, “ammonia”, and “surprise” are not.

Abstract sets will be denoted with capital letters, such as A or B.
Elements are normally denoted with lower case letters, such as a and b.
We write “a ∈ A” as shorthand for the statement “a is an element of
(the set) A”, and “b 6∈ A” for the logical negation “b is not an element
of A”. For example, 0 ∈ Z, −7 ∈ Z, and 1

2 6∈ Z.

Definition 2.4. Let A and B be sets. We say A is a subset of B, and

15



16 INTRODUCTION TO PROOFS

write “A ⊆ B”, if x ∈ A implies x ∈ B, that is, if every element of A
is an element of B. Two sets A and B are equal if A ⊆ B and B ⊆ A,
namely if they have exactly the same elements: x ∈ A if and only if
x ∈ B.

The most basic and explicit way of describing a set is to list its
elements. Curly braces are used to denote a list of elements comprising
a set. Sets do not “keep track of” what order the elements are listed,
or whether their elements are multiply-listed.

Example 2.5. Each of the sets A = {−1, 0, 1}, B = {0, 1,−1}, and
C = {0, 1, 0,−1, 1}, contains three elements, and in fact A = B = C.

Example 2.6. Let A be a set. For each element a in A, there is a
singleton set {a} contained in A. Take care to distinguish a and {a};
a is an object, while {a} is a “package” that contains exactly one object.

Example 2.7. There exists an empty set ∅ containing no elements.
For all x, the statement x ∈ ∅ is false. In particular, for every set A
the logical implication “x ∈ ∅ implies x ∈ A” is vacuous (has false
hypothesis). Consequently, ∅ ⊆ A is true for all A.

Remark 2.8. The empty set is unique: If ∅ and ∅′ are sets having no
elements, then ∅ ⊆ ∅′ and ∅′ ⊆ ∅ are both true, so ∅ = ∅′.

In mathematics, we always restrict attention to sets contained in a
fixed set U , called a universe. Specific subsets of U are conveniently
described using set-builder notation, in which elements are selected ac-
cording to logical conditions formally known as a predicates. The ex-
pression {x in U : P (x)} is read “the set of all x in U such that P (x)”.

Example 2.9. The expression {x in Z : x > 0}, read “the set of all x
in Z such that x > 0”, specifies the set Z+ of positive integers.

To personify, if U is a population whose elements are individuals,
then a subset A of U is a club or organization, and the predicate defin-
ing A is a membership card. We screen individuals x for membership
in A by checking whether or not x carries the membership card for A,
namely whether or not P (x) is true.

Example 2.10. Thanks to Russell’s paradox, named for the English
logician B. Russell, there is no “set U of all sets”. If there were, the
set R = {x in U : x 6∈ x} of all sets that are not elements of them-
selves would have the property that R ∈ R if and only if R 6∈ R, a
contradiction.
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Example 2.11. The expression {x in Z : x = 2n for some n in Z} is
the set of even integers. We often denote this set 2Z, the idea being
that the general even integer arises from multiplying some integer by 2.

Similarly, the set of odd integers could be expressed as

2Z + 1 = {x in Z : x = 2n+ 1 for some n in Z}.

Remark 2.12. For brevity, we sometimes write, e.g., the set of even in-
tegers as {2n : n ∈ Z}, read “the set of 2n such that n is an element
of Z”. This way of writing a set is convenient, and the meaning is gen-
erally clear, but it isn’t technically proper, compare Example 2.10. To
define a set formally, first give the universe, then specify the predicate.

Remark 2.13. The elements of a set may be other sets. For example, the
set A = {2Z, 2Z + 1} has two elements, 2Z and 2Z + 1. Note carefully
that A is not a subset of Z: The elements of A are not themselves
integers, but sets of integers.

Sets and Logic

Let U be a universe, and let A and B be subsets of U . The statements
x ∈ A and x ∈ B may be viewed as predicates P and Q on elements
of U . By definition, the logical implication “x ∈ A implies x ∈ B”
corresponds to the set relation “A ⊆ B”. Logical negation, disjunction
(or), and conjunction (and) similarly have natural interpretations in
terms of A and B.

The complement of A: Ac = {x in U : x 6∈ A}.
The union of A and B: A ∪B = {x in U : x ∈ A or x ∈ B}.
The intersection of A and B: A ∩B = {x in U : x ∈ A and x ∈ B}.

A Venn diagram represents subsets of a universe U pictorially. The
universe is depicted as a rectangle, and subsets are disks or, if necessary,
more complicated shapes. The complement of A, or the union and
intersection of two sets A and B, might be drawn as indicated:

A

Ac

A B

A ∪B

A B

A ∩B
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Two sets A and B are disjoint if A ∩ B = ∅, namely if A and B
have no elements in common. A Venn diagram of disjoint sets might
be drawn as a pair of non-overlapping disks.

Example 2.14. The sets 2Z and 2Z + 1 of even and odd integers
are disjoint: No integer is both even and odd. The sets A = 2Z and
B = Z+ are not disjoint: For example, 2, 4, and 84 are elements of
A ∩B, since each is both positive and a multiple of 2.

Definition 2.15. Let A be a set. The power set of A, P(A), is the
set of all subsets of A.

Example 2.16. If A = {0, 1} has two elements, the power set P(A)
has four elements:

P(A) =
{
∅, {0}, {1}, A

}
.

The empty set and A itself are always subsets of A, so a power set is
never empty. Indeed, P(∅) = {∅} has a single element.

2.2 Partitions and Mappings

Definition 2.17. Let A be a set, and I a set of indices. A family of
subsets {Ai}i∈I of A constitutes a partition of A if each element of A
is an element of exactly one of the sets Ai.

In other words, {Ai}i∈I is a partition of A if Ai ∩Aj = ∅ for i 6= j
(each pair of sets is disjoint), and A is the union of the sets Ai.

Example 2.18. The sets A0 = 2Z and A1 = 2Z + 1 are a partition
of A = Z; every integer is either even or odd, and no integer is both.
Here the index set is I = {0, 1}.

The sets A0 = 3Z, A1 = 3Z + 1, A2 = 3Z + 2 are another partition
of Z, since every integer leaves a unique remainder of 0, 1, or 2 upon
division by 3:

Z · · · −4 −3 −2 −1 0 1 2 3 4 5 6 · · ·
A0 · · · −3 0 3 6 · · ·
A1 · · · −2 1 4 · · ·
A2 · · · −4 −1 2 5 · · ·
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Example 2.19. We will prove in Chapter 4 (Theorem 4.8) that if n > 1
is an integer, there is a partition of Z into n subsets, Ak = nZ +k with
k = 0, . . . , n − 1 an integer. An integer x is an element of Ak if and
only if x leaves a remainder of k on division by n.

In Chapter 6, we will write [k]n = nZ+k, and form a set Zn having
n elements: Zn = {[0]n, [1]n, . . . , [n−1]n}. Note that Zn ⊆P(Z): The
elements of Zn are subsets of Z.

Mappings

A “mapping” is a mathematical structure formalizing a particularly
useful relationship between elements of two sets.

Definition 2.20. Let A and B be sets. Their Cartesian product A×B
is the set of all “ordered pairs” from A and B,

A×B = {(a, b) : a ∈ A and b ∈ B}.

Example 2.21. If A = {a, b, c} and B = {0, 1}, then A × B is the
six-element set {(a, 0), (b, 0), (c, 0), (a, 1), (b, 1), (c, 1)} in the left-hand
diagram in Figure 2.1.

For the same set B, B ×B = {(0, 0), (1, 0), (0, 1), (1, 1)}.

(a, 0) (b, 0) (c, 0)

(a, 1) (b, 1) (c, 1)

a b c

0

1

A

B A× B

Figure 2.1: Cartesian products.

Example 2.22. If A = ∅ or B = ∅, then A×B = ∅.

An abstract Cartesian product can be visualized conveniently by
depicting the set A on a horizontal axis and the set B on a vertical
axis, and taking the set of points lying above or below A and to the
left or right of B. The right-hand diagram in Figure 2.1 shows the case
where A and B are intervals of real numbers.
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Definition 2.23. A mapping f : A → B, read “f from A to B”, is a
subset f of A×B satisfying the following condition:

For every a in A, there exists a unique b in B such that (a, b) ∈ f .

The set A is the domain of f , and B is the codomain of f .
If (a, b) ∈ f , we write b = f(a), and call b the value of f at a. We

also say a is mapped to b by f , or that f maps a to b.

Remark 2.24. Conceptually, a mapping
f : A → B associates a unique value b
in the codomain to each element a of
the domain. If the Cartesian product
A×B is viewed as a rectangle, a map-
ping is a “graph” in the sense of calcu-
lus, namely a subset intersecting each
vertical line in the rectangle exactly
once. The vertical line at horizontal
position a intersects f (a.k.a. the graph
of f) at height b = f(a).

(a, b)

A

B

a

b

f

A× B

Remark 2.25. If B is arbitrary (empty or not), there is a unique map-
ping f : ∅→ B, namely the empty set.

If A is non-empty, there exists no mapping f : A→ ∅. (Why?)

2.3 Advice on Writing Proofs

A mathematical theorem is an idealized contract: If certain conditions
are met (the hypotheses), then other conditions are guaranteed (the
conclusion). No theorem has even one exception. To bolster this im-
plicit guarantee of inviolable correctness, a mathematical proof must
leave no logical possibility unexamined, no contingency unresolved.

Often, a mathematical theorem (such as an algebraic identity) makes
infinitely many assertions, one for each assignment of values to vari-
ables. In these circumstances, a proof usually works with variables as
symbols; any particular set of values in a theorem statement implicitly
expands to a set of values throughout the proof.

Discovering and writing proofs are nearly opposite activities. To
discover a proof (and before that, to guess what is true, or formulate
a conjecture), you must permit yourself to make partial, open-ended,
possibly unjustified guesses and see where they lead. Ultimately, you’ll
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find most of the writing you do in discovering mathematics does not
need to be written up; it’s just “scaffolding”.

Example 2.26. Assume a and b are integers. Prove that

(a+ b)2 = (a− b)2 + 4ab.

(Preliminary Work). When proving an identity such as this we have
an obvious strategy: Express each side in terms of simpler information
and see if the answers agree. Here, it’s natural to start by expanding
each side:

(a+ b)2 = a2 + 2ab+ b2, (a− b)2 + 4ab = (a2 − 2ab+ b2) + 4ab.

These are indeed equal.

(The Written Solution). Assume a and b are integers. Prove that
(a+ b)2 = (a− b)2 + 4ab.

Proof : Let a and b be arbitrary integers. We have

(a− b)2 + 4ab = (a2 − 2ab+ b2) + 4ab = a2 + 2ab+ b2 = (a+ b)2,

as was to be shown.

Remark 2.27. When writing up a formal proof of an algebraic iden-
tity Q, the preferred style is to build a chain of equalities from one
side to the other. When possible, start with the “more complicated”
side and simplify. There is no need to perform only steps that would
naturally occur to the reader, however.

Do not write down the desired conclusion Q, then manipulate each
side until you have an identity P . At best, this “two-column” argu-
ment establishes the converse, Q implies P , which is not equivalent to
P implies Q, and does not even imply the truth of Q. See Exercises
2.17 and 2.18 for pitfalls of the “two-column” style of proof.

Example 2.28. Assume a and b are integers. Prove that a2 = b2 if
and only if a = b or a = −b.

(Preliminary Work). The condition a2 = b2 is equivalent to the
condition a2−b2 = 0. Further, the left-hand side factors as a difference
of squares: a2 − b2 = (a − b)(a + b). Finally, if a product of integers
is zero, then one factor or the other (or both) is zero. Here, we deduce
that a− b = 0 (i.e., a = b) or a+ b = 0 (i.e., a = −b).
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We give two write-ups. In the first, each implication (“if” and “only
if”) is proven separately. This is the default style. In general, the proof
of a statement and its converse differ substantially. Separating the two
proofs clarifies the argument and helps ensure all the necessary details
are addressed.

A second proof can be given because in this particular situation,
there is a chain of “if and only if” statements leading from hypothesis
to conclusion.

(The Written Solution). Assume a and b are integers. Prove that
a2 = b2 if and only if a = b or a = −b.

Proof 1: Let a and b be integers.
If a2 = b2, then (a − b)(a + b) = a2 − b2 = 0. Since a product of

non-zero integers is non-zero, either a − b = 0 or a + b = 0. That is,
either a = b or a = −b.

Conversely, suppose a = b or a = −b. If a = b, then a2 = b2 by
substitution. If a = −b, then a2 = (−b)2 = b2. In each case, a2 = b2.

Proof 2: Let a and b be integers. Since (a− b)(a+ b) = a2− b2 for
all integers a and b, we have

a2 = b2 if and only if (a− b)(a+ b) = a2 − b2 = 0,

if and only if a− b = 0 or a+ b = 0,

if and only if a = b or a = −b.

Example 2.29. Prove or disprove: 2Z + 1 = 2Z− 1.

(Preliminary Work). By definition of equality of sets, we are to
determine whether each set is a subset of the other. Some initial for-
malization can be performed mechanically. Give each set a name, write
down its definition, and express the question in terms of this framework.

Here, we have two sets of integers,

A = 2Z + 1 = {x in Z : x = 2u+ 1 for some u in Z},
B = 2Z− 1 = {y in Z : y = 2v − 1 for some v in Z}.

We wish to show either that A ⊆ B and B ⊆ A (which by definition
means A = B as sets), or that at least one of these inclusions is false.

Next, try to determine intuitively whether or not the statement is
false (which can be shown by exhibiting a counterexample, an element
of one set that is not an element of the other set) or true. To get an
element of 2Z+1, add 1 to an even integer: 1 = 0+1, 3 = 2+1, 5 = 4+1,
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−1 = −2 + 1, and so forth, are elements. Similarly, subtracting 1 from
an even integer gives an element of 2Z − 1: −1 = 0 − 1, 1 = 2 − 1,
3 = 4− 1, −3 = −2− 1, and so forth, are elements.

This evidence doesn’t merely suggest the two sets are equal, it even
points to a strategy of proof: Any integer one greater than an even
integer is one less than the next largest even integer. We’ll sketch out
an informal proof to settle notation and iron out any unforeseen logical
wrinkles.

The statement “A ⊆ B” may be phrased “if x ∈ A, then x ∈ B”.
If x ∈ A, then by the definition of A there exists an integer u such that
x = 2u+ 1 = 2(u+ 1)− 1. Setting v = u+ 1 (an integer because u is),
we see x has the form 2v − 1 for some integer v, which by definition
means x ∈ B. This shows A ⊆ B.

The inclusion B ⊆ A is entirely similar, so at this stage we can
write up a formal proof. The considerations above that led to the proof
are customarily omitted from the formal write-up. Note, however, that
the proof involves choices not easily known ahead of time; the scratch
work is important!

(The Written Solution). Show 2Z + 1 = 2Z− 1.
Proof : By definition, A = {x in Z : x = 2u + 1 for some u in Z}

and B = {y in Z : y = 2v − 1 for some v in Z}. Assume x ∈ A. By
hypothesis, there exists an integer u such that x = 2u+1. Let v = u+1,
so u = v − 1, and note v is an integer. Since

x = 2u+ 1 = 2(v − 1) + 1 = 2v − 2 + 1 = 2v − 1,

x ∈ B. Since x was arbitrary (i.e., x could have been any element of A),
we have shown A ⊆ B.

Conversely, suppose y = 2v−1 ∈ B for some integer v. Let u = v−1,
so that v = u+ 1. Then

y = 2v − 1 = 2(u+ 1)− 1 = 2u+ 1,

so y ∈ A. Since y was arbitrary, we have shown B ⊆ A.
Since A ⊆ B and B ⊆ A, we have A = B.

Writing proofs requires practice. The final result should be a coher-
ent, logical, step-by-step argument starting with the given hypotheses
and leading to the conclusion.

Example 2.30. Let A and B be subsets of U . Find the most general
conditions on A and B under which A ∩B = A.
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(Examples). If you’re comfortable with sets and operations, go for
the frontal assault (“reducing to the definitions”, below). Otherwise,
proceed by writing out examples on scratch paper or a blackboard. If
Venn diagrams are more natural, use those. If concrete sets are easier
to think about, use those. At this stage it’s all right to let U = Z, the
set of integers, but in the final proof, do not make any assumptions on
the nature of U , A, or B.

(Simpler cases). Since the target condition involves two sets, we can
reduce to a simpler question by “fixing” one set and letting the other
set vary.

If A = ∅, then A∩B = ∅∩B = ∅ = A regardless of B. If A = U ,
then A ∩B = U ∩B = B, which is not equal to A unless B = U .

These examples show the condition A∩B = A can be true, but is not
always true. The guiding task is to discover what common aspect these
examples possess. If you’re still not sure, draw a Venn diagram with a
circle representing A, and ask: What condition on B guarantees that
A ⊆ A ∩ B? Draw circles that are disjoint from A, that are contained
in A, that partially overlap A, or that contain A. The evidence of this
“experiment” should point toward the desired condition.

(Reducing to the definitions). The condition A∩B = A encapsulates
two set inclusions, A ∩ B ⊆ A and A ⊆ A ∩ B. The first inclusion is
true for all pairs of sets: If a ∈ A ∩ B, then a ∈ A and a ∈ B, so
perforce a ∈ A. Since a is an arbitrary element of A∩B, this argument
shows A ∩B ⊆ A.

We are therefore seeking the most general conditions under which
A ⊆ A ∩ B, namely, “a ∈ A implies ‘a ∈ A and a ∈ B’ ”. Clearly, this
is equivalent to “a ∈ A implies a ∈ B,” which may be rephrased as
A ⊆ B. This condition is our supposed conclusion, or conjecture.

As a consistency check, recall A = ∅ and A = U = B satisfied
the condition. In each case, A ⊆ B holds. If the purported abstract
condition is violated by examples, it’s definitely wrong.

(Supposed conclusion). As the result of considerations above, we
claim that A ∩ B = A if and only if A ⊆ B. To prove this formally, it
suffices to establish two logical implications:

A ∩B = A implies A ⊆ B, A ⊆ B implies A ∩B = A.

Here, approximately, is what you’d normally write up:

(The Written Solution). A ∩B = A if and only if A ⊆ B.
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Proof : (A ∩ B = A implies A ⊆ B) Assume A ∩ B = A, namely
A ∩ B ⊆ A and A ⊆ A ∩ B. Since the first inclusion holds for all sets,
our initial hypothesis is equivalent to A ⊆ A ∩B.

Let a be an arbitrary element of A. Since A ⊆ A∩B by hypothesis,
a ∈ A ∩ B, so a ∈ A and a ∈ B. In particular, a ∈ B. We have shown
that if a ∈ A, then a ∈ B; this means that A ⊆ B, as was to be shown.

(A ⊆ B implies A∩B = A) By hypothesis, if a ∈ A, then a ∈ B, so
if a ∈ A, then a ∈ A and a ∈ B. Since a is arbitrary we have A ⊆ A∩B.
The reverse inclusion A ∩ B ⊆ A holds for all sets A and B. We have
shown that if A ⊆ B, then A ∩B = A. This completes the proof.

Find your own writing style. Do write accurately and precisely, but
don’t be pedantic or excessively wordy. Short, declarative sentences
expressing one idea are a good general rule.

Avoid pronouns, especially “it”. In the middle of even a simple
proof, two or three objects tend to be under consideration, and “it”
can often refer to any of them. If you’re unable to decide exactly what
“it” refers to, you’ve located something you don’t fully understand.

Though it may feel awkward at first, read your solution aloud, either
to yourself or someone else. Listening engages different parts of the
brain than writing. Lapses of grammar, narrative continuity, and logic
are usually more obvious when heard than when read, if only because
the more times you re-read your own proof, the more you skim.

Exercises

Exercise 2.1. Let A = 2Z and B = 3Z.

(a) Find A ∩B; that is, determine which integers are in A ∩B.

(b) List the elements of A ∪B between −12 and 12.

Exercise 2.2. Prove or disprove:

(a) 3Z ⊆ 2Z. (b) 4Z ⊆ 2Z. (c) 2Z ⊆ 4Z.

Exercise 2.3. Prove or disprove:

(a) 2Z ∪ 3Z ⊆ 5Z. (b) 5Z ⊆ 2Z ∪ 3Z. (c) 8Z = 2Z ∩ 4Z.

Exercise 2.4. Prove or disprove:

(a) 3Z + 1 ⊆ 2Z. (b) 3Z + 1 ⊆ 4Z. (c) 3Z + 2 = 3Z− 1.
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Exercise 2.5. Let A be a set and assume a ∈ A. Determine whether
each condition is always true, sometimes true, or never true. If some-
times true, give examples of A and/or a for which the condition is true
or is false.
(a) a ∈ {a} (b) a ⊆ A (c) {a} ⊆ ∅ (d) ∅ ∈ A (e) {a} ∈ A

Exercise 2.6. Let A and B be arbitrary subsets of a universe U .

(a) Prove A ∪B = A if and only if B ⊆ A.

(b) Prove A ∩B = B if and only if B ⊆ A.

Exercise 2.7. Let A and B be subsets of U .

(a) Prove A ⊆ B if and only if Bc ⊆ Ac, and illustrate with a Venn
diagram.

(b) How is part (a) related to contrapositives?

Exercise 2.8. Let A, B, and C be subsets of a universe U , and let
P , Q, and R be the predicates x ∈ A, x ∈ B, and x ∈ C. Use truth
tables to establish the indicated identities.

(a) (A ∪B) ∪ C = A ∪ (B ∪ C).

(b) (A ∩B) ∩ C = A ∩ (B ∩ C).

Exercise 2.9. Let A, B and C be subsets of a universe U . As in
Exercise 2.8, use truth tables to establish De Morgan’s laws (a) and (b)
and the distributive laws (c) and (d).

(a) (A ∪B)c = Ac ∩Bc.

(b) (A ∩B)c = Ac ∪Bc.

(c) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(d) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Exercise 2.10. Draw Venn diagrams illustrating each part of the pre-
ceding exercise, and compare with Exercise 1.3.

Exercise 2.11. Let A and B be subsets of U . Their difference is
defined to be A \B = {x in A : x 6∈ B}.

(a) Prove A \B = A ∩Bc, and illustrate with a Venn diagram.
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(b) List the elements of Z \ Z+ between −5 and 5.

(c) List the elements of 2Z \ 3Z between −12 and 12.

(d) List the elements of 3Z \ 2Z between −12 and 12.

Exercise 2.12. Let A and B be subsets of U . Their symmetric differ-
ence is defined to be A4B = (A \B) ∪ (B \ A).

(a) Prove A4B = (A ∪ B) \ (A ∩ B) and illustrate with a Venn
diagram.

(b) Prove A4B = {x in U : x ∈ A or x ∈ B but not both}. This
condition is called exclusive or, denoted “xor”.

Exercise 2.13. (a) Let A = {a, b, c} be a set with three distinct ele-
ments. List the elements of the power set P(A).

(b) How would your answer to part (a) differ if A = {0, 1, 2}?

(c) Describe how you could use your answer to part (a) to list the
elements of the power set of A′ = {a, b, c, d}. Suggestion: There are
two types of subset of A′, those having d as an element, and those
not having d as an element.

Exercise 2.14. Let A and B be subsets of U .

(a) Suppose A ⊆ B. Prove P(A) ⊆P(B) as subsets of P(U).

(b) Suppose that P(A) = P(B) as subsets of P(U). Prove A = B.

Exercise 2.15. Let A be an arbitrary set, and let f : A → P(A) be
an arbitrary mapping. (Procedurally, f associates some subset of A to
each element of A.) Define

X = {a in A : a 6∈ f(a)} ⊆ A.

Show that if ZFC is consistent, then there exists no x in A such that
f(x) = X.

Exercise 2.16. The Infinity Gambling Supplies Company has an in-
finite set of Keno balls, labeled serially with the positive integers. At
11 PM on December 31, balls numbered 1–10 are added to an infinitely
large bin, and the ball labeled 1 is removed. At 11:30, balls numbered
11–20 are added, and ball 2 is removed. At 11:45, balls 21–30 are added
and ball 3 is removed. The pattern continues in Zeno-like fashion.

At midnight, how many balls are in the bin? Hint: What number(s)
are never removed?
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Exercise 2.17. Explain in detail what is wrong with this two-column
“proof” that −1 = 1.

−1 = 1 to be shown,

(−1)2 = 12 square both sides,

1 = 1 true statement.

Therefore −1 = 1.

Exercise 2.18. Let a and b denote real numbers, and assume a = b.

(a) What is wrong with the following “proof” that 2 = 1?

b2 = ab Multiply b = a by b,

b2 − a2 = ab− a2 subtract a2,

(b+ a)(b− a) = a(b− a) factor each side,

(b+ a) = a cancel common factor,

2a = a a = b,

2 = 1 cancel common factor.

(b) If the proof is read from bottom to top, is each step valid?
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Chapter 3

Natural and Whole Numbers

Counting is surely the oldest mathematical activity discussed in this
book, existing in some form even in non-human animals. The act of
counting is so basic and instinctive that the profound reasons for its
existence may be difficult to see: We live in surroundings containing
distinct objects that are similar enough to group conceptually.

Our mathematical survey begins in the familiar territory of count-
ing, but quickly adopts the viewpoint of modern mathematics, with its
idealized axioms and formal definitions.

Imagine a shepherd of three thousand years ago. Each morning he
lets his sheep out to pasture, and each evening brings them in. How
can he be sure he hasn’t lost sheep during the day?

One can imagine a scheme: The shepherd gathers a supply of small
stones. In the morning, as each sheep passes, he places one of the stones
aside. Once all the sheep have left, he puts these stones into a pouch
for safe keeping. That evening, he takes a stone from the pouch for
each returning sheep. If stones remain in the pouch, he has lost sheep.

The apocryphal shepherd has made a fundamental abstraction about
the physical world: There is a meaningful notion of counting, or a num-
ber of things—sheep, or stones, or sunrises, or nicks on a tree branch.
By keeping track of small stones (or calculi as they will be known in
Latin many centuries in the shepherd’s future), the shepherd can keep
track of his flock.

No matter how many sheep or stones one has, even if the number
be like unto the grains of sand on all the beaches of the world, one can
imagine having one more.

Two shepherds can combine their flocks, and calculate how many
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sheep they have between them simply by agglomerating their piles of
stones. They quickly discover it does not matter whose stones are
appended to whose, the result is the same either way. They have dis-
covered the operation of addition, and the commutative law.

Two shepherds can compare their flocks to see who has more sheep.
No matter whose flocks are compared, one flock is larger than the other,
or the flocks are the same size; absolute comparison is always possible.
Moreover, if Aleph has more sheep than Beth, who has more sheep than
Gimel, then Aleph has a larger flock than Gimel. They have discovered
the ordering of the natural numbers, and the transitive law.

3.1 The Peano Axioms

The natural numbers represent possible answers to “how many objects”:
How many sheep in a flock; how many stones in a pile; how many uni-
corns over the rainbow; how many characters (typographical symbols)
on a page; how many distinct 250-page books with 1500 characters per
page, each character chosen from an alphabet of 100 letters, digits, and
punctuation marks.

Following modern mathematical custom, we do not say what natural
numbers are, but instead specify how natural numbers behave:

There exists a set N called the set of natural numbers, a notion
of successorship, and an initial element 0 in N, such that:

N1. Every natural number n has a unique natural number S(n)
as successor.

N2. For every natural number n 6= 0, there exists a unique pre-
decessor, a natural number m such that n = S(m). The
natural number 0 has no predecessor.

N3. If L is a collection of natural numbers such that 0 is in L,
and the successor S(n) is in L for every n in L, than L = N.

For the most part, we view Properties N1–N3 as axioms, unques-
tioned properties whose logical consistency is assured. The rest of this
section introduces the basic operations and technical tools in the nat-
ural numbers: induction and recursion, comparison, addition and sub-
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traction, and multiplication. Section 3.4 contains a sketched construc-
tion of the natural numbers, proving that these axioms are as logically
consistent as ZFC, and proves the properties stated below.

Definition 3.1. The successor S(0) of 0 is one, denoted 1. If k is a
natural number, we denote its successor by S(k) = k + 1.

Suppose we have a family of statements P (m), one for each natural
number m. Let L be the set of natural numbers m such that P (m) is
true. To prove that every statement in our family is true, it suffices to
establish:

(i) The Base case: P (0) is true, i.e., 0 ∈ L;

(ii) The inductive step: For every natural number k, P (k) implies
P (k + 1), i.e., k ∈ L implies k + 1 ∈ L.

Property N3 then guarantees L = N, namely that P (m) is true for every
natural number m. This foundational proof technique, mathematical
induction, is systematically developed in Section 3.2.

Our recursive definition of addition formalizes the process of agglom-
erating heaps of stones. Intuitively, start with natural numbers m and
n, and simultaneously replace m with its predecessor and n with its
successor “as many times as possible”, namely, move stones one at a
time from the first pile to the second. This process terminates in finitely
many steps, at the end of which the second pile contains a number of
stones equal to the sum of m and n.

Definition 3.2. Let m and n be natural numbers. If m = 0, define
n+m = n. Generally, define

(*) n+ (m+ 1) = (n+m) + 1 for all n.

That is, if m is a natural number, define n+S(m) = S(n+m) for all n.

Remark 3.3. For each natural number m, let P (m) denote the state-
ment “n + m is defined for all n”, and let L be the set of natural
numbers m such that P (m) is true. We claim that L = N, namely that
m+ n is defined for all natural numbers m and n.

The definition n + 0 = n for all n acts as a base case (0 ∈ L). The
recursion relation (*) gives, for all n, a definition of n + (m + 1) in
terms of n + m. That is, (*) acts as an inductive step (m ∈ L implies
m+ 1 ∈ L). By Property N3, L = N.
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Theorem 3.4. Let k, m, and n denote arbitrary natural numbers.

(i) Addition is associative: n+ (m+ k) = (n+m) + k.

(ii) Addition is commutative: n+m = m+ n.

Remark 3.5. Addition is associative on the set of natural numbers. A
sum of three or more natural numbers may therefore be written unam-
biguously without parentheses: Any two groupings of summands has
the same sum. A careful proof could be given now, but for pedagogical
reasons is deferred.

Theorem 3.6. Let k, m, and n denote arbitrary natural numbers.
There exists a unique ordering < on the set of natural numbers sat-
isfying:

(i) n < S(n) for every n;

(ii) If k < m and m < n, then k < n;

(iii) Exactly one of the following holds: m < n, m = n, or n < m.

Further, m < n if and only if there exists a non-zero natural num-
ber k such that m+ k = n.

Definition 3.7. If m ≤ n are natural numbers, their difference n−m
is the unique natural number satisfying m+ (n−m) = n.

Theorem 3.8. If X is a non-empty set of natural numbers, there exists
a least element, i.e., a natural number m such that m ≤ x for all x in X.

Definition 3.9. Let m and n be natural numbers. If m = 0, define
n× 0 = 0. Generally, define

n× (m+ 1) = (n×m) + n for all n.

Theorem 3.10. Let n, m, and k be natural numbers.

(i) n× (m× k) = (n×m)× k.

(ii) n×m = m× n.

(iii) (n+m)× k = (n× k) + (m× k).

(iv) If m ≤ n, then (n−m)× k = (n× k)− (m× k).

Remark 3.11. Properties (iii) and (iv) are the distributive laws ; we
say multiplication distributes over addition or subtraction. The corre-
sponding identities with multiplication on the left are also true, since
multiplication is commutative.
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3.2 Applications of Induction

The natural numbers provide a framework for recursive definition and
mathematical induction. Loosely, a function f on the set of natural
numbers is recursive if f(0) is defined explicitly, and for each k, the
value f(k+ 1) is defined in terms of f(k). Addition and multiplication
were defined recursively, and their properties established by mathe-
matical induction. This section introduces additional examples, and
develops induction as a general proof technique.

Definition 3.12. Let m and n be natural numbers. If m = 0, define
n0 = 1. If m is an arbitrary natural number, define

nm+1 = (nm)× n for all n.

Remark 3.13. Informally, nm is the product of m factors of n. Note
carefully that we define 00 = 1. This definition works “as expected” in
the discrete parts of mathematics, and in some parts of calculus, par-
ticularly the theory of power series. In the theory of limits of functions
of two variables, this definition entails no greater possibility confusion
than leaving 00 undefined.

Theorem 3.14. If n, m, and k are arbitrary natural numbers, then:

(i) nm+k = (nm)× (nk).

(ii) nm×k = (nm)k.

Remark 3.15. Unlike addition and multiplication, exponentiation is

neither associative nor commutative. The expression nm
k

implicitly

means n(m
k). Can you see why?

Example 3.16. Expanding the definition for a = 2, we have

23 = 22 · 2 = 21 · 2 · 2 = 20 · 2 · 2 · 2 = 1 · 2 · 2 · 2 = 2 · 2 · 2 = 8.

After 20 = 1, the next twenty powers of 2 are:

21 = 2 26 = 64 211 = 2048 216 = 65, 536

22 = 4 27 = 128 212 = 4096 217 = 131, 072

23 = 8 28 = 256 213 = 8192 218 = 262, 144

24 = 16 29 = 512 214 = 16, 384 219 = 524, 288

25 = 32 210 = 1024 215 = 32, 768 220 = 1, 048, 576.

Note that 210 = 1024 ≈ 1000 = 103 and 220 = 1, 048, 576 ≈ 106.
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Definition 3.17. If n is a natural number, the factorial of n, de-
noted n!, is defined recursively by

0! = 1, (n+ 1)! = (n+ 1) · n! n ≥ 0.

Example 3.18. Expanding the recursive definition for n = 3,

3! = 3 · 2! = 3 · 2 · 1! = 3 · 2 · 1 · 0! = 3 · 2 · 1 · 1 = 6.

Informally, m! = m(m−1)(m−2) · · · 3·2·1 is the product of the natural
numbers between 1 and m (if m > 0). The first several factorials are:

0! = 1 4! = 24 8! = 40, 320

1! = 1 5! = 120 9! = 362, 880

2! = 2 6! = 720 10! = 3, 628, 800

3! = 6 7! = 5040 11! = 39, 916, 800.

Definition 3.19. An ordered list of natural numbers,

(bk)
∞
k=0 = (b0, b1, b2, . . . , bn, . . . ),

is called a sequence.
The sequence of partial sums of the sequence (bk)

∞
k=0 is the se-

quence (sn)∞n=0 defined recursively by s0 = b0, and

sn+1 = sn + bn+1.

Remark 3.20. Informally, sn = b0 + b1 + b2 + · · · + bn. For example,
repeated application of the recursion rule gives

s3 = s2 + b3 = (s1 + b2) + b3 = s1 + (b2 + b3)

= (s0 + b1) + (b2 + b3) = s0 + (b1 + b2 + b3)

= b0 + b1 + b2 + b3.

Partial sums arise often enough to get special notation:

sn =
n∑

k=0

bk,

read “the sum from k = 0 to n of bk”. The
∑

sign is Sigma, the Greek
letter S, for sum.
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Inductive Proof

Suppose someone tells you the sum of the first n positive odd numbers
is equal to n2. What basis do you have for believing this claim?

As a start, you might verify a few instances by hand. For example,
1 + 3 + 5 = 9 = 32, so the claim is true when n = 3. Perhaps skepti-
cal, you add the first ten odd numbers, or the first twenty, each time
verifying the claim. Perhaps you are starting to believe.

Logically, however, testing special cases leaves you no closer to com-
plete certainty. Have you tried adding the first hundred thousand odd
numbers? The first billion? Finding a single counterexample would
prove the claim false, but no matter how many cases you verify, there
remain infinitely many unverified cases.

Mathematical induction allows us to resolve such questions with a
finite proof. The idea is to break the statement “For every natural
number n, the sum of the first n odd positive numbers is equal to n2”
into an infinite list of statements. Here, we take

P (n) 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

To say P (100) is true, for example, means the sum of the first hundred
odd numbers is equal to 10, 000 = 1002. (An “empty” sum is 0, so
P (0) reads 0 = 0.)

The original statement may be rephrased “For every natural num-
ber n, P (n) is true.” This single statement P encapsulates the infinite
list of statements: P (0) is true, P (1) is true, P (2) is true, etc.

In order to establish the truth of P , it suffices to prove P (0) is true
(the base case), and to prove P (k) implies P (k + 1) for every k in N
(the inductive step).

Remark 3.21. It is sometimes convenient to take an index n0 > 0 for
the base case. In this event, one must prove P (n0) is true, and establish
that P (k) implies P (k + 1) for k ≥ n0. The conclusion is that P (n) is
true for all n ≥ n0.

To see intuitively why the base case and inductive step are enough,
consider the consequences of “P (0) is true, and P (k) implies P (k + 1)
for all k ≥ 0”. Taking k = 0, the inductive step says P (0) implies P (1).
But P (0) is true by the base case, so P (1) is also true by the inductive
step. Now repeat the argument, taking k = 1. By the inductive step,
P (1) implies P (2), but P (1) is true, so P (2) is also true. Continuing
in this fashion, P (3) is true, and P (4), and so forth, ad infinitum. The
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chain of deduction may be represented as a sequence of arrows:

P (0)︸︷︷︸
Base case

=⇒ P (1) =⇒ P (2) =⇒ P (3) =⇒ . . .

=⇒ P (k) =⇒ P (k + 1) =⇒ . . .

Example 3.22. Let’s see how induction works in practice, with P (n) as
above. As noted earlier, the base case P (0) reads 0 = 0 because an
empty sum is 0. (If this seems suspicious, note that the first odd positive
number is equal to 12, so P (1) is also true).

Next, assume inductively that P (k) is true for some fixed (but ar-
bitrary) natural number k. The sum of the first (k + 1) odd positive
numbers is equal to the sum of the first k plus the (k + 1)th. By
hypothesis, the sum of the first k is equal to k2. We therefore deduce

1 + 3 + 5 + · · ·+ (2k − 1)︸ ︷︷ ︸
=k2 by P (k)

+(2k + 1) = k2 + (2k + 1) = (k + 1)2

by algebra. This equation says the sum of the first (k+ 1) odd positive
numbers is equal to (k + 1)2. By assuming P (k), we proved P (k + 1).

To summarize, the base case P (0) is true, and the inductive step,
P (k) implies P (k + 1), is valid for each natural number k. By mathe-
matical induction, P (n) is true for all n ≥ 0.

Remark 3.23. Our use of n or k to denote an arbitrary natural number
in an inductive proof signifies a subtle but important distinction. In
this book, P (n) refers to the general statement of an inductive list,
whose truth value is to be established. By contrast, P (k) refers to a
general statement that is “inductively true”: We assume “for the sake
of argument” that P (k) is true for some (particular but arbitrary) k,
and try to deduce P (k + 1).

Example 3.24. For each natural number n,

1 +
n∑

k=0

2k = 2n+1.

Call the preceding equation P (n). The base case P (0) reads 1+20 = 21,
or 1 + 1 = 2, which is true.
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Assuming inductively that P (n) is true for some natural number n,

1 +
n+1∑

k=0

2k =
[
1 +

n∑

k=0

2k
]

+ 2n+1 Recursion rule for summation,

= 2n+1 + 2n+1 Inductive hypothesis,

= 2n+1 · 2 Distributivity, 1 + 1 = 2,

= 2(n+1)+1 Definition of exponentiation.

That is, P (n) implies P (n+1) for each natural number n. By induction,
P (n) is true for all n.

Example 3.25. Consider the statement, “For all n ≥ 1, n2 + n + 41
is prime.” Checking cases may convince you this statement is true.
Taking n = 2, 5, 20, and 100 respectively asserts that 22 + 2 + 41 = 47,
52 + 5 + 41 = 71, 202 + 20 + 41 = 461, and 1002 + 100 + 41 = 10141
are primes, all true statements.

This example demonstrates the danger of relying merely on checking
cases. Note that n2 + n+ 41 = n(n+ 1) + 41. Can you use this fact to
find two (or more) values of n for which n2 + n+ 41 is not prime?

Complete mastery of mathematical induction is essential. It is our
fundamental technique for proving infinite families of statements when
they can be listed in such a way that each statement implies the next.

Example 3.26. The Tower of Hanoi puzzle consists of seven disks of
decreasing size, stacked on one of three spindles. The object is to move
the entire stack to one of the other spindles, moving only one disk at
a time, and never placing a larger disk atop a smaller one. The initial
configuration is shown in Figure 3.1.

Figure 3.1: The Tower of Hanoi, initial configuration.

How many individual transfers are required to “solve” the Tower
of Hanoi? To bring the power of mathematical induction to bear, we
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generalize the puzzle, allowing n disks rather than seven. Let T (n)
denote the number of individual transfers required to move a stack of
n disks subject to the rules above.

Clearly T (1) = 1; a single transfer moves a “stack” of one disk. For
two disks, a bit of thought shows the task can be done in three transfers
and no fewer: T (2) = 3. It’s worthwhile to experiment with a stack of
three or four coins of different sizes before reading further.

The puzzle with (n+1) disks can be solved as follows: Move the top
n disks from spindle 1 to spindle 2 (taking T (n) transfers), then move
the bottom disk to spindle 3 (one transfer), and finally move the stack
of n disks from spindle 2 to spindle 3 (another T (n) transfers). This
strategy is clearly optimal, since the bottom disk cannot be transferred
until the rest of the stack has been moved away. Tallying the number
of transfers, we find T (n+ 1) = 2T (n) + 1.

Figure 3.2: The Tower of Hanoi, intermediate configuration.

The original question could now be answered by successively calcu-
lating T (3) = 2T (2) + 1 = 7, T (4) = 2T (3) + 1 = 15, and so forth.
Having formulated a general problem, however, we are led to ask “How
many transfers are required to move a stack of n disks?” This is no
longer a finite issue, since there are infinitely many puzzles, one for
each positive number n.

To proceed further, we must guess a formula for T (n). The sequence
1, 3, 7, 15 (for towers of one, two, three, and four disks respectively)
might lead us to suspect the number of transfers is one less than a
power of two: T (n) = 2n − 1. Call this equation P (n). To see if this
guess is correct, we will attempt to prove P (n) is true for all n.

The statement P (1) says T (1) = 1 = 21 − 1, which is true. This
establishes the base case. Next, assume inductively that P (k) is true for
some k, namely T (k) = 2k − 1. By the hierarchical strategy described
earlier,

T (k + 1) = 2T (k) + 1 = 2(2k − 1) + 1 = 2 · 2k − 2 + 1 = 2k+1 − 1.
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Thus, P (k) implies P (k + 1) for each natural number k.
Since the base case is true and the inductive step is valid for each

k ≥ 1, our guess at a formula for T (k) was correct by mathematical
induction. As a special case, we find that 27 − 1 = 127 transfers are
required to move a stack of seven disks.

Remark 3.27. Both luck and skill are involved in solving this type of
problem. Looking at the “data” 1, 3, 7, we might have found other
plausible formulas, such as (n− 1)2 + (n− 1) + 1 = n2 − n+ 1.

The inductive step weeds out incorrect guesses such as this one. If
T (k) = k2 − k + 1 for some k, then

T (k + 1) = (k + 1)2 − (k + 1) + 1 = k2 + k + 1,

2T (k) + 1 = 2k2 − 2k + 3,

and these are generally different.

3.3 Counting

If the nouns of mathematics are sets, then the verbs of mathematics are
“mappings”, usually called “functions” in school mathematics. Chap-
ter 9 contains a formal definition and explores properties of mappings
in detail. Here, we introduce mappings informally and procedurally.

Mappings and Subsets

Recall that if A and B are sets, a mapping f : A → B is a rule that
associates to each element a of A an element b = f(a) of B. The set A
is called the domain of f , and the set B is the codomain. If b = f(a),
we say b is the value of f at a, and we say f maps a to b.

Definition 3.28. The set

f(A) = {b in B : b = f(a) for some a in A}

is the image of f .

Remark 3.29. If A is the set of boxes you packed when moving to college
and B is a set of labels (“clothes”, “books”, “kitchenware”, etc.), then
a mapping f : A→ B is an assignment of a unique label to each box.

The image of f is the set of labels that actually get used.
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Note carefully that a mapping assigns precisely one label b = f(a)
to each box a. It is possible, however, that:

• Two different boxes get the same label. (Maybe you have three
boxes of clothes.)

• Some labels are not assigned to any box. (Maybe you have no
kitchenware.)

Definition 3.30. A mapping f : A→ B is injective if distinct elements
of A map to distinct elements of B: If a1 6= a2, then f(a1) 6= f(a2).

Remark 3.31. Contrapositively, f is injective if f(a1) = f(a2) implies
a1 = a2.

If a box-labeling scheme is injective, then the contents of a box are
uniquely determined by the label. (You do not have to ask, “Which box
of clothes is this?” because there is only one box labeled “clothes”.)
Generally, the “input” a can be uniquely deduced from the “output”
b = f(a).

Definition 3.32. A mapping f : A→ B is surjective if every element
of B is a value of f : For every b in B, there exists an a in A such that
b = f(a).

Remark 3.33. A mapping f : A → B is surjective if and only if the
image is the entire codomain: B = f(A).

If a box-labeling scheme is surjective, then every type of label is
used on at least one box.

Definition 3.34. A mapping f : A → B is bijective if f is both
injective and surjective: For every b in B, there exists precisely one a
in A such that b = f(a).

Remark 3.35. A mapping that is injective, surjective, or bijective is
often called, respectively, an injection, a surjection, or a bijection.

For the remainder of this section, m and n denote natural numbers,
and m and n are sets containing m and n elements. When we need to
list elements, we write m = {1, 2, . . . ,m}, with the understanding that
m = ∅ if m = 0.

We give formulas for the number of mappings from m to n, the
number of injective mappings, and the number of distinct images of
injective mappings, i.e., the number of m-element subsets of n.

Proposition 3.36. There are precisely nm mappings from m to n.
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Remark 3.37. This result is our first substantial justification for defining
00 = 1. (The laws of exponents are compatible with 00 = 0.)

Proof. If m = 0 = ∅, there exists a unique mapping to n if n ≥ 0. If
instead m > 0, then each element of m can be sent to any of n distinct
values in n. Since these choices are independent, the total number of
mappings is the product of m factors of n, i.e., nm.

Remark 3.38. This formula correctly counts that there exist no map-
pings from m to 0 if m ≥ 1. If necessary, re-examine the definition of
a mapping to see why the empty set does not define a mapping with
non-empty domain and empty target.

Definition 3.39. Let U be a set of n elements. An ordering of U is a
bijection s : n→ U , namely a listing (sk)

n
k=1 of the elements of U .

Example 3.40. The set U = {a, b, c} can be ordered in six ways. In
“alphabetical” order:

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a).

Proposition 3.41. Let U be a set of n elements. There exist n! distinct
orderings of U .

Remark 3.42. This formula is compatible with the definition 0! = 1:
The unique mapping f : ∅ → ∅ is vacuously bijective. It therefore
suffices to prove the proposition for n ≥ 1.

Proof. If n ≥ 1, there are n ways to choose s1, and then (n − 1) ways
to choose a distinct s2, then (n − 2) ways to choose s3, and so on.
The total number of choices, i.e., the number of ways of ordering U , is
therefore n(n− 1)(n− 2) · · · 3 · 2 · 1 = n!.

Example 3.43. A 52-card deck of playing cards can be shuffled into

52! = 80, 658, 175, 170, 943, 878, 571, 660, 636, 856, 403, 766,

975, 289, 505, 440, 883, 277, 824, 000, 000, 000, 000,

or about 8.065817517× 1067 orderings.
To put the vastness of this number into perspective, the age of the

visible universe is roughly 4.4 × 1017 seconds, and the visible universe
is estimated to contain roughly 1070 atoms, give or take a couple of
orders of magnitude. Since a human body contains roughly 1027 atoms,
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the visible universe contains enough matter to form 1070÷ 1027 = 1043

card dealers.∗ If these dealers shuffled decks once every second (with no
rest breaks for 13.7 billion years), they would have performed roughly
4.4× 1017 × 1043 = 4.4× 1060 shuffles since the big bang, only enough
to have seen about one in ten million possible orderings. In our actual
universe, where the total number of earthly card shuffles surely does
not exceed 1015 (a billion dealers each shuffling one million times), the
number of shufflings ever seen is a vanishingly small fraction of all
possible shufflings.

Definition 3.44. Let U be a set of n elements. An ordered m-set
from U is an injection f : m→ U , i.e., an ordered m-tuple (a1, . . . , am)
whose “terms” are distinct: aj 6= ak if j 6= k. The image of an ordered
m-set is the (associated) unordered m-set {a1, . . . , am}.
Remark 3.45. These terms are not in wide usage, and are introduced
primarily for convenience in the remainder of this section.

Remark 3.46. For small values of m, one normally speaks of ordered
pairs (m = 2), triples (m = 3), quadruples (m = 4), and so forth. There
is no sharp dividing line for switching over to numerical prefixes from
Latin, but terms such as dodecatuple (m = 12) or vigintuple (m = 20)
are sadly under-used. Pronouncing “20-tuple” or “42-tuple” highlights
all too clearly the drawbacks of this well-entrenched terminology. In
practice, one speaks of “an m-tuple with m = 20”.

Example 3.47. The 4-element set U = {a, b, c, d} has twelve ordered
2-sets

(a, b) (a, c) (a, d) (b, c) (b, d) (c, d)

(b, a) (c, a) (d, a) (c, b) (d, b) (d, c).

Note that each unordered 2-set appears exactly twice. (In what order
are these pairs listed? Why does each appear twice? How many ordered
and unordered triples are there?)

Proposition 3.48. Let U be a set of n elements. If 0 ≤ m ≤ n, there
exist precisely

n(n− 1)(n− 2) · · · (n−m+ 1) =
n!

(n−m)!

∗Most of the universe consists of hydrogen, while a card dealer is largely made up
of elements more than ten times heavier than hydrogen. Further, our estimate puts
aside necessary support infrastructure: planets with habitable surface environments,
resort cities, and casinos with all-you-can-eat buffets.
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distinct ordered m-sets from U .

Proof. Following the idea of Proposition 3.41, there are n ways to
choose s1, and then (n−1) ways to choose a distinct s2, then (n−2) ways
to choose s3, etc., and (n−m+ 1) ways to choose sm.

Remark 3.49. If n < m, the number of ordered m-sets from U is 0.

We come to the major goal of this subsection: Counting (unordered)
m-element subsets of a set of n elements.

Definition 3.50. Let U be a set of n elements. The binomial coefficient(n
m

)
, read “n choose m”, is defined to be the number of distinct subsets

of U having precisely m elements.

Remark 3.51. Each binomial coefficient
(n
m

)
is a non-negative integer,

and
(n
m

)
= 0 unless 0 ≤ m ≤ n.

Further,
(n
m

)
=
( n
n−m

)
: If U contains n elements, then to each m-

element subset A of U is uniquely associated its complement U \ A,
having (n−m) elements.

Proposition 3.52. If m and n are arbitrary integers, then

(
n

m

)
=





n!

m!(n−m)!
if 0 ≤ m ≤ n,

0 otherwise.

Proof. If m < 0 or n < m, there are no m-sets from U .
Suppose 0 ≤ m ≤ n, and let U be a set of n elements.
By Proposition 3.48, there are precisely n!/(n−m)! ordered m-sets

from U . By Proposition 3.41, each unordered m-set from U is associated
to precisely m! ordered m-sets from U . Combining these observations,

n!

(n−m)!
= m! ·

(
n

m

)
, or

(
n

m

)
=

n!

m!(n−m)!
.

3.4 Construction of the Naturals

This section collects proofs of the properties asserted in the Section 3.1.

Sketch of proof of Theorem 3.1. It suffices to construct natural num-
bers and “successorship” in terms of sets. Define the empty set ∅ to
be the initial element 0, and for an arbitrary natural number n, define

S(n) = n ∪ {n}.
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Concretely, S(0) = ∅ ∪ {∅} = {∅} is a set containing “one element”,
the empty set itself;

S(S(0)) = {∅, {∅}}
is a set containing “two” elements, the empty set, and the set consisting
of the empty set ;

S(S(S(0))) = {∅, {∅}, {∅, {∅}}}

is a set containing “three” elements (what are they?), and so forth.
Properties N1 and N3 are obvious, while N2 follows (with some work)
because for each natural number m, “the set S(m) \m = {m} contains
precisely one element”.

Remark 3.53. For each natural number n we have, in this construction,
n ⊆ S(n) = n ∪ {n}, and n 6= S(n) as sets.

Remark 3.54. If your philosophical tastes run toward “essentialism”
(the nature of objects is grounded in what they are), it would be natural
to conclude that the number zero is the empty set, the number one is
the set {∅}, and so forth.

In mathematics, this viewpoint is subtly wrong: Mathematical ob-
jects are characterized by their behavior, not by their construction.∗

In the language of object-oriented programming, any infinite set
together with an “initial element” and a notion of successorship sat-
isfying Properties N1–N3 of Theorem 3.1 is an implementation of the
natural numbers. The natural numbers themselves are the “abstract
essence” characterized by the public interface of N1–N3. “Properties
of the natural numbers” are precisely consequences of N1–N3.

From our perspective, the construction of the preceding proof shows
that N1–N3 are logically consistent so long as ZFC itself is consistent.

Proof of Theorem 3.4. (i). Let P (k) denote the statement

n+ (m+ k) = (n+m) + k for all natural numbers n and m.

∗This is not metaphysical hair-splitting: Computer software and digital data
files are not specific patterns of bytes, but instructions for causing a system of
computer hardware to behave in some specified way. That is, the nature of a piece
of software is determined by how it behaves, not by its physical structure as an
ordered sequence of bytes.

You yourself are not a particular collection of atoms, but an entity consisting of
relationships divided conceptually into a hierarchy of functional systems, organs,
cells, molecules, and atoms. Decades from now, you will retain some identity of
who you currently are, but most of the atoms in your body will have been replaced.
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By definition of addition, the base case P (0) is true. Suppose P (k) is
true for some natural number k. For all natural numbers n and m, we
have

n+
(
m+ (k + 1)

)
= n+

(
(m+ k) + 1

)
(*),

=
(
n+ (m+ k)

)
+ 1 (*),

=
(
(n+m) + k

)
+ 1 P (k),

= (n+m) + (k + 1) (*).

That is, the inductive step is true: P (k) implies P (k + 1). By mathe-
matical induction, P (k) is true for all k.

(ii). For each natural number m, let P (m) be the statement

n+m = m+ n for all n.

Our goal is to prove P (m) is true for every natural number m. To this
end, we first establish P (0) (a necessary part of the conclusion, but not
strong enough for inductive purposes) and P (1).

The single statement P (0), which reads 0 + n = n + 0 for all n,
itself constitutes an infinite family of statements, one for each natural
number n. The base case n = 0 is obvious: 0 + 0 = 0 + 0. Now, if
0 + k = k for some natural number k, then

0 + (k + 1) = (0 + k) + 1 (*),

= k + 1 Inductive hypothesis.

By mathematical induction, 0+n = n = n+0 for all n. This completes
the proof of P (0).

Similarly, P (1) reads 1 + n = n + 1 for all n. Treating this as an
infinite family of statements as above, the base case reads 1+0 = 0+1;
this is the n = 1 case of the preceding paragraph. Assuming inductively
that 1 + k = k + 1 for some natural number k, we have

1 + (k + 1) = (1 + k) + 1 (*),

= (k + 1) + 1 Inductive hypothesis.

By mathematical induction, 1 +n = n+ 1 for all n. This completes the
proof of P (1).
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We now turn to P (m). Assuming inductively that P (m) is true for
some natural number m, we have, for all natural numbers n,

n+ (m+ 1) = (n+m) + 1 (*),

= (m+ n) + 1 P (m),

= m+ (n+ 1) (*),

= m+ (1 + n) P (1),

= (m+ 1) + n Associativity.

Since P (0) and P (1) are true, and since P (m) implies P (m + 1) for
every nonzero natural number m, induction on m guarantees P (m) is
true for all m.

Proof of Theorem 3.6. Let m and n be natural numbers. We say m is
less than n, and write m < n, if in the construction of the natural
numbers as sets, m ⊆ n and m 6= n.

Property (i), that n < S(n) = n ∪ {n} for every natural number n,
is obvious.

Property (ii) is also obvious: If k is a proper subset of m and m is
a proper subset of n, then k is a proper subset of n.

By construction, the natural numbers are strictly nested as sets, so
given two natural numbers m and n, either they are equal, or one is a
proper subset of the other; this is Property (iii).

Conversely, suppose < satisfies Properties (i)–(iii) in Theorem 3.6,
and that m and n are natural numbers such that m < n. We cannot
have n ⊆ m as sets, since m arises in the chain of successorship starting
with n, from which we would deduce the false statement n ≤ m < n.
Thus, m < n implies m ⊆ n (and m 6= n) as sets.

This proves that the “proper subset of” relation coincides with the
less-than relation, which by definition satisfies (i)–(iii).

If m and n are natural numbers, then m < n if and only if m ⊆ n
as sets in the construction, if and only if n arises in the chain of succes-
sorship starting with m, if and only if there exists a natural number k
such that m+ k = n.

For later use, we note the following technical result.

Theorem 3.55. If n, m, k are natural numbers such that n+k = m+k,
then n = m.
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Proof. Let P (k) be the statement

n+ k = m+ k implies n = m for all natural numbers m and n.

The statement P (0) is true by definition of addition. Assume induc-
tively that P (k) is true for some natural number k. For all natural
numbers m and n, if n+ (k + 1) = m+ (k + 1), then

(n+ k) + 1 = n+ (k + 1) = m+ (k + 1) = (m+ k) + 1.

By uniqueness of predecessors, n+k = m+k, so n = m by the inductive
hypothesis. That is, P (k) implies P (k+ 1) for every natural number k.
By induction, P (k) is true for all k.

Proof of Theorem 3.8. Assume contrapositively that X is a set of nat-
ural numbers having no least element; it suffices to prove X is empty.
Let P (m) be the statement

If k ≤ m, then k 6∈ X.

If 0 ∈ X, then X has a least element; thus 0 6∈ X, i.e., P (0) is true.
Now suppose inductively that P (m) is true for some natural num-

ber m. If m+1 ∈ X, then m+1 would be a least element of X contrary
to hypothesis. Thus m+ 1 6∈ X, i.e., P (m+ 1) is true.

Mathematical induction implies P (m) is true for all m. Particularly,
m 6∈ X for all m, i.e., X is empty.

3.5 Construction of the Integers

The size of a flock of sheep can be measured in the natural numbers, and
addition corresponds to agglomeration of flocks. Analogously, debts can
be accounted and paid by subtracting.

Unfortunately, the difference n − m of two natural numbers is a
natural number if and only if m ≤ n. In other words, if m and n are
natural numbers, the equation m + x = n is solvable in the natural
numbers precisely when m ≤ n. Consequently, a debt x can be paid
only if the amount owed, m, is no large than the amount possessed, n.
Or can it?

Aleph: You owe me • • • • • sheep.

Beth: But I possess only • • • sheep.
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Aleph: Very well. Give me those, and you only owe me • • sheep.

The set of integers, or whole numbers, is an abstract enlargement of
the set of natural numbers in which, for arbitrary integers m and n, the
equation m+x = n has a solution x in the integers. A debt corresponds
to a “negative” integer, a flock of size less than zero. A mathematically-
minded chapter of the Society for Creative Anachronism might stage
the preceding discussion:

Aleph: As far as I am concerned, you have −5 sheep.

Beth: But I possess only 3 sheep.

Aleph: Very well. Give me those, and you will have −2 sheep.

Remark 3.56. Negative numbers cannot be interpreted as absolute quan-
tities. A mathematician saw two people go into a house. When three
later came out, the mathematician reasoned, “If one person goes in,
the house will be empty again.”

Despite its whimsy, this joke contain a profound, useful idea: An
integer is a relationship between two natural numbers. The solution x
of m + x = n represents a relationship between m and n. To encode
this relationship, we form the ordered pair (m,n).

There is a technical hitch: Multiple equations, such as 1 + x = 4,
6 + x = 9, 1965 + x = 1968, etc., all correspond to the same natural
number. As integers, we want (1, 4) = (6, 9) = (1965, 1968). These
considerations motivate the definition.

Definition 3.57. Let m and n be arbitrary natural numbers. The
ordered pair (m,n) is called an integer representative. Two representa-
tives (m1, n1) and (m2, n2) are equal as integers if m1 + n2 = m2 + n1.

An integer is the “equivalence class” [m,n] of integer representatives
that are mutually equal. The set of integers is denoted Z.

Example 3.58. If x is a natural number, the equivalence class [0, x] is
the integer representing x. If m is an arbitrary natural number, and if
n = m+ x, then [0, x] = [m,n].

Similarly, the equivalence class [x, 0] = [n,m] represents “nega-
tive x”, a “debt of size x”.

We want to do arithmetic with integers just as we do with natural
numbers. Our conceptual identification [m,n] = n − m and the wish
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for “familiar laws of arithmetic”

(n−m) + (n′ −m′) = (n+ n′)− (m+m′),

(n−m) · (n′ −m′) = (n · n′ +m ·m′)− (m · n′ +m′ · n),

motivate our rules of addition and multiplication of integers. Note that
the definition relies only on operations for natural numbers.

Definition 3.59. Let N = (m,n) and N ′ = (m′, n′) be integer repre-
sentatives. Their sum and product are the integers defined by

(m,n)⊕ (m′, n′) = [m+m′, n+ n′],

(m,n)� (m′, n′) = [(m ·m′) + (n · n′), (m · n′) + (m′ · n)].

Remark 3.60. We have defined addition and multiplication of represen-
tatives. Before we can view the formulas in Definition 3.62 as opera-
tions on integers, we must check that “the result does not depend on
the choice of representatives”.

Theorem 3.61. If Nj = (mj , nj) and N ′j = (m′j , n
′
j) are integer rep-

resentatives for j = 1, 2, and if [N1] = [N ′1] and [N2] = [N ′2], then

N1 ⊕N2 = N ′1 ⊕N ′2, N1 �N2 = N ′1 �N ′2.

Proof. The idea for addition is to “transform” N1 ⊕ N2 into N ′1 ⊕ N ′2
while preserving equality of integers. To accomplish this, we may add
or cancel natural numbers in representatives, and use the hypotheses
m1 + n′1 = m′1 + n1 and m2 + n′2 = m′2 + n2:

N1 ⊕N2 = [m1 +m2, n1 + n2]

= [(m1 +m′1 +m2 +m′2), (n1 +m′1 + n2 +m′2)]

= [(m1 +m′1 +m2 +m′2), (n
′
1 +m1 + n′2 +m2)]

= [m′1 +m′2, n
′
1 + n′2] = N ′1 ⊕N ′2.

Multiplication is similar, Exercise 3.9.

Definition 3.62. If N = [m,n] and N ′ = [m′, n′] are integers, we
define their sum and product to be

[m,n]⊕ [m′, n′] = [m+m′, n+ n′],

[m,n]� [m′, n′] = [(m ·m′) + (n · n′), (m · n′) + (m′ · n)].
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Remark 3.63. If m and n are natural numbers, then

[0,m]⊕ [0, n] = [0,m+ n], [0,m]� [0, n] = [0,m · n].

Loosely, addition and multiplication of natural numbers “work just the
same” if we regard natural numbers as integers. For this reason, we
may safely use the symbols “+” and “·” to denote integer addition and
multiplication.

Remark 3.64. We do not define exponentiation in the integers. It turns
out there is no way to extend the operation on the natural numbers in
a way that satisfies the laws of exponents.

Definition 3.65. If N = [m,n] and N ′ = [m′, n′] are integers, we say
N is less than or equal to N ′, and write N ≤ N ′, if n + m′ ≤ n′ + m.
We say N is less than N ′, and write N < N ′, if n+m′ < n′ +m.

Remark 3.66. As with the definitions of addition and multiplication,
we must verify that these conditions, which are defined using repre-
sentatives, do not depend on the choice of representative. Here, the
verification is an immediate consequence of the definition of equality.

Theorem 3.67. Let (Z,+, ·) denote the set of integers equipped with
the operations of integer addition and multiplication.

(i) Addition is associative: If N , N ′, and N ′′ are integers, then

N + (N ′ +N ′′) = (N +N ′) +N ′′.

(ii) Additive identity element: If 0 = [0, 0], then N + 0 = N and
0 +N = N for every integer N .

(iii) Additive inverses: If N = [m,n], there exists a unique integer N ′

such that N +N ′ = 0 and N ′ +N = 0.

(iv) Addition is commutative: If N and N ′ are integers, then

N +N ′ = N ′ +N.

(v) Multiplication is associative: If N , N ′, and N ′′ are integers, then

N · (N ′ ·N ′′) = (N ·N ′) ·N ′′.
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(vi) Multiplicative identity element: If 1 = [0, 1], then N · 1 = N and
1 ·N = N for every integer N .

(vii) Multiplication distributes over addition: If N , N ′, and N ′′ are
integers, then

N · (N ′ +N ′′) = (N ·N ′) + (N ·N ′′).

(viii) Multiplication is commutative: If N and N ′ are integers, then

N ·N ′ = N ′ ·N.

(ix) Trichotomy: For every integer N , exactly one of the following is
true: N < 0, N = 0, N > 0.

Proof. Each part reduces to mere computation. For practice, you
should provide your own proofs for the omitted parts. Throughout
the proof, we write N = [m,n], N ′ = [m′, n′], and N ′′ = [m′′, n′′].

(Additive inverses). The integer N ′ = [n,m] is easily checked to
satisfy N + N ′ = N ′ + N = 0. To prove uniqueness, observe that if
N ′ and N ′′ are additive inverses of N , then

N ′ = N ′ + 0 = N ′ + (N +N ′′) = (N ′ +N) +N ′′ = 0 +N ′′ = N ′′.

(Multiplication is associative). For brevity, multiplication signs are
omitted between natural numbers. By direct calculation, freely using
associativity, commutativity, and distributivity of operations on natural
numbers,

N · (N ′ ·N ′′) = [m,n] · [(m′m′′ + n′n′′), (m′n′′ +m′′n′)]

= [m(m′m′′ + n′n′′) + n(m′n′′ +m′′n′),

m(m′n′′ +m′′n′) + n(m′m′′ + n′n′′)]

= [(mm′ + nn′)m′′ + (mn′ + nm′)n′′,

(mm′ + nn′)n′′ + (mn′ + nm′)m′′]

= (N ·N ′) ·N ′′.

Theorem 3.68. Let N , N ′, and N ′′ be arbitrary integers.

(i) If N ≤ N ′, then N +N ′′ ≤ N ′ +N ′′.
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(ii) If N ≤ N ′ and 0 ≤ N ′′, then NN ′′ ≤ N ′N ′′.

(iii) If N ≤ N ′ and N ′′ ≤ 0, then N ′N ′′ ≤ NN ′′.

Remark 3.69. Particularly, the sum of two positive integers is positive,
the product of two positive integers is positive, and the product of a
positive integer and a negative integer is negative.

“Three times negative five” may be interpreted as the total debt of
three shepherds, each having a debt of five sheep.

Attempting to reason along these lines is treacherous, however, as
medieval philosophers discovered. What could “negative three shep-
herds” possibly mean? And what if each had a debt of five sheep? The
mind reels. Even in the 21st Century, one can start fruitless arguments
in mathematical web forums by asking what multiplying one negative
number by another really means.

In the end, abstraction lights the way forward. The operation of
multiplication has its original meaning when the operands are natural
numbers, and the meaning is dictated by conformity to the distributive
law one or both operands are negative.

Exercises

Exercise 3.1. No matter how many sheep or stones one has, even if
the number be like unto the grains of sand on all the beaches of the
world, one can imagine having one more.

Discuss the ways in which this assertion is not empirically true.
Items to consider include the finite lifetime of a human being, of human
culture, of physical conditions capable of sustaining intelligent life; the
finite amount of observable matter in the cosmos; the finite speed with
which information in the physical universe propagates; the fact that
distant galaxies we can currently see will eventually fade to invisibility
due to the expansion of space.

Exercise 3.2. Use the indicated strategies to find the sum of the first n
positive integers.

(a) Compute a few special cases, formulate a conjecture, and use math-
ematical induction to prove your formula is correct.

(b) Starting with the formula for the sum of the first n odd positive
integers, increment each summand by 1 to get the sum of the first
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n even positive integers. Add these sums to get the sum of the first
N = 2n integers, and express the result in terms of N .

(c) Observe 1 + 2 + · · ·+ (n− 1) + n = n+ (n− 1) + · · ·+ 2 + 1; add
these expressions to each other and group the respective first terms,
second terms, and so forth. Now solve for the unknown sum.

Exercise 3.3. Use induction to prove that for every positive natural
number k,

(a)
k∑

j=1

2j = k(k + 1).

(b)
k∑

j=1

(2j − 1) = k2.

(c)
k∑

j=1

6j2 = k(k + 1)(2k + 1).

(d)
k∑

j=1

4j3 =
[
k(k + 1)

]2
.

(e) If r 6= 1, then 1 + (r − 1)
k∑

j=0

rj = rk+1.

Exercise 3.4. Show that if n ≥ 4, then 2n < n! < nn.

Exercise 3.5. If n, m ≥ 0 are integers, then (n + m)! ≥ (n + 1)mn!.
The inequality is strict if m > 1.

Exercise 3.6. If n is a natural number, define the double factorial, n!!,
by

0!! = 1!! = 1, (n+ 2)! = (n+ 2) · n!! for n ≥ 0.

(a) Show that

(2m)!! = (2m) · (2m− 2) · (2m− 4) · · · 6 · 4 · 2,
(2m− 1)!! = (2m− 1) · (2m− 3) · (2m− 5) · · · 5 · 3 · 1.

(a) Without using a calculator, evaluate the double factorials up to 10!!.

(b) Prove that (2m)!! = 2m ·m! for every m.

(c) Prove that (2m)!! · (2m− 1)!! = (2m)! for every m.

(d) Prove that (2m+ 1)!! · (2m)!! = (2m+ 1)! for every m.
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Exercise 3.7. Prove Theorem 3.10, using only results established up
to that point in the text.

Exercise 3.8. Prove Theorem 3.14, using only results established up
to that point in the text.

Exercise 3.9. Prove that multiplication of integer representatives is
well-defined on integers: If Nj = (mj , nj) and N ′j = (m′j , n

′
j) are integer

representatives for j = 1, 2, and if [N1] = [N ′1] and [N2] = [N ′2], then

N1 �N2 = N ′1 �N ′2,

i.e.,

(m1, n1)� (m2, n2) = [(m1 ·m2) + (n1 · n2), (m1 · n2) + (m2 · n1)]
= [(m′1 ·m′2) + (n′1 · n′2), (m′1 · n′2) + (m′2 · n1)′]
= (m′1, n

′
1)� (m′2, n

′
2).

Hints: It suffices to show

N1 �N2 = N ′1 �N2, N ′1 �N2 = N ′1 �N ′2.

For the first, add m′1 ·(m2+n2) in the representative of the product, use
m1 +n′1 = m′1 +n1 and m2 +n′2 = m′2 +n2, then cancel m1 · (m2 +n2).
The second can be handled similarly, or show that � is commutative.

Exercise 3.10. Consider the following “proof” that all coins have the
same denomination:
Let P (n) be the statement “In a set of
n coins, all the coins have the same de-
nomination.” Now, P (1) is clearly true
(a single coin has a single denomination),
so the base case is true. Assume induc-
tively that P (k) is true for some k > 1,
and divide an arbitrary set of (k+1) coins
into two groups as shown at right.

k coins︷ ︸︸ ︷
© © © . . . © ©

︸ ︷︷ ︸
k coins

By the inductive hypothesis, the first k coins all have the same denom-
ination, and the last k coins have the same denomination. Since these
two sets “overlap” as shown, all the coins have the same denomina-
tion. Since P (k) implies P (k + 1) for all k > 1, P (n) is true for all n,
namely, all the coins have the same denomination. Where, exactly, are
the logical flaws in this argument?



Chapter 4

Integer Division

In Chapter 3, we constructed the integers from the natural numbers.
From now on, we denote integers with lowercase letters as we have done
for natural numbers, we view natural numbers as non-negative integers,
and we adopt the viewpoint that integers are not a specific implementa-
tion, but an arbitrary collection of objects satisfying axioms, Table 4.1,
page 58.

4.1 Properties of the Integers

We first show that the identity elements for addition and multiplication,
and additive inverses, are uniquely defined. To accomplish this, we use
a mathematical idiom you should absorb: Assume two integers satisfy
some property, and prove they are equal.

Theorem 4.1. The additive identity element and the additive inverse
of an arbitrary integer a are unique. Precisely:

(i) The integer 0 is uniquely defined by A1. and A2.

(ii) The integer 1 is uniquely defined by M1. and M2.

(iii) The integer −a is uniquely defined by A1., A2. and A3.

(iv) For every integer a, −(−a) = a. In particular, −(−1) = 1.

Proof. (i) Suppose integers 0 and 0′ satisfy A3. By A3. with a = 0′,
we have 0 + 0′ = 0′. However, by A3. with a = 0, we have 0 + 0′ = 0.
Combining, 0 = 0 + 0′ = 0′. The proof of (ii) is entirely analogous, and
is left to you.

57
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There exists a set Z, a subset Z+ of Z, and two operations, + and ·,
satisfying the following axioms.

A1. (Associativity of addition) For all elements a, b, and c in Z, we
have a+ (b+ c) = (a+ b) + c.

A2. (Additive identity element) There exists an integer 0 such that
a+ 0 = 0 + a = a for all a in Z.

A3. (Additive inverses) For every a in Z, there exists −a in Z such
that a+ (−a) = (−a) + a = 0.

A4. (Commutativity of addition) For all a and b in Z, a+ b = b+ a.

M1. (Associativity of multiplication) For all a, b, and c in Z, we have
a · (b · c) = (a · b) · c.

M2. (Multiplicative identity element) There exists an integer 1 6= 0
such that a · 1 = 1 · a = a for all a in Z.

M3. (Commutativity of multiplication) For all a and b in Z, a·b = b·a.

M4. (Distributivity of multiplication over addition) For all a, b, and c
in Z, a · (b+ c) = a · b+ a · c.

O1. (Law of Trichotomy) If −Z+ = {b in Z : −b ∈ Z+}, then the sets
Z+, {0}, and −Z+ are a partition of Z.

O2. (Sum of positive numbers) If a and b are elements of Z+, then
a+ b ∈ Z+.

O3. (Product of positive numbers) If a and b are elements of Z+, then
a · b ∈ Z+.

O4. (Well-ordering) If A ⊆ {0} ∪ Z+ is non-empty, then there is a
“smallest element” in A, i.e., there exists an a0 in A such that
a+ (−a0) ∈ {0} ∪ Z+ for every a in A.

Table 4.1: Axioms for the integers.
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(iii) Assume a ∈ Z. If a+ b = b+ a = 0 and a+ c = c+ a = 0, then

b = b+ 0 A2. with a = b

= b+ (a+ c) a+ c = 0 by hypothesis

= (b+ a) + c A1.

= 0 + c b+ a = 0 by hypothesis

= c A2. with a = c.

(iv) Part (iii) constitutes a useful principle: Let a and b be integers.
To check whether b = −a, it suffices to show a+b = 0. But the equation
(−a)+a = 0 may therefore be interpreted as saying the additive inverse
of (−a) is a, which is (iv).

Definition 4.2. Let a and b be integers. The operation of subtraction
is defined by a− b = a+ (−b). The integer a− b is the difference of a
and b.

Remark 4.3. Subtraction is neither associative nor commutative, and
there is no identity element for subtraction.

Next we establish some “obvious” properties of multiplication.

Theorem 4.4. If a is an arbitrary integer, then

(i) a · 0 = 0 · a = 0.

(ii) −1 · a = −a. In particular, (−1) · (−1) = −(−1) = 1.

Proof. (i) Assume a is an arbitrary integer, and let b = a · 0. By
A2. with a = 0, 0 + 0 = 0. Multiplying both sides by a and using the
distributive law M4. gives

b+ b = a · 0 + a · 0 = a · (0 + 0) = a · 0 = b.

Adding −b to each side,

b = 0 + b =
(
(−b) + b

)
+ b = (−b) + (b+ b) = (−b) + b = 0,

as claimed.
(ii) By part (ii) of Theorem 4.1, the additive inverse of each integer

is unique, so to prove −1 · a = −a it suffices to prove a+ (−1 · a) = 0.
However,

a+ (−1 · a) = (1 · a) + (−1 · a) =
(
1 + (−1)

)
· a = 0 · a = 0.

Be sure you are able to justify each equality using the axioms and/or
properties established earlier.
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Theorem 4.5. Let a, b, c, and d be arbitrary integers.

(i) If a < b and b < c, then a < c.

(ii) 0 < a if and only if −a < 0.

(iii) If a < b and 0 < c, then ac < bc.

(iv) If a < b and c < 0, then bc < ac.

Proof. (i) By definition, a < b means b + (−a) ∈ Z+. Similarly, b < c
means c + (−b) ∈ Z+. By Axiom O2., a sum of elements of Z+ is an
element of Z+, so

c+ (−a) = c+ (−b+ b) + (−a) =
(
c+ (−b)

)
+
(
b+ (−a)

)
∈ Z+,

proving a < c.
(ii) Suppose 0 < a, i.e., a ∈ Z+, and consider the integer −a. By

the trichotomy property, a 6= 0, and exactly one of the following is true:
−a = 0, −a ∈ Z+, or −a ∈ −Z+. We will show that the first two of
these statements are false.

If −a = 0, then a = a + 0 = a + (−a) = 0. Contrapositively, a 6= 0
implies −a 6= 0.

If −a ∈ Z+, then 0 = a+ (−a) ∈ Z+ by Axiom O2., since a ∈ Z+.
But 0 6∈ Z+ by the trichotomy property, so −a 6∈ Z+.

The third condition, −a ∈ −Z+, must therefore hold.
Conversely, suppose a < 0, and let b = −a. Since −b = a by

Theorem 4.1 (iv), b ∈ Z+ by definition of Z+.
(iii) By hypothesis, b + (−a) ∈ Z+ and c = c + (−0) ∈ Z+. Ax-

iom O3. guarantees their product is an element of Z+:

b · c+ (−a) · c =
(
b+ (−a)

)
· c ∈ Z+.

Since (−a)·c = (−1·a)·c = −1·(ac) = −ac, we have ac < bc. The proof
of (iv) is entirely analogous: Use the same argument with c replaced
by −c in Z+.

As an application, we prove a < b if and only if b > a. Let a and b
be arbitrary distinct integers, and let c = b + (−a), so c 6= 0. Now,
−c = a+ (−b) by Theorem 4.1 (iii), since
(
a+ (−b)

)
+
(
(−a) + b

)
= a+

(
(−b) + (−a)

)
+ b A1.

= a+
(
(−a) + (−b)

)
+ b A4.

=
(
a+ (−a)

)
+
(
(−b) + b

)
A1.

= 0 + 0 = 0. A3. and A2.



CHAPTER 4. INTEGER DIVISION 61

Using part (ii) of the preceding theorem, a < b if and only if 0 < c, if
and only if 0 > −c, if and only if b > a, as was to be shown.

Theorem 4.6. Let a, b, and c be arbitrary integers.

(i) If a 6= 0, then 0 < a2. In particular, 0 < 1.

(ii) If ab = 0, then a = 0 or b = 0.

(iii) If a 6= 0 and ab = ac, then b = c.

(iv) If 0 < a, then 1 ≤ a. In words, 1 is the smallest positive integer.

Proof. (i) If a 6= 0, then by trichotomy and part (ii) of the preceding
theorem, either a ∈ Z+ or a ∈ −Z+. In the first case, a2 = a · a ∈ Z+

by Axiom O3. In the second case, −a ∈ Z+, so

a2 =
(
(−1) · (−1)

)
· (a · a) =

(
(−1) · a

)2
= (−a)2 ∈ Z+.

In either case, a2 ∈ Z+, or 0 < a2. Since 1 = 12 by M2., 0 < 1.
(ii) We prove the contrapositive: If a 6= 0 and b 6= 0, then ab 6= 0.

By trichotomy, it suffices to consider four cases: 0 < a and 0 < b; 0 < a
and b < 0; a < 0 and 0 < b; a < 0 and b < 0. The proofs are similar,
so the details of one case will convey the idea.

If 0 < a and b < 0, then 0 < −b by part (ii) of Theorem 4.5. Since a
product of positive numbers is positive, 0 < a(−b) = −(ab). Invoking
part (ii) of Theorem 4.5 again, ab < 0; in particular, ab 6= 0.

(iii) Since ab = ac, we have 0 = ab−ac = a·(b−c) by the distributive
axiom. The preceding part of this theorem implies a = 0 or b− c = 0.
Since a 6= 0 by hypothesis, b− c = 0, namely b = c.

(iv) Since the set Z+ = N \ {0} of positive integers is non-empty,
there exists a smallest positive integer a0 by the well-ordering axiom.
Since 1 is positive by part (i) of this theorem, a0 ≤ 1.

By Axiom O3., 0 < a20. Since a0 is the smallest positive integer, we
have a0 ≤ a20, or 0 ≤ a20 − a0 = a0(a0 − 1). By parts (iii) and (iv) of
Theorem 4.5, we have a0 − 1 ≥ 0, or 1 ≤ a0.

Since a0 ≤ 1 and 1 ≤ a0, we have a0 = 1.

Example 4.7. Suppose a is an integer such that a2 = a. Subtracting
and factoring, a(a − 1) = a2 − a = 0. By part (ii), either a = 0,
or a − 1 = 0, i.e., a = 1. This conclusion is no surprise, but naive
manipulation of the axioms is unlikely to yield as concise a proof.
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4.2 The Division Algorithm

Suppose N objects, such as jelly beans or playing cards, are to be
divided among n people. Every child learns the algorithm: Put the
people into some fixed order (such as counterclockwise around a cir-
cle). Following the order cyclically, give one object to each person in
succession until none remain. This process “minimizes unfairness” in
that either everyone receives the same number q of objects, or else ev-
eryone receives at least q objects, but some number r (with 0 < r < n)
receive one extra.

Mathematically, this process is known as the division algorithm,
Figure 4.1. The numbers q and r are the quotient and remainder of N
on division by n.

︸ ︷︷ ︸
n piles

r “leftovers”︷ ︸︸ ︷

}
q objects per pile

Figure 4.1: Dividing N objects among n piles.

Theorem 4.8. Assume N ∈ Z and n ∈ Z+. There exist unique inte-
gers q and r, with 0 ≤ r < n, such that N = nq + r.

The proof formalizes the naive algorithm. If N > 0, repeatedly
subtract n until fewer than n objects remain, and say this occurs after
q subtractions. The remainder (i.e., the number of “leftovers”) r =
N − nq must be between 0 and n − 1. If N ≤ 0, argue similarly, but
add n repeatedly until, after q additions, the result is positive.

Proof. (Existence). Let N in Z and n > 0 be given. Consider the
set S of integers of the form N − nk with k in Z, namely, integers that
can be obtained from N by adding or subtracting n repeatedly. Let
S+ = S ∩N be the set of non-negative integers in S.

The set S+ is non-empty: If 0 ≤ N , then N = N − n · 0 ∈ S+. If
instead N < 0, then since 1−n ≤ 0, we have 0 ≤ (1−n)N = N −nN ,
i.e., N − nN ∈ S+.
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By the well-ordering principle, the non-empty set S+ has a smallest
element, say r. Since r ∈ S, by definition there exists an integer q such
that r = N − nq, or N = nq + r.

Because r is the smallest element of S+, we have 0 ≤ r < n: If
instead n ≤ r were true, it would follow that 0 ≤ r − n < r, which
would mean r− n in S+ is smaller than r. This completes the proof of
the “existence” part of the theorem.

(Uniqueness). We wish to show that N can be written in only one
way as N = nq + r with 0 ≤ r < n.

Suppose N = nq1 + r1 = nq2 + r2 with 0 ≤ r1 < n and 0 ≤ r2 < n.
We may assume r1 ≤ r2 without loss of generality; if not, swap the
names of these numbers. Rearranging,

nq1 − nq2 = n(q1 − q2) = r2 − r1.

The left-hand side is an integer multiple of n. The right-hand side
is non-negative, but no larger than r2 < n. Their common value is
therefore a non-negative integer multiple of n that is strictly smaller
than n, namely zero. In other words, r1 = r2 and q1 = q2. This
completes the proof of uniqueness.

Remark 4.9. The conclusion of the division algorithm may look peculiar
when N < 0. For example, if N = −30 and n = 11, the division
algorithm gives −30 = −3 · 11 + 3, while one might expect it to give
−30 = −2·11−8 (cf. Figure 4.1). Both equations are correct, of course,
but the condition 0 ≤ r < n forces us to use −3 · 11 + 3 as the unique
representation of −30 as a multiple of 11 plus a remainder.

Remark 4.10. In computer programming languages such as C++, bash,
and Python, dividing an integer N by a positive integer n performs
integer division N/n, returning the quotient q from Theorem 4.8, while
the modulus operator N%n returns the remainder of N on division by n.

Integer Divisors

Definition 4.11. Let N be an integer. We say N is even if there
exists an integer q such that N = 2q. We say N is odd if there exists
an integer q such that N = 2q + 1.

Remark 4.12. By Theorem 4.8, every integer is either even or odd, and
no integer is both.
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Definition 4.13. Let a and b be integers. We say a divides b, and write
a | b, if there exists an integer q such that b = aq. In this situation, we
also say a is a divisor or a factor of b, or that b is a multiple of a.

Remark 4.14. Since a(−q) = (−a)q = −(aq), the following are equiva-
lent for all a and b: a | b, −a | b, and a | −b.
Lemma 4.15. If a, b, and c are integers, and if a |b and b |c, then a |c.
Proof. By hypothesis, there exist integers q and r such that b = aq and
c = br. Substituting, c = br = (aq)r = a(qr), so a | c.
Remark 4.16. Clearly, a | 0 and −a | 0 are true for every a, by taking
q = 0. The reverse relation is much more stringent: If 0 | a, then a = 0.

Similarly, the statements 1 | b, −1 | b are true for every integer b, by
taking q = b or q = −b respectively. In words, 1 and −1 divide every-
thing. The converse relation is interesting enough to state formally.

Theorem 4.17. If a ∈ Z and a | 1, then a = ±1.

Proof. We will prove the contrapositive: If a 6= ±1, then a |/1. As noted
above, 0 |/ 1, and a | 1 if and only if −a | 1, so it suffices to consider the
case 1 < a.

If a |1, there exists an integer q such that aq = 1. However, if 1 < a,
then multiplying by q would give 0 < q < aq = 1, which is false; there
is no integer between 0 and 1. It follows that if 1 < a, then a |/ 1.

Subgroups of Integers

Definition 4.18. Let G ⊆ Z be a non-empty set of integers. We say
G is a subgroup of (Z,+) if

(i) G is closed under addition, i.e., if a and b are in G, then a+ b ∈ G.

(ii) G is closed under negation, i.e., if a ∈ G, then −a ∈ G.

Example 4.19. The setG = {0} is a subgroup of (Z,+), since 0+0 = 0
and −0 = 0.

If d 6= 0 is an integer, the set G = dZ of integer multiples of d is
a subgroup of (Z,+): If a and b are elements of G, then by definition
there exist integers m and n such that a = dm and b = dn. The
distributive law gives a + b = dm + dn = d(m + n), which is in G
because m + n is an integer. Similarly, −a = −(dm) = d(−m) is in G
since −m is an integer.
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The converse of Example 4.19 holds:

Theorem 4.20. If G 6= {0} is a subgroup of (Z,+), there exists a
unique positive integer d such that G = dZ.

Proof. Let G be a subgroup of (Z,+), and let S+ = G∩Z+ be the set
of positive integers in G. We first show S is non-empty. Since G 6= {0},
there exists a non-zero element a of G. Condition (ii) in the definition
of a subgroup implies −a ∈ G. By trichotomy, either a > 0 or −a > 0;
that is, either a ∈ S+, or −a ∈ S+, so S is non-empty.

By well-ordering, the non-empty set S+ ⊆ Z+ has a smallest ele-
ment d. An inductive argument shows that dq ∈ G for every positive
integer q. Condition (ii) in the definition of a subgroup shows −dq ∈ G
for every positive integer q. Finally, 0 = d+ (−d) ∈ G by Condition (i)
in the definition of a subgroup. That is, dZ ⊆ G. To complete the
proof of the theorem, it suffices to show G ⊆ dZ.

Let a be an arbitrary element of G, and use the division algorithm
to find the integers q and r such that 0 ≤ r < d and a = dq + r. By
the preceding paragraph, −dq ∈ G. Since G is closed under addition,
r = a+(−dq) ∈ G. Now, the non-negative integer r must be 0, because
r < d and d is the smallest positive element of G. Consequently, a = dq,
i.e., a ∈ dZ. Since a was an arbitrary element of G, we have shown
G ⊆ dZ.

4.3 The Greatest Common Divisor

Definition 4.21. Let a and b be integers. An integer c is a common
divisor of a and b if c | a and c | b.

Remark 4.22. If a = b = 0, then every integer is a common divisor
of a and b. If at least one of a and b is non-zero, however, there is a
common divisor d larger than every other common divisor.

Definition 4.23. Let a and b be integers, not both zero. An integer d
is a greatest common divisor of a and b if

(i) d | a and d | b (d is a common divisor of a and b).

(ii) 0 < d.

(iii) If c | a and c | b, then c | d (every common divisor divides d).
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Example 4.24. If a = 12 and b = 18, then the common divisors of
a and b are ±1, ±2, ±3, and ±6. The greatest common divisor is 6,
the unique positive divisor into which every other divisor divides, and
the largest of the divisors in the ordering of the integers.

Theorem 4.25. Let a and b be integers, not both zero.

(i) There exists a unique greatest common divisor gcd(a, b) of a and b.

(ii) gcd(a, b) is the smallest positive element of the set

〈a, b〉 = {ka+ `b : k, ` ∈ Z}

of integer linear combinations of a and b.

Proof. (Uniqueness). Suppose d and d′ both satisfy conditions (i)–(iii).
Since d′ divides both a and b, condition (iii) guarantees d′ |d. Reversing
the roles of d′ and d shows d | d′.

Now, two positive integers, each dividing the other, must be equal:
By hypothesis, there exist positive integers q1 and q2 such that d = d′q1
and d′ = dq2 = d′(q1q2), which implies q1q2 = 1. By Theorem 4.17,
q1 = 1, so d = d′.

(Existence). The set G = 〈a, b〉 is easily checked to be a subgroup
of (Z,+) and not equal to {0}. By Theorem 4.20, G contains a smallest
positive element d, and G = dZ is the set of multiples of d. It remains
to show that the integer d satisfies conditions (i)–(iii) of Definition 4.23.

(d is a common divisor of a and b). The integers a and b are elements
of G, so each is divisible by d. Property (ii), 0 < d, is immediate.

(Every common divisor of a and b divides d). If c | a and c | b, there
exist integers q1 and q2 such that a = cq1 and b = cq2. Substituting,

d = am+ bn = cq1m+ cq2n = c(q1m+ q2n),

which implies c | d.

Remark 4.26. Changing the sign of a and/or b has no effect on 〈a, b〉,
so gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) = gcd(a, b). In practice, we
may as well assume a and b are both non-negative.

Corollary 4.27. Let a and b be integers, b 6= 0. If a = bq + r, then
gcd(a, b) = gcd(b, r).
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Proof. It suffices to show 〈a, b〉 = 〈b, r〉 as sets.

(〈a, b〉 ⊆ 〈b, r〉). The general element of 〈a, b〉 is ak+b`. If a = bq+r,
then for arbitrary integers k and `,

ak + b` = (bq + r)k + b` = b(qk + `) + rk,

which is an element of 〈b, r〉.
(〈b, r〉 ⊆ 〈a, b〉). The general element of 〈b, r〉 is bm + rn. Since

a = bq + r, we have r = a− bq, so if m and n are arbitrary, then

bm+ rn = bm+ (a− bq)n = b(m− qn) + an,

which is in 〈a, b〉.
Since 〈a, b〉 = 〈b, r〉, these sets have the same smallest positive ele-

ment. Theorem 4.25 implies gcd(a, b) = gcd(b, r).

Euclid’s Algorithm

The “smallest positive linear combination” characterization of the gcd
leads to an efficient algorithm for computing gcd(a, b): Divide the
smaller number into the larger, take the remainder (if non-zero), and
repeat using the remainder and smaller divisor, stopping if the division
at some stage has remainder zero. This process must terminate after
finitely many steps, and the last non-zero remainder is the gcd. In
pseudocode, if 0 < b < a:

while (b != 0) // remainder is not zero

{

r := remainder(a, b) // a = n*b + r

a := b

b := r

}

return a; // gcd(a, b) = last non-zero remainder

Moreover, this algorithm allows us to construct integers m and n
such that gcd(a, b) = am + bn. (These integers are not unique!) Let’s
see how this works in practice before stating a formal theorem.

Example 4.28. Find d = gcd(68, 20), and write d as a linear combi-
nation of 68 and 20.
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Repeated long division gives

68 = 3 · 20 + 8,

20 = 2 · 8 + 4,

8 = 2 · 4 + 0.

Thus gcd(68, 20) = 4, the last non-zero remainder.

To write 4 in terms of 68 and 20, start with the second-to-last
equation just found, and substitute backward up the chain:

4 = 20− 2 · 8
= 20− 2 · (68− 3 · 20) = 20− 2 · 68 + 6 · 20

= 7 · 20− 2 · 68.

As a check, this reads 4 = 140− 136.

Theorem 4.29 (Euclid’s algorithm). Let 0 < b < a be integers, and
recursively define sequences of quotients and remainders as follows:

a = bq0 + r1, 0 ≤ r1 < b

b = r1q1 + r2, 0 ≤ r2 < r1

r1 = r2q2 + r3, 0 ≤ r3 < r2
...

rk = rk+1qk+1 + rk+2, 0 ≤ rk+2 < rk+1, etc.

If rn 6= 0 and rn+1 = 0, then rn = gcd(a, b).

Proof. Corollary 4.27 says that if a = bq+ r, then gcd(a, b) = gcd(b, r).
Applying this relationship to the lines of the algorithm in turn, we have

gcd(a, b) = gcd(b, r1) = gcd(r1, r2)

=
...

= gcd(rn−1, rn)

= gcd(rn, rn+1) = gcd(rn, 0).

For every positive integer c, gcd(c, 0) = c; thus gcd(a, b) = rn.
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Exercises

Exercise 4.1. In each part, integers a and b are given. Calculate
their gcd, and find integers m and n such that am+ bn = gcd(a, b).

(a) a = 16, b = 10. (b) a = 120, b = 75. (c) a = 121, b = −75.

Exercise 4.2. In each part, a denotes an integer satisfying an equation.
Solve for a, giving a proof based on the axioms and theorems in this
chapter.

(a) a2 = 1. (b) a3 = a. (c) a4 = 1.

Exercise 4.3. Let a and b be integers. Use the axioms to prove:

(a) (a− b)(a+ b) = a2 − b2.

(b) (a+ b)2 − (a− b)2 = 4ab.

(c) (a+ b)2 + (a− b)2 = 2(a2 + b2).

(d) Suppose a and b are not integers, but entities satisfying all the
additive and multiplicative axioms except the commutative law of
multiplication. (That is, suppose ba 6= ab in general.) Expand the
left-hand side of the identity in each of parts (a)–(c).

Exercise 4.4. An integer N is a square if there exists an integer n
such that N = n2. Prove that:

(a) Squares of consecutive integers differ by an odd integer.

(b) Every square leaves a remainder of 0 or 1 on division by 4.

(c) If m and n are integers, not both even, then n2 6= 2m2.

Exercise 4.5. Suppose n1 and n2 are integers that leave respective
remainders of r1 and r2 on division by 2.

(a) What remainder does n1 + n2 leave on division by 2?

(b) What remainder does n1n2 leave on division by 2?

(c) In each of the preceding parts, make a 2×2 table to list all possible
outcomes.



70 INTRODUCTION TO PROOFS

Exercise 4.6. Suppose n1 and n2 are integers that leave respective
remainders of r1 and r2 on division by 5. Describe the remainders left
by n1 + n2 and n1n2 on division by 5.

Exercise 4.7. In each part, let a, b, c, and d be integers.

(a) If a < b and c < d, then a+ c < b+ d.

(b) If 0 < a < b and 0 < c < d, then 0 < ac < bd.

Exercise 4.8. Let a and b be integers. Prove there exist integers u
and v such that u+ v = a and u− v = b if and only if a and b are both
even or both odd, and find formulas for u and v in terms of a and b.

Exercise 4.9. Let d1 and d2 be integers. Prove that d1 | d2 if and only
if d2Z ⊆ d1Z.

Exercise 4.10. Let a and b be non-zero integers, and letMab = 〈a〉∩〈b〉
be the set of common multiples of a and b.

(a) Prove Mab is a subgroup of (Z,+). The smallest positive element
lcm(a, b) of Mab is called the least common multiple of a and b.

(b) Give conditions analogous to those in Definition 4.23, and prove
lcm(a, b) is the unique integer satisfying these conditions.

(c) Prove that gcd(a, b) lcm(a, b) = ab.
Suggestion: First show that if m and d are positive integers with
ab = md, then d is a common divisor of a and b if and only if m is
a common multiple.

Exercise 4.11. In each part, integers a and b are given. Calculate
their lcm.

(a) a = 16, b = 10. (b) a = 120, b = 75. (c) a = 121, b = −75.

Exercise 4.12. The Fibonacci numbers are defined recursively by

F1 = F2 = 1, Fn+2 = Fn + Fn+1, n ≥ 1.

(a) Calculate the first twelve Fibonacci numbers.

(b) Show that Fn+2Fn−1 = F 2
n+1 − F 2

n for all n ≥ 2.

(c) Use induction to show gcd(Fn, Fn+1) = 1 for every n ≥ 1.



Chapter 5

Primes

5.1 Primes and Coprimality

Every integer a > 1 has at least two positive divisors: 1 and a itself.

Definition 5.1. An integer p > 1 is prime if its only positive divisors
are 1 and p. A non-prime integer n > 1 is composite.

Remark 5.2. The integer 1 is a unit, i.e., has a multiplicative inverse.
In this chapter, invertibility conveys special status on 1, neither prime
nor composite. Our goal is to factor composite integers uniquely into
primes. If 1 were prime, uniqueness would be lost; if 1 were composite,
existence of a factorization would be lost.

Example 5.3. The primes smaller than 20 are 2, 3, 5, 7, 11, 13, 17,
and 19. Of these, only 2 is prime immediately from the definition: The
only positive integers not exceeding 2 are 1 and 2, so 2 cannot have
positive divisors other than 1 and 2!

Remark 5.4. It was known to Euclid around 300 BCE that there are
infinitely many primes, a fact we prove below. At this writing, by
contrast, it is unknown whether or not there exist infinitely many twin
primes, pairs of primes differing by 2, such as 3 and 5 or 101 and 103.

In April 2013, Y. Zhang announced the existence of infinitely many
pairs of primes differing by no more than 70 million, the first “bounded
gap” result. By November 2013, J. Maynard had reduced the bound
to 600. By April 2014, the PolyMath project had reduced the bound
to 246, the best known bound at this writing (March 2017).
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The primes are the “multiplicative building blocks” of the positive
integers. This principle culminates in the “Fundamental Theorem of
Arithmetic”, Theorem 5.19 below. For now we are content to prove a
technical result, later carried to its logical conclusion.

Proposition 5.5. Let N ≥ 2 be an integer. There exists a prime p
such that p |N .

Proof. The proof proceeds by mathematical induction on the following
statement:

P (N): For every integer n with 2 ≤ n ≤ N , there exists a
prime p (depending on n) such that p | n.

Informally, P (5) says “Each of the integers 2, 3, 4, and 5 has a prime
factor”.

The statement P (2) is true; p = 2 is a divisor of N = 2. This
establishes the base case.

Assume inductively that P (k) is true for some k > 1, namely that
every integer n with 2 ≤ n ≤ k has a prime factor.

The integer k+1 > 1 is either prime or composite. If k+1 is prime,
then p = k+ 1 is a prime factor; together with P (k), this implies every
integer n with 2 ≤ n ≤ k + 1 has a prime factor, proving P (k + 1) in
this case.

On the other hand, if k+1 is composite, there exist integers n andm,
both greater than 1, such that k+1 = nm. It follows that 1 < n < k+1,
for if k+1 ≤ n, then (k+1)m ≤ nm = k+1, contrary to the inequality
1 < m. Since n < k+ 1, we have n ≤ k by Theorem 4.6 (iv). By P (k),
there exists a prime p such that p|n. Now, n|(k+1), so by Lemma 4.15,
p | (k + 1) as well. Thus k + 1 has a prime divisor, proving P (k + 1) in
this case.

Since P (2) is true and P (k) implies P (k+1) for each k ≥ 2, P (N) is
true for all N > 1 by the principle of mathematical induction.

Definition 5.6. Integers a and b are coprime if gcd(a, b) = 1.

Remark 5.7. By Theorem 4.25, a and b are coprime if and only if there
exist integers m and n such that am+ bn = 1.

Example 5.8. a = 14 = 2 · 7 and b = 15 = 3 · 5 are coprime.

Example 5.9. a = 111 = 3 · 37 and 768 = 28 · 3 are not coprime.
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Example 5.10. Among integers between 1 and 11 inclusive, 1, 5, 7,
and 11 are coprime to 12.

Proposition 5.11. If p is prime, then

(i) gcd(a, p) = p if and only if p | a.

(ii) gcd(a, p) = 1 if and only if p |/ a. In particular, if 0 < a < p, then
a is coprime to p.

Proof. (i) By definition, gcd(a, p) | a, so if gcd(a, p) = p, then p | a.
Conversely, if p | a, then gcd(a, p) = p since p | p always.
(ii) If p is prime and a is an arbitrary integer, then a priori gcd(a, p)

is either p or 1, since those are the only positive divisors of p. The
second assertion follows immediately from (i).

Theorem 5.12. Suppose gcd(a, b) = 1. If a | bc, then a | c.

Proof. By hypothesis, there exists an integer q such that aq = bc. Since
gcd(a, b) = 1, there exist integers m and n such that am + bn = 1.
Multiplying by c and substituting,

c = c(am+ bn) = acm+ (bc)n = acm+ (aq)n = a(cm+ qn).

But since cm+ qn is an integer, a | c.

Theorem 5.13 (Euclid’s lemma). Let a and b be integers. If p is prime
and p | ab, then p | a or p | b.

Proof. If p | a there is nothing to prove. Otherwise, gcd(a, p) = 1 by
Proposition 5.11, so p | b by Theorem 5.12.

Corollary 5.14. If a1, . . . , an are integers, p is prime, and p|a1a2 . . . an,
then there exists an index i such that p | ai.

Proof. The corollary follows by mathematical induction on the number
of factors. Euclid’s lemma is the base case, for two factors. The details
are left as an exercise.

Remark 5.15. The hypothesis of coprimality cannot be dropped in The-
orem 5.12: If a = 6, b = 4, and p = 12, then p | ab, but p |/ a and p |/ b.

Of course, each prime factor of 12, namely 2 or 3, is a divisor of
either a or b (or both), in accordance with Corollary 5.14.
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5.2 Prime Factorization

We are aiming for the Fundamental Theorem of Arithmetic: Every
integer greater than 1 factors “uniquely” into primes.

The word “uniquely” requires explanation here. The integer n = 60
factors as p1p2p3p4 = 2 · 2 · 3 · 5, a product of four factors. Since
multiplication is commutative, an arbitrary ordering of the same factors
gives the same value for the product. Technically, however, p1p2p3p4
and p2p1p3p4 are “distinct products” (since the factors occur in different
orders), even though they are identical as products of integers (because
p1 = p2).

To avoid this purely linguistic issue, let us agree to organize products
of primes so that (i) all occurrences of a given prime are gathered into
a single prime power, and (ii) these prime powers are listed with the
primes in increasing order.

We say that a product of prime powers satisfying (i) and (ii) is in
standard form. Symbolically, a product of prime powers

N = pν11 p
ν2
2 · · · pνmm =

m∏

i=1

pνii , νi > 0 for i = 1, . . . , m,

is in standard form if p1 < p2 < · · · < pm. To say the integer N factors
“uniquely” into primes means any two representations of N as products
of primes have identical standard forms.

Example 5.16. The products 60 = 22 · 3 · 5 and 2352 = 24 · 3 · 72 are
in standard form, while 2 · 2 · 3 · 5 (condition (i) unmet) and 3 · 22 · 5
(condition (ii) unmet) are not.

The proof of the Fundamental Theorem is broken into “existence”
and “uniqueness”, since the required techniques are so different.

Theorem 5.17 (Existence of prime factorizations). For every integer
N ≥ 2, there exist primes p1 < p2 < · · · < pm and positive integers
ν1, ν2, . . . , νm such that

N = pν11 p
ν2
2 · · · pνmm =

m∏

i=1

pνii .

Briefly, every integer N ≥ 2 factors into primes.
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Proof. The proof proceeds by mathematical induction on the following
statement:

P (N) For every integer n with 2 ≤ n ≤ N , n factors into primes.

For example, P (4) asserts “2, 3, and 4 all factor into primes”.
The statement P (2), “2 factors into primes”, is true because 2 is

prime. This establishes the base case.
Assume inductively that P (k) is true for some k ≥ 2, that is, every

integer n with 2 ≤ n ≤ k factors into primes. We wish to show that
(k + 1) factors into primes, so that every integer n with 2 ≤ n ≤ k + 1
factors into primes.

By Proposition 5.5, k+1 has a prime divisor p. That is, there exists
an integer q, 1 ≤ q ≤ k, such that (k + 1) = pq.

If q = 1, then k+1 = p is itself prime. Otherwise, we have 2 ≤ q ≤ k,
so q factors into primes by the inductive hypothesis. Since p is prime,
k + 1 itself factors into primes.

In either case, P (k) implies P (k + 1) for arbitrary k ≥ 2, so by the
principle of mathematical induction, P (N) is true for all N ≥ 2.

Theorem 5.18 (Uniqueness of prime factorization). Suppose there ex-
ist primes p1 < p2 < · · · < pm and q1 < q2 < · · · < q`, and there exist
positive integers ν1, ν2, . . . , νm and µ1, µ2, . . . , µ`, such that

pν11 p
ν2
2 · · · pνmm = qµ11 qµ22 · · · q

µ`
` .

Then ` = m, and for all i = 1, . . . , m, we have pi = qi and νi = µi.

Proof. The proof is an increasingly-familiar refrain: Proceed by induc-
tion on the statement

P (N)
For every integer n with 2 ≤ n ≤ N , n has a unique
prime factorization (in standard form).

A complete proof is left as an exercise, but here is the key step: Assume
inductively that every integer n, 2 ≤ n ≤ k, factors uniquely into
primes, and suppose

k + 1 = pν11 p
ν2
2 · · · pνmm = qµ11 qµ22 · · · q

µ`
` .

Consider the smallest prime factors p1 and q1 in the respective prod-
ucts. If p1 < q1, then p1 < qi for all i (the prime factors are listed in
increasing order). However, Corollary 5.14 implies p1 |qi for some i, i.e.,
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qi is not prime. Contrapositively, if the qi are all prime, then q1 ≤ p1.
A similar argument proves p1 ≤ q1; thus p1 = q1.

Writing k + 1 = np1 and cancelling p1 = q1 from the prime factor-
ization of k + 1 gives

pν1−11 pν22 · · · pνmm = qµ1−11 qµ22 · · · q
µ`
` = n ≤ k.

By the inductive hypothesis, these factorizations are identical, so the
factorizations of k + 1 are identical as well.

Respectively, Theorems 5.17 and 5.18 establish the the existence
and uniqueness portions of the following basic result.

Theorem 5.19 (The Fundamental Theorem of Arithmetic). Let N ≥ 2
be an integer. There exist primes p1 < p2 < · · · < pm and positive
integers ν1, ν2, . . . , νm, uniquely defined by N , such that

N = pν11 p
ν2
2 · · · pνmm =

m∏

i=1

pνii .

Applications of the Fundamental Theorem

Among the many applications of the Fundamental Theorem of Arith-
metic is Euclid’s theorem on the infinitude of primes.

Theorem 5.20. There exist infinitely many primes.

Proof. Let S = {p1, . . . , pn} be an arbitrary finite collection of primes,
and let N = p1p2 · · · pn + 1. By the Fundamental Theorem of Arith-
metic, N can be factored into primes. However, no prime factor of N
is an element of S, since by construction N leaves a remainder of 1 on
division by each element of S. It follows that there exists a prime not
in S, which means S is not the set of all primes. Since S was arbitrary,
the set of primes is not finite.

Theorem 5.21. Let p1 < p2 < · · · < pm be primes. If

N = pν11 p
ν2
2 · · · pνmm =

m∏

i=1

pνii , νi > 0 for i = 1, . . . , m,

then the divisors of N are precisely the integers expressible in the form

a = pµ11 p
µ2
2 · · · pµmm =

m∏

i=1

pµii , 0 ≤ µi ≤ νi for i = 1, . . . , m.
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Corollary 5.22. With notation as in the theorem, N has exactly

(ν1 + 1)(ν2 + 1) · · · (νm + 1)

positive divisors.

Example 5.23. The integer 18 = 2 · 32 has exactly (1 + 1)(2 + 1) = 6
positive divisors. These can be listed by finding all ordered pairs of
non-negative exponents (µ1, µ2) with µ1 ≤ 1 and µ2 ≤ 2:

(µ1, µ2) : (0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)
2µ1 · 3µ2 : 1 2 3 6 9 18

Example 5.24. 26000 = 24 · 53 · 13 has (4 + 1)(3 + 1)(1 + 1) = 40
positive divisors.

Example 5.25 (The Sieve of Eratosthenes). To list all primes between
2 and N , it suffices to list the integers from 2 to N , then to perform
the following recursive procedure: Circle the first number in the list, 2,
then sieve by 2: Cross out every other number starting from 2.

Next, circle the first remaining number, 3, and sieve by 3: Cross out
every third number (some of which have already been crossed out).

Repeat, circling the first remaining number p (which is prime) and
sieving by p (crossing out non-trivial multiples of p). When this proce-
dure terminates, all the circled numbers are prime, Exercise 5.11. For
instance, the primes smaller than 16 are

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Example 5.26. Let p1 < p2 < p3 < . . . be the listing of all primes,
taken in increasing order. To each sequence (m1,m2,m3, . . . ) of non-
negative integers with at most finitely many non-zero terms, associate
the positive integer

N =
∞∏

i=1

pmi
i .

The product has only finitely many factors different from 1, so may be
viewed as a finite product.

By the Fundamental Theorem of Arithmetic, the mapping f from
the set of sequences of non-negative exponents to the positive integers
is a bijection!
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The mapping f satisfies a property reminiscent of the law of ex-
ponents: If m = (m1,m2, . . . ) and m′ = (m′1,m

′
2, . . . ) are sequences,

then
f(m + m′) = f(m) · f(m′).

In principle, one can find the gcd of a and b by finding the associated
sequences of exponents, taking the smaller exponent for each prime, and
forming the resulting number. Analogously, the lcm is found by taking
the larger exponent for each prime. For example,

120 = 23 · 31 · 51 · 70 ↔ (3, 1, 1, 0, . . . )

126 = 21 · 32 · 50 · 71 ↔ (1, 2, 0, 1, . . . )

gcd(120, 126) = 21 · 31 · 50 · 70 ↔ (1, 1, 0, 0, . . . )

lcm(120, 126) = 23 · 32 · 51 · 71 ↔ (3, 2, 1, 1, . . . ).

This gives a second proof that gcd(a, b) lcm(a, b) = ab, see Exercise 4.10.
In practice, using prime factorization to find greatest common di-

visors is monumentally inefficient, while Theorem 4.29 (Euclid’s al-
gorithm) is computationally feasible for any integers small enough to
represent conveniently in binary (millions of digits, say).

Exercises

Exercise 5.1. (a) Factor 2754 into primes, and determine the number
of positive divisors.

(b) Factor 20400 into primes, and determine the number of positive
divisors.

(c) Use the results of parts (a) and (b) to find the prime factorizations
of gcd(2754, 20400) and lcm(2754, 20400).

Exercise 5.2. Prove Corollary 5.14.

Exercise 5.3. Prove Theorem 5.18.

Exercise 5.4. Pick an arbitrary three-digit number and write it down
twice. Divide this integer by 7, then divide by 11, and finally divide
by 13. The final quotient is the original number.

For example, starting with 456 yields, successively,

456456
÷7−→ 65208

÷11−→ 5928
÷13−→ 456.

(a) Explain why this trick works.
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(b) Give the details of the analogous trick if a two-digit number is
written down three times, as in 424242.

Exercise 5.5. (a) Prove an integer N is divisible by 4 if and only if
the number comprising the last two digits of N is divisible by 4.

(b) Prove an integer is divisible by 8 if and only if the number com-
prising the last three digits is divisible by 8.

Exercise 5.6. Prove an integer is divisible by 9 if and only if the sum
of its digits is divisible by 9.
Hint: If N = an . . . a3a2a1 is the decimal representation of N , then

N = a1 + 10 a2 + 100 a3 + · · ·+ 10n−1an =
n∑

k=1

ak10k−1,

while the sum of the digits is

S = a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak.

What can you say about N − S?

Exercise 5.7. Let Z/7Z = {0, 1, 2, 3, 4, 5, 6}, and define a “multipli-
cation operation” on Z/7Z by defining a · b to be the remainder of the
ordinary product ab on division by 7. For example, 5×6 = 30 = 4×7+2,
so 5 · 6 = 2.

Make a multiplication table for this operation, and show that for
each non-zero a, there exists a b such that a · b = 1.

Exercise 5.8. Let p be a prime, Z/pZ = {0, 1, 2, . . . , p − 1}, and de-
fine a “multiplication operation” on Z/pZ by defining a · b to be the
remainder of the ordinary product ab on division by p. (Compare the
preceding exercise.)

(a) Show that if a is non-zero, there exists a b such that a · b = 1.
Hint: a · b = 1 if and only if there exists an integer n such that
ab = np+ 1 as integers.

(b) Show that (Z/pZ)×, the set of non-zero elements of Z/pZ, is closed
under ·.
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Exercise 5.9. Let p be a prime. Prove that (p−1)! leaves a remainder
of p− 1 on division by p.
Hints: In the product (p − 1)!, use the preceding exercise to pair up
elements who product leaves a remainder of 1 on division by p. Handle
the case p = 2 separately.

Exercise 5.10. Let N ≥ 2 be an integer. Prove that if N is not prime,
then there exists a divisor m such that m2 ≤ N .

Exercise 5.11. Referring to the Sieve of Eratosthenes, Example 5.25:

(a) Show the sieving procedure terminates in finitely many steps, and
that all circled numbers are prime.

(b) Show that if p is the first uncircled number, and N < p2, then
every remaining uncircled number is prime.
Hint: Use the preceding exercise.

(c) Use the Sieve of Eratosthenes to find all primes less than 100.
(There are 25 of them, and you may have to sieve fewer times than
you first expect.)

Exercise 5.12. Find all primes p such that p + 2 and p + 4 are also
prime.

Exercise 5.13. Let N be an integer greater than 1.

(a) Prove that if N is composite, there exists a divisor k of N such
that k2 ≤ N .

(b) Prove that if 2 ≤ N ≤ 120, and if N is not divisible by any of
2, 3, 5, or 7, then N is prime.

Exercise 5.14. Recall that 10! = 3 628 800 ends with two 0’s, while
15! = 1 307 674 368 000 ends with three 0’s. Without using a computer,
determine the number of 0’s at the end of 1000! (the factorial of 1000).

Exercise 5.15. Determine (with proof) the number of primes in the
sequence 101, 10101, 1010101, . . . .

Exercise 5.16. Let N be a positive integer. Prove there exist N con-
secutive composite integers.



Chapter 6

Residue Classes

This chapter constructs and studies a new type of “number system”
sharing many properties with the integers, but containing only finitely
many elements.

6.1 Congruence (modn)

Fix a positive integer n. For each integer a, the division algorithm
(Theorem 4.8) says there exist unique integers q and r such that a =
nq+r and 0 ≤ r < n. The concept of even and odd integers generalizes
usefully if we sort integers by their remainder r on division by n.

Definition 6.1. Fix a positive integer n. Two integers a and b are
congruent (modn), denoted a ≡ b (mod n), if a and b leave the same
remainder on division by n.

If a = nq + r with 0 ≤ r < n, the set [a] = nZ + r of integers
congruent to a (modn) is called the residue class of a (modn).

Lemma 6.2. Integers a and b are congruent (modn) if and only if
n | (b− a).

Proof. Use Theorem 4.8 to write a = nq1 + r1 and b = nq2 + r2;

b− a = (nq2 + r2)− (nq1 + r1) = n(q2 − q1) + (r2 − r1),

so n | (b− a) if and only if n | (r2 − r1).
Since 0 ≤ r1, r2 < n, we have −n < −r1 ≤ r2 − r1 ≤ r2 < n.

Consequently, n | (r2− r1) if and only if r2− r1 = 0, if and only if a ≡ b
(modn).

81
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Remark 6.3. Let n be a positive integer. Every integer is congru-
ent (modn) to precisely one integer r with 0 ≤ r < n. That is, the
residue classes [0], [1], . . . , [n − 1] form a partition of Z. The set of
residue classes (modn) is denoted Z/nZ.

Example 6.4. Equivalence classes mod n and their arithmetic are
implicitly familiar. Since there are 12 hours in one turn of a clock,
time-keeping works mod 12. At an early age, you learned that six
hours after 7 o’clock is 1 o’clock, or that five hours before 3 o’clock is
10 o’clock. For military time, you’d work mod 24 instead, but the idea
is the same.

Example 6.5. Days of the week are reckoned mod 7. The labels are
not integers, of course, but names: {Sunday,Monday, . . . , Saturday}.

Example 6.6. Angular measurements in degrees are made mod 360,
because there are 360 degrees in one full turn of a circle. Angles of 270,
630, and −90 degrees represent the same geometric quantity.

Example 6.7. Moving from the sublime to the ridiculous, a cartoon
character (usually the cat in a cat-and-mouse conflict) will sometimes
acquire amnesia when given a sharp blow on the head. The cure, as
everyone knows, is a second blow. The cat’s state of mental health (am-
nesiac or cured) represents the number of cranial blows mod 2 the cat
has received. The concept is so simple even young children understand
it perfectly.

Equivalence classes mod n may be visualized in at least two useful
ways. The first is the “clock” picture of the set Z/nZ of equivalence

[0]

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

Figure 6.1: The set Z/12Z of residue classes mod 12.



CHAPTER 6. RESIDUE CLASSES 83

classes mod n, which may be drawn as a set of n equally-spaced points
on a circle. The case n = 12, Figure 6.1 is essentially an ordinary
analog clock, though by convention we place [0] at the rightmost posi-
tion and label counterclockwise, ending with the class [n−1] one space
clockwise from [0]. This picture emphasizes the “cyclical” nature of
residue classes. Adding 1 corresponds to traveling counterclockwise by
one space. Adding n travels one full revolution, returning to the same
residue class.

The second picture is the “unwrapping” of the clock onto a number
line. For this, choose n distinct symbols, such as [0], [1], . . . , [n−1], and
use these to label integer points on a numbers line.

−6

[4]

−5

[0]

−4

[1]

−3

[2]

−2

[3]

−1

[4]

0

[0]

1

[1]

2

[2]

3

[3]

4

[4]

5

[0]

6

[1]

7

[2]

8

[3]

9

[4]

Figure 6.2: Residue classes mod 5 on the number line.

Modular Arithmetic

Timekeeping intuition suggests two residue classes can be added using
[a] + [b] = [a + b]. This formula hides a subtlety: We might have
[a′] = [a] with a′ 6= a and [b′] = [b] with b′ 6= b, and must check that
[a′+ b′] = [a+ b] before assuming the sum of two classes is well-defined.

Theorem 6.8. Fix n > 0. Let a, a′, b, and b′ be integers such that
a ≡ a′ (mod n) and b ≡ b′ (mod n), and let [a] = [a′] and [b] = [b′]
denote their residue classes mod n. Then

(i) a+ b ≡ a′ + b′ (mod n), i.e., [a+ b] = [a′ + b′].

(ii) ab ≡ a′b′ (mod n), i.e., [ab] = [a′b′].

The theorem is straightforward to prove directly, but breaking the
proof into slightly smaller steps clarifies the main idea.

Lemma 6.9. Let a, a′, and c be integers. If a ≡ a′ (mod n), then
a+ c ≡ a′ + c (mod n) and ac ≡ a′c (mod n).

Proof. By definition, a ≡ a′ if and only if n | (a′ − a).
Since a′ − a = (a′ + c) − (a + c), we have a ≡ a′ if and only if

n | (a′ − a) = (a′ + c)− (a+ c), if and only if a+ c ≡ a′ + c.
Further, if n | (a′−a), then n | (a′−a)c = a′c−ac, i.e., ac ≡ a′c.
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Proof of theorem. Let a, a′, b, b′ be integers such that a ≡ a′ (mod n)
and b ≡ b′ (mod n). Then

a+ b ≡ a′ + b (mod n) Lemma 6.9 with c = b

≡ a′ + b′ (mod n) Lemma 6.9 with c = a′.

The proof for products is identical: ab ≡ a′b ≡ a′b′ (mod n).

Remark 6.10. If a 6≡ 0 (mod n) and ab ≡ ac (mod n), it is not valid
to deduce b ≡ c; the law of cancellation does not generally hold mod n.
For example, 2 · 3 ≡ 2 · 0 (mod 6), but even though 2 6≡ 0 (mod 6), it
is not true that 3 ≡ 0 (mod 6).

Theorem 6.8 allows us to perform arithmetic with residue classes
(almost) as if they were integers. Because there are only finitely many
residue classes, we can (for small n) represent addition and multipli-
cation (modn) with a Cayley table. List the residue classes [a] in a
column on the left, list the residue classes [b] in a row across the top,
and place the sum or product in the corresponding table entry.

Example 6.11. The tables for addition and multiplication mod 5 are

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

· [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

Each residue class appears exactly once in each row and column of the
addition table. This signifies a cancellation law: If [a] + [c] = [b] + [c],
then [a] = [b]. This cancellation occurs for all n, not just n = 5.

The analogous phenomenon occurs with non-zero classes mod 5
under multiplication: If [a][c] = [b][c] with [a], [b], and [c] not equal
to [0] (mod 5), then [a] = [b]. This phenomenon is not general. We
will see shortly that cancellation for multiplication by an arbitrary non-
zero class (modn) occurs if and only if n is prime.

Example 6.12. The tables for addition and multiplication mod 4 are

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

· [0] [1] [2] [3]

[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]
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Example 6.13. To “solve” the congruence 67x ≡ 54 (mod 5) is to
find an integer x such that 67x leaves the same remainder as 54 on
division by 5. With the help of Theorem 6.8, we may reduce 54 and 67
(mod 5), recasting the question in the simpler form 2x ≡ 4 (mod 5).
By inspection, x = 2 is a solution.

Remark 6.14. Generally, when solving ax ≡ b (mod n), the coefficients
a and b may be reduced mod n and the resulting congruence is equiv-
alent to the original.

Example 6.15. Consider the problem of simplifying 42000 (mod 63).
The naive approach of calculating 42000 (a number of over 1200 digits),
then dividing by 63 and taking the remainder, is prohibitively complex.
By the second part of Theorem 6.8, however, we may instead compute
successive powers of 4, reducing mod 63 each time a running product
exceeds 63.

Even this is prohibitive if carried out mechanically, but we can do
better still. Indeed, 43 = 64 ≡ 1 (mod 63), so 43q = (43)q ≡ 1q ≡ 1
(mod 63) for all q. The preferred strategy, therefore, is to divide the
original exponent 2000 by 3. Writing 2000 = 3 · 666 + 2, we have

42000 = 43·666+2 = (43)666 · 42 ≡ 42 ≡ 16 (mod 63).

The remainder in question is 16.

Example 6.16. The same idea can be used to compute products
mod n. Consider, for example,

10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 (mod 11).

Judiciously gathering factors in pairs and reducing mod 11, 10 ≡ −1,
9 · 6 = 54 ≡ −1, 8 · 7 = 56 ≡ 1, 5 · 2 = 10 ≡ −1, and 4 · 3 = 12 ≡ 1.
Consequently,

10! ≡ (−1)(−1)(1)(−1)(1) = −1 (mod 11)

by the second part of the theorem. Compare Exercise 5.9.

6.2 Multiplicative Inverses in Z/nZ

Fix an integer n ≥ 2, and let Z/nZ be the set of residue classes mod n:

Z/nZ = {[0], [1], . . . , [n− 1] = [−1]}.
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By Theorem 6.8, there exist well-defined operations + and · on Z/nZ
satisfying

[a] + [b] = [a+ b], [a] · [b] = [a · b]
for all integers a and b. These operations are both associative and
commutative, since the corresponding integer operations enjoy these
properties. For example, if a, b, and c are integers, then

(
[a] + [b]

)
+ [c] = [a+ b] + [c]

=
[
(a+ b) + c

]

=
[
a+ (b+ c)

]

= [a] + [b+ c] = [a] +
(
[b] + [c]

)
.

Replacing each “+” by ”·” proves multiplication is associative. An
entirely similar argument shows multiplication distributes over addi-
tion. Each operation has an identity element. The residue class [0] is
an identity element for addition, while [1] is an identity element for
multiplication.

Up to this point, the structures (Z/nZ,+) and (Z/nZ, ·) have com-
pletely parallel properties. When we ask about inverses, however, the
stories quickly diverge. Under addition, matters are trivial: Every ele-
ment [a] of Z/nZ has an additive inverse, −[a] = [n−a]. Multiplicative
inverses, by contrast, do not always exist.

Definition 6.17. A residue class [a] is invertible in Z/nZ if there exists
a class [x] such that [a][x] = [1]. The class [x] is the inverse of [a]
in Z/nZ.

Remark 6.18. Applied to residue classes in Z/nZ, the term “invertible”
always refers to multiplication. The additive inverse of a residue class
is its negative.

Example 6.19. In Z/7Z, [2][4] = [1], so [2] and [4] are invertible
in Z/7Z, and each is the inverse of the other.

Similarly, [3][5] = [1], so [3] and [5] are invertible in Z/7Z, and each
is the inverse of the other.

The class [6] = [−1] is its own inverse.

Example 6.20. The class [0] is never invertible in Z/nZ: For every
integer x, [0][x] = [0] 6= [1].

In Z/6Z, the classes [2], [3], and [4] are not invertible.



CHAPTER 6. RESIDUE CLASSES 87

Definition 6.21. An invertible class [a] in Z/nZ is a unit (mod n).
The set of units (mod n) is denoted (Z/nZ)×.

Proposition 6.22. Let n > 1. If [a] and [b] are invertible classes in
Z/nZ, then [a]−1 and [a][b] are invertible in Z/nZ. That is, (Z/nZ)×

is closed under multiplication and under inversion.

Proof. Let [a] in Z/nZ be invertible. The condition [x] = [a]−1 says
[a][x] = [1]. The relationship between an invertible class and its inverse
is reciprocal, in the sense that [x] = [a]−1 if and only if [x]−1 = [a].
Particularly, the inverse of [a] is invertible.

Further, if [b] is invertible with [y] = [b]−1, then

(
[a][b]

)(
[y][x]

)
= [a]

(
[b][y]

)
[x] = [a][1][x] = [a][x] = [1].

This means the class [a][b] is invertible in Z/nZ, and its inverse is the
product (in either order) of the inverses of [a] and [b].

Theorem 6.23. If a is an integer, the residue class [a] is invertible
in Z/nZ if and only if gcd(a, n) = 1.

Proof. By definition, [a] is invertible in Z/nZ if and only if there exists
an integer x such that [a][x] = [1], namely, ax ≡ 1 (mod n). This holds
if and only if there exist integers x and y such that ax+ ny = 1, if and
only if gcd(a, n) = 1, see Theorem 4.25.

Corollary 6.24. If p is prime and [a] is non-zero in Z/pZ, then [a] is
invertible. That is, (Z/pZ)× = Z/pZ \ {[0]}.

Proof. By Proposition 5.11, if a is an integer, then gcd(a, p) = p if and
only if p | a, and gcd(a, p) = 1 otherwise.

Corollary 6.25. The residue class [a] is invertible in Z/nZ if and only
if [−a] = [n− a] is invertible in Z/nZ.

Proof. By Remark 4.26, gcd(−a, n) = gcd(a, n).

Example 6.26. We have (Z/12Z)× = {[1], [5], [7], [11]}. Invertible
classes occur in pairs of the form [a] and [−a], as guaranteed by Corol-
lary 6.25. Since [1]2 = [1] and [5]2 = [1], we have [7]2 = [−5]2 = [1] and
[11]2 = [−1]2 = [1].
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Example 6.27. Since 14 = 2 · 7, we have

(Z/14Z)× = {[1], [3], [5], [9], [11], [13]} = {[1], [3], [5], [−5], [−3], [−1]}.
Successive multiplication gives

[3]2 = [9] = [−5], [3]4 = [−3] = [11],

[3]3 = [−15] = [−1], [3]5 = [−9] = [5],

and finally [3]6 = [3]0 = [1].
A more sensible ordering for the elements of (Z/7Z)× is therefore

{[3]0, [3], [3]2, [3]3, [3]4, [3]5} = {[1], [3], [9], [13], [11], [5]}. The multipli-
cation table can be worked out from the law of exponents. For example,
since [11] = [3]4, we have [11]2 = [3]8 = [3]6 · [3]2 = [9].

Example 6.28. Since 30 = 2 · 3 · 5, we have

(Z/30Z)× = {[1], [7], [11], [13], [17], [19], [23], [29]}.
To study multiplication in ((Z/30Z)×, ·), we can pair off elements and
their negatives to avoid multiplying numbers of absolute value greater
than 30/2 = 15, i.e., without computing products larger than 132 =
169.

Direct calculation gives [7]2 = [19], [11]2 = [1], and [13]2 = [19]. It
follows immediately that

[23]2 = [−7]2 = [19], [19]2 = [−11]2 = [1], [17]2 = [−13]2 = [19].

Putting these conclusions together, [7]4 = [19]2 = [1], [13]4 = [1],
[17]4 = [1], and [23]4 = [1].

Each [x] satisfying [x]2 = [1] is its own inverse. To invert elements
satisfying [x]4 = [1], argue as follows:

[7]−1 = [7]3 = [19][7] = [−11][7] = [−17] = [13].

The inverses of the other elements may be deduced with no additional
effort:

[13]−1 = [7], [17]−1 = [−13]−1 = [−7] = [23], [23]−1 = [17].

There is no ordering of the elements analogous to the preceding
example, because no single residue class “generates” the set of units
(mod 30). We might instead choose
{

[1], [7], [7]2, [7]3,

[11], [7][11], [7]2[11], [7]3[11]

}
=

{
[1], [7], [19], [13],

[11], [17], [29], [23]

}
.
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For larger n, it may be inconvenient to list the elements of (Z/nZ)×.
Nonetheless, we can easily test individual residue classes for member-
ship, and can calculate inverses using the Euclidean algorithm.

Example 6.29. Determine whether the following residue classes are
invertible in Z/105Z, and if so find the inverse.

[51]: By the Euclidean algorithm,

105 = 2 · 51 + 3

51 = 17 · 3 + 0,

so gcd(105, 51) = 3 6= 1. Thus [51] is not invertible in Z/105Z.
[32]: The Euclidean algorithm gives

105 = 3 · 32 + 9

32 = 3 · 9 + 5

9 = 1 · 5 + 4

5 = 1 · 4 + 1.

Thus gcd(105, 32) = 1, so [32] is invertible in Z/105Z. To find the
inverse, write 1 as a linear combination of 105 and 32:

1 = 5− 4

= 5− (9− 5) = 2 · 5− 9

= 2 · (32− 3 · 9)− 9 = 2 · 32− 7 · 9
= 2 · 32− 7 · (105− 3 · 32) = 23 · 32− 7 · 105.

Reducing (mod 105), [23][32] = [1], or [32]−1 = [23].

Zero Divisors

As noted earlier, [0] never has a multiplicative inverse in Z/nZ. To
characterize non-invertible elements generally, we introduce the follow-
ing definition.

Definition 6.30. A residue class [a] in Z/nZ is a zero divisor if there
exists a non-zero class [b] such that [a][b] = [0].

Theorem 6.31. The class [a] in Z/nZ is a zero divisor if and only if
gcd(a, n) > 1.
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Remark 6.32. Combining with Theorem 6.23, each class [a] in Z/nZ is
either invertible or a zero divisor, but not both.

Proof. (If [a] is a zero divisor, then gcd(a, n) > 1). Contrapositively,
suppose d = gcd(a, n) = 1, and that [a][b] = [0] for some [b]. We
want to show [b] = [0], which will prove [a] is not a zero divisor. By
Theorem 6.23, the class [a] is invertible in Z/nZ, so there exists an [x]
with [x][a] = [1]. Multiplying [a][b] = [0] by [x] on the left,

[0] = [x][0] = [x]
(
[a][b]

)
=
(
[x][a]

)
[b] = [1][b] = [b].

(If gcd(a, n) > 1, then [a] is a zero divisor). Suppose gcd(a, n) > 1.
If a ≡ 0 (mod n), namely if [a] = [0], there is nothing to prove. Oth-
erwise, we may divide a and n by d = gcd(a, n) and deduce there exist
non-zero integers a′ and n′ such that a = da′ and n = dn′. Since 1 < d,
we have n′ < n, which implies [n′] 6= [0] in Z/nZ. Since

[a][n′] = [(a′d)n′] = [a′(dn′)] = [a′n] = [0],

[a] is a zero divisor in Z/nZ.

Example 6.33. It may help to follow the preceding proof with specific
numbers. Let n = 8 and a = 6. Here, d = gcd(6, 8) = 2, so a′ = a/2 = 3
and n′ = n/2 = 4. As expected, [a][n′] = [6][4] = [0] in Z/8Z, which
proves [a] = [6] is a zero divisor.

The dichotomy between units and zero divisors has a pleasant ge-
ometric interpretation. View Z/nZ as a set of n evenly-spaced points
on a circle. To determine whether a residue class [a] is a unit or zero
divisor, place a pencil at [0] and count off a spaces at a time around
the circle, joining successive values with line segments, Figure 6.3. The
corners on this “multiplication diagram” correspond to classes [k] such
that [a][x] = [k] has a solution [x] in Z/nZ.

Algebraically, ax ≡ k (mod n) if and only if there exists an integer y
with ax + ny = k. Geometrically, ax = k is the location reached by
counting off a spaces x times. Adding or subtracting an integer multiple
of n corresponds to discarding traversals of the entire circle, which have
no effect on the location of a corner.

By Theorem 4.25, there exist integers x and y with ax + ny = k
if and only if gcd(a, n) | k. In other words, consecutive corners on the
diagram are separated by gcd(a, n) spaces in Z/nZ, and the number of
corners in the diagram is n/ gcd(a, n).
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Figure 6.3: Multiplication diagrams for [2], [3], [4], and [5] in Z/12Z.

The dichotomy implied by Theorems 6.23 and 6.31 is: [a] is a unit
in Z/nZ if and only if gcd(a, n) = 1, if and only if there are no “gaps”
between consecutive corners, if and only if the multiplication diagram
touches each element of Z/nZ.

This mathematics is the basis of the ingenious toy Spirograph, which
consists of circular plastic rings of inner circumference n and disk-
shaped gears of varying circumference a, Figure 6.4. Both the rings

Figure 6.4: Spirograph; a 36-tooth gear in a 96-tooth ring.
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and gears have teeth to ensure the gears roll without slipping. The
gears have holes through which a pen fits. By tacking the ring to
a sheet of paper and rolling a gear around the inside of a ring until
the pattern closes, you produce smooth mathematical curves having
the overall geometry of the multiplication diagram for [a] in Z/nZ.
See also http://mathcs.holycross.edu/~ahwang/teach/software/

Pirouette/index.html

Example 6.34. In Figure 6.4, n = 96 = 8 · 12 and a = 36 = 3 · 12.
Since gcd(36, 96) = 12, there are 12 teeth between consecutive points
of the pattern, and the pattern has 96/12 = 8 points.

Counting by 36 (mod 96), we obtain 0, 36, 72, 12, 48, 84, 24, 60 in
succession before returning to 0. These numbers are precisely the mul-
tiples of 12 (mod 96) listed in the order they’re visited when following
the Spirograph pattern.

6.3 Linear Congruences

Example 6.13 introduced a simple linear congruence and solved it by
essentially ad hoc tricks. We now have the algebraic tools to solve the
general linear congruence

(6.1) ax ≡ b (mod n),

in which a, b, and n are given and x is unknown.

Theorem 6.35. Let a, n, and b be integers.

(i) If gcd(a, n) |/ b, then (6.1) has no solution in Z/nZ.

(ii) If gcd(a, n) = 1, then (6.1) has a unique solution in Z/nZ.

(iii) If gcd(a, n)|b, then (6.1) has precisely gcd(a, n) solutions in Z/nZ.

Proof. (i) Assume contrapositively that ax ≡ b (mod n) has a solution.
There exists an integer y such that ax = b + ny, or ax− ny = b. This
expresses b as a linear combination of a and n. By Theorem 4.25,
gcd(a, n) | b.

(ii) Assume gcd(a, n) = 1. We must prove (6.1) has a solution
(existence), and any two solutions are equal (uniqueness).

We construct a solution of (6.1). There exist integers s and t such
that as + nt = 1. Multiply by b to get a(sb) + n(tb) = b. Setting

http://mathcs.holycross.edu/~ahwang/teach/software/Pirouette/index.html
http://mathcs.holycross.edu/~ahwang/teach/software/Pirouette/index.html
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x = sb, the preceding equation says ax ≡ b (mod n). This establishes
existence.

Still assuming gcd(a, n) = 1, if x1 and x2 are solutions of (6.1),
then ax1 ≡ b and ax2 ≡ b. Subtracting, a(x1 − x2) ≡ 0 (mod n), or
n | a(x1 − x2). Since gcd(a, n) = 1, Theorem 5.12 implies n | (x1 − x2),
so x1 ≡ x2 (mod n). This proves uniqueness of solutions mod n.

(iii) For convenience, write d = gcd(a, n). By Theorem 4.25, there
exist integers s and t such that as + nt = d, and there exist integers
a′ and n′ such that a = a′d and n = n′d. Further, if d | b, there exists
an integer b′ such that b = b′d.

Dividing as + nt = d by d gives a′s + n′t = 1, which implies
gcd(a′, n′) = 1. Part (ii) of this theorem guarantees that the con-
gruence a′x ≡ b′ (mod n′) has a unique solution x0 = sb′. Multiplying
a′x0 ≡ b′ (mod n′) by d shows x0 is a solution of (6.1).

It remains to show (6.1) has d solutions. For i = 0, 1, 2, . . . , d − 1,
let xi = x0 + in′. Since an′ = a′dn′ = a′n, each xi is a solution:

axi = ax0 + i(an′) = ax0 + i(a′n) ≡ ax0 ≡ b (mod n).

Moreover, these d numbers are distinct (mod n): If 0 ≤ j ≤ i < d, then
xi ≡ xj (mod n) if and only if

n = n′d | (xi − xj) = (in′ − jn′) = (i− j)n′,
if and only if d|(i−j), if and only if i = j. We have therefore constructed
d distinct solutions of (6.1).

There are no other solutions. If x is an arbitrary solution of ax ≡ b
(mod n), dividing through by d proves a′x ≡ b′ (mod n′), so x ≡ x0
(mod n′) by uniqueness. In other words, there exists an integer i such
that x = x0 + in′, so x is one of the solutions found above.

Example 6.36. Solve the congruence 30x ≡ 18 (mod 216).
Here a = 30 and n = 216, so d = gcd(a, n) = 6. To find x0, divide

through by 6 and solve 5x0 ≡ 3 (mod 36). Our earlier method using
Euclid’s algorithm gives x0 = 15. There are d = 6 solutions in total,
any two differing by a multiple of n′ = 36: x1 = 15 + 36 = 51, x2 = 87,
x3 = 123, x4 = 159, and x5 = 195.

6.4 Fermat’s Little Theorem

Theorem 6.37. Let p be a prime. If [a] is a residue class (mod p),
then [a]p = [a].
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Proof. Fix a prime p, and let [a] be an arbitrary residue class (mod p).
The theorem is obvious if [a] = [0].

Assume [a] 6= [0], so that [a] is invertible in Z/pZ by Corollary 6.24.
If [x] and [y] are arbitrary residue classes (mod p), then [x] = [y] if and
only if [ax] = [ay]. (The forward direction is obvious; to prove the
backward direction, multiply [ax] = [ay] by [a]−1.)

The (p− 1) residue classes [a], [2a], . . . , [(p− 1)a] are all non-zero,
and so are a rearrangement of [1], [2], . . . , [p − 1]. Consequently, the
products of the elements in these two sets are equal:

[ap−1(p− 1)!] = [a] · [2a] · [3a] · · · [(p− 1)a]

= [1] · [2] · [3] · · · [p− 1] = [(p− 1)!].

But [(p−1)!] is invertible as a product of invertible elements. Multiply-
ing each side of the preceding equation by [(p−1)!]−1 gives [a]p−1 = [1].
Multiplying each side of this by [a] gives [a]p = [a].

Corollary 6.38. Let p be a prime. If a is an integer, ap ≡ a (mod p).

Proof. Let a be an arbitrary integer, and use the division algorithm to
write a = kp + r with 0 ≤ r ≤ p− 1. Since an ≡ rn (mod p) for every
positive integer n, and since rp ≡ r (mod p) by Theorem 6.37, we have
ap ≡ rp ≡ r ≡ a (mod p).

Public-Key Cryptography

The fundamental problem of secure communication is the transmission
of messages between two parties, conventionally known as Alice and
Bob, in a way that an “eavesdropper” Charlie (i.e., someone with access
to the raw content of Alice’s and Bob’s messages) cannot easily discover
the semantic content (i.e., the meaning) of Alice’s and Bob’s messages.

For example, Alice might write Bob a letter on paper, then seal the
letter in a strong metal box to which only Bob has the key, and ship
the box to Bob. Or, Alice and Bob might agree on a secret code known
only to them.

In actual practice on the Internet, the secure communication prob-
lem has two other constraints. First, the protocols of the Internet
are, by design and intent, known (i.e., available) to everyone. Every
text message or email, almost every telephone call, every web page,
every electronic purchase travels across a network of machines, each
having perfect eavesdropping access to the raw data constituting the
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exchange. Second, a typical Internet user communicates with dozens,
or thousands, or millions of other entities, each effectively a stranger;
creating and distributing a dedicated private code for each pair of users
is infeasible.

In 1977, two computer scientists, R. Rivest and A. Shamir, and a
mathematician, L. Adelman, described the eponymous RSA public-key
cryptosystem based on Fermat’s little theorem. Each entity who wants
to communicate privately creates a key pair, one public and one private.

Alice, for example, creates a key pair and publishes her public key.
The public key can be used to encrypt arbitrary digital data in a way
that is practically impossible to recover unless one possesses Alice’s
private key. Bob uses Alice’s public key to encrypt his messages and
sends them (in public, eavesdroppable form) over the Internet to Alice.
Only Alice knows her private key, so in theory only Alice can decrypt
Bob’s message.

Digital Data

On contemporary (64-bit) computer hardware, text, audio, images, and
video data is stored as sequences of words, each word comprising eight
bytes, each byte having eight bits (from binary digit). Abstractly, a
binary digit is one of a pair of contrasting states, 0 or 1. An eight-bit
byte has 28 = 256 possible values, and is the (hardware-dependent)
smallest addressable unit of data. A word is the (again, hardware-
dependent) data unit on which a processor naturally operates.

Most Latin-alphabet text is encoded using 7-bit ASCII, the Ameri-
can Standard Code for Information Interchange, which allows 27 = 128
characters to be represented using one byte per character; or some part
of Unicode, a 16-bit numbering scheme intended to provide universally
compatible representation for all written human languages.

An arbitrary piece of text may be represented as a single string of
bytes. For instance, a 400-page book might have 250 English words per
page, with an average of five characters per word, for a total length of
500, 000 bytes (500K, or 0.5M).

Audio and image data are also encoded as strings of bytes. The
simple encoding of WAV files uses two bytes to store amplitude of an
audio signal sampled 44100 times per second (88200 bytes per channel
per second, or about 1M per minute of stereo audio). Images are often
stored as arrays of pixels, with each byte specifying the intensity of red,
green, and blue for one pixel (24-bit color).
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The point is, arbitrary data, whether your favorite novel, song, or
movie, can be expressed as a single integer (possibly having billions
of digits), or as a sequence of integers of bounded size (such as a few
hundred to several million integers, each of 1000 digits).

To encrypt such data, we only need to “scramble” the set of thousand-
digit integers in a way that can only be unscrambled by someone with
the appropriate private key.

Mathematical Models of Encryption

Let X be a finite, non-empty set, whose elements we view as chunks
of digital data. An “encryption scheme” is a bijection f : X → X; the
corresponding “decryption” is the inverse map g : X → X, defined by
g
(
f(x)

)
= x for all x in X.

Example 6.39 (Rotation Ciphers). Represent the letters A, . . . , Z of
the Roman alphabet as integers 0, . . . , 25, or better, as residue classes
(mod 26). An encryption scheme is a bijection f : Z/26Z→ Z/26Z.

The map f(x) = x+ 13 defines the “Rot 13” cipher:

Message: M E E T A T D A W N
Encoding: 12 4 4 19 0 19 3 0 22 13
Apply f : 25 17 17 6 13 6 16 13 9 0

Cipher Text: Z R R G N G Q N J A

The cipher text “ZRRG NG QNJA” is meaningless to an eavesdropper;
only the intended recipient knows to apply Rot 13 and retrieve the
secret message.

More generally, if k is an integer, there is a “translation cipher”
Rot k implemented by the function fk(x) = x + k. If we place the
letters of the alphabet cyclically around the rim of a disk, as on a
child’s encoder ring, the map f rotates the disk through k/26 of a turn.
The map gk(x) = x− k inverts f .

The (additive) rotation ciphers of the preceding example are good
childhood fun, but are easy to break. A few surprisingly small en-
hancements, however, turn the idea into a scheme sufficiently secure
for military, diplomatic, and other private communications.

Example 6.40 (Multiplication Ciphers). For simplicity, continue to
represent the Roman alphabet by residue classes (mod 26). Pick an
integer a coprime to 26 and an integer b, and consider the mapping
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Figure 6.5: Decoder rings: Rot 0, Rot 1, Rot 25, and Rot 13.

f(x) = ax + b. The map g(y) = a−1(y − b) inverts f , and therefore
decrypts messages encrypted by f .

Taking a = 3 and b = 7, for example, gives a−1 = 9 (mod 26), so
g(y) = 9y + 15, since 9(3x + 7) + 15 ≡ 27x + 63 + 15 ≡ x (mod 26).
Our secret message encrypts as shown:

Message: M E E T A T D A W N
Encoding: 12 4 4 19 0 19 3 0 22 13
Apply f : 17 19 19 12 7 12 16 7 21 1

Cipher Text: R T T M H M Q H V B

Unlike a rotation cipher, which preserves ordering of letters, multiplica-
tion by a “scrambles” the ordering of the alphabet, further obfuscating
the meaning of the cipher text “RTTM HM QHVB” to an eavesdrop-
per. Or does it?

Any deterministic encryption scheme that merely substitutes letters
as in the preceding examples is vulnerable to “attack”, to decryption
by an unauthorized recipient who has access to a sufficient amount of
cipher text.

The number of bijective functions on the Roman alphabet is 26! ≈
4 × 1026, too many to try by brute force. On the other hand, letters
do not occur with equal frequency in English text; first letters of words
are not equally-distributed; certain letters are doubled more frequently
than others. For example, E comprises about 12.7% of “ordinary text”,
T about 9%, A 8.2%, O 7.5%, N 6.75%, R 6%, and so forth. Cipher
text from a simple substitution can be trivially analyzed for letter fre-
quencies, for first-letter frequencies, for occurrences of double letters.
The eight most common letters account for about two-thirds of ordi-
nary English text. There are only 8! = 40320 permutations of eight
characters, and even if all else fails, checking them all is trivial.

The set of Roman letters, even the 256-element set of bytes, is too
small to furnish a safe hiding place for a secret message. One solution is
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to divide data into chunks larger than one byte, but still of modest size.
To illustrate, a line of text is about 64 characters long. The set of all 64-
byte strings is finite, but inconceivably vast, with 25664 ≈ 1.34× 10154

elements. To say this is larger than the number of elementary particles
in the visible universe would be a comical understatement: If each
elementary particle in the visible universe were itself a copy of the
visible universe, the number of 64-byte strings would be on the order of
the number of elementary particles in all these universes put together.

Imagine breaking a stream of data into 64-byte chunks. The chance
of two chunks being identical is essentially the chance of the same line
being deliberately encoded (such as a repeated refrain in song lyrics
or a poem, or complete silence in a segment of audio, or a swatch of
a single color in an image). The set of 64-byte strings that have ever
been or ever will be published is an infinitesimal fraction of the set of
possible strings. There is no hope of frequency analysis. To say the
physical universe will undergo heat death long before patterns emerge
in the data is again a comical understatement.

To exploit the vast space of modest-length strings, we only need
some computationally-feasible means of “mixing”, of mapping strings
of some fixed length to other strings of that length, in a way that the
inverse mapping is difficult to discover without additional information.

The RSA Algorithm

Definition 6.41. Let p and q be primes, and set N = (p−1)(q−1). An
integer e coprime to N is called an encryption exponent. Its inverse d
in (Z/NZ)× is the corresponding decryption exponent.

The pair m = pq and e is the associated public key. The RSA
encryption function is the mapping f : Z/mZ → Z/mZ defined by
f(x) = xe.

The pair m and d is the associated private key. The RSA decryption
function is the mapping g : Z/mZ→ Z/mZ defined by g(y) = yd.

Proposition 6.42. If p and q are primes, N = (p − 1)(q − 1), e is
coprime to N , and ed ≡ 1 (modN), then g

(
f(x)

)
= xed ≡ x (modm)

for all integers x.

Proof. By hypothesis, ed ≡ 1 (modN), so there exists an integer k
such that ed = 1 + k(p− 1)(q − 1). For all x,

g
(
f(x)

)
≡ (xe)d ≡ xed ≡ x · (x(p−1)(q−1))k (modm).
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If [x] = [0] in Z/mZ, we are done. Otherwise, the proof of Fermat’s
little theorem gives

xp−1 ≡ 1 (mod p), xq−1 ≡ 1 (mod q).

Consequently,

xed = x · (x(p−1)(q−1))k ≡ x (mod p),

xed = x · (x(p−1)(q−1))k ≡ x (mod q).

In other words, p | xed − x and q | xed − x, which implies xed ≡ x
(modm).

Remark 6.43. In theory, decrypting an RSA-encoded message entails
finding the prime factors p and q when only the product pq is known.
While factoring is believed to be difficult, at this writing no mathe-
matical result guarantees that RSA is safe against some other (as-yet
undiscovered) attack.

The time required to factor m into pq is roughly proportional to
the smaller of p and q. At this writing, a private key is believed to be
secure if its prime factors are on the order of 1024 to 4096 bits, about
300 to 1200 digits.

The “prime number theorem” asserts that roughly one in 300 (about
one third of one percent) of all 300-digit numbers are prime. Choosing
a 300-digit prime therefore amounts to picking a needle from a haystack
of some 10297 elements. A significant source of potential weakness is
a computer’s inability to generate random numbers on its own. All
modern operating systems use the computer’s interactions with the
rest of the universe (key presses, mouse motions, arrival of network
packets) to maintain an “entropy pool” suitable for generating “truly
random” primes. If you have access to a GNU/Linux or MacOSX
machine, you can see this in action: Open a terminal, run the command
cat /dev/random, and watch random bytes scroll out as you move the
mouse, or as the kernel communicates with its network router.

Example 6.44. Suppose Alice picks the primes p = 11 and q = 13,
so m = pq = 143 and N = (p − 1)(q − 1) = 120. Picking e = 7 as
encryption exponent (the smallest available choice, since N = 5!), Alice
finds the decryption exponent d by solving 7d ≡ 1 (mod 120). Since
120 = 7 · 17 + 1, she has d ≡ −17 ≡ 103 (mod 120).

Alice’s public key is (m, e) = (143, 7). This is shared freely with the
world. Anyone with access to the public key (and suitable software)
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can encrypt data in a way impossible to recover without the private
key.

Alice’s private key is (m, d) = (143, 103). This, along with either
prime factor p or q, is closely guarded; anyone with the private key
can decrypt private messages meant for Alice, and anyone with either
prime factor of m can easily calculate the decryption exponent.

To arrange a meeting with Alice, Bob embeds the alphabet into
Z/143Z, letting A through Z correspond to 0 through 25 as before,
and mapping the space character to 26. (In a more realistic setting,
Bob might use ASCII to encode upper and lower case letters, digits,
and punctuation marks in the last seven bits of a byte, i.e., as residue
classes modulo 27 = 128, then map these into Z/143Z.)

The mapping f(x) = xe = x7 encodes the message as shown:

Message: M E E T A T D A W N
Encoding: 12 4 4 19 26 0 19 26 3 0 22 13
Apply f : 17 82 82 46 104 0 46 104 42 0 22 117

The sequence of values is the cipher text.

To decrypt Bob’s message, Alice applies g(y) = yd = y103, then
converts the resulting string of residue classes (mod 143) into ordinary
characters. At dawn the next day, they rendezvous in the field behind
the old elm tree, decide how to assassinate the king, and agree for
convenience that next time they’ll grab lunch at a cafe.

Exercises

Exercise 6.1. Calculate the following:
(a) 3487 (mod 28). (b) 3120 · 5531 (mod 26). (c) 797 (mod 11).

Exercise 6.2. Solve: 18x ≡ 6 (mod 24). 18x ≡ 6 (mod 28).

Exercise 6.3. Solve: 150x = 84 (mod 567). 150x = 84 (mod 210).

Exercise 6.4. Let (Z/7Z)× = {[1], [2], [3], [4], [5], [6]} be the set of units
mod 7. Write out the Cayley table for ((Z/7Z)×, ·). For each class [a],
find the set of powers of [a]. Is the set of powers ever all of (Z/7Z)×?
If so, which element(s) “generate”?
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Exercise 6.5. List the elements of (Z/9Z)× and write out the Cay-
ley table for multiplication. For [a] = [2], [3], [4] in Z/9Z, sketch the
multiplication diagram for [a].

[0]

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[0]

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[0]

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

Exercise 6.6. List the elements of (Z/10Z)× and write out the Cayley
table for multiplication. For [a] = [2], [3], [4] in Z/10Z, sketch the
multiplication diagram for [a].

[0]

[1]

[2][3]

[4]

[5]

[6]

[7] [8]

[9]

[0]

[1]

[2][3]

[4]

[5]

[6]

[7] [8]

[9]

[0]

[1]

[2][3]

[4]

[5]

[6]

[7] [8]

[9]

Exercise 6.7. List the elements of (Z/15Z)×, write out the Cayley
table for multiplication, and determine the inverse of each element.

Exercise 6.8. List the elements of (Z/18Z)×, write out the Cayley
table for multiplication, and determine the inverse of each element.

Exercise 6.9. For the residue classes specified, determine whether or
not each class is invertible in Z/nZ, and if so, find the inverse.

(a) In Z/48Z: [a] = [17], [a] = [21], [a] = [25].

(b) In Z/140Z: [a] = [35], [a] = [33], [a] = [81].

(c) In Z/101Z: [a] = [64], [a] = [100].
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Part III

Continuous Number Systems
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Chapter 7

Real and Complex Numbers

In school you were introduced to “real numbers” and the “number
line”, and possibly to “complex numbers” and the “complex plane”.
This chapter introduces these number systems via axioms.

7.1 Axioms for the Real Numbers

We start with a “legal contract” for the real number system, a list
of axioms that characterizes the real number system, Table 7.1. You
should not memorize these axioms, but instead internalize them. They
fall into three categories:

Algebraic Properties. (A1.–A4., M1.–M4., D.) The algebraic
axioms concern the operations of addition and multiplication: What
properties each operation has (associativity, commutativity, existence
of an identity element and inverses), and how the two operations inter-
act (the distributive law).

Order Properties. (O1.–O3.) These three axioms formalize the
idea of one real number being “greater than” or “less than” another,
and the fact that every pair of real numbers is “comparable”. Geomet-
rically, the order axioms guarantee that the real number system can be
visualized as a subset of a line. “Less than” means “lies to the left of”,
and “greater than” means “lies to the right of”.

Completeness. This axiom formalizes the geometric intuition that
the real number system “has no gaps”, or that “any quantity that can be
approximated by real numbers is itself a real number”. Geometrically,
if A is a non-empty set on the number line, and if some point M lies
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The real number system consists of a non-empty set R, two binary
operations, + and ·, and a subset P of R (the set of “positive” real
numbers) satisfying the following thirteen axioms:

A1. Addition is associative: For all a, b, c in R, a+(b+c) = (a+b)+c.

A2. Additive identity: There exists a unique element 0 in R such that
for all a in R, 0 + a = a+ 0 = a.

A3. Additive inverses: For every a in R, there exists a unique −a in R
such that a+ (−a) = (−a) + a = 0.

A4. Addition is commutative: For all a, b, in R, a+ b = b+ a.

M1. Multiplication is associative: For all a, b, c in R, a·(b·c) = (a·b)·c.

M2. Multiplicative identity: There exists a unique element 1 in R,
distinct from 0, such that for all a in R, 1 · a = a · 1 = a.

M3. Multiplicative inverses: For every non-zero a in R, there exists a
unique a−1 in R such that a · a−1 = a−1 · a = 1.

M4. Multiplication is commutative: For all a, b, in R, a · b = b · a.

D. Multiplication (on the left) distributes over addition: For all a, b, c
in R, a · (b+ c) = (a · b) + (a · c).

O1. The law of trichotomy: For every real number a, exactly one of
the following holds: a ∈ P , −a ∈ P , or a = 0.

O2. Closure under addition: If a and b are in P , then a+ b is in P .

O3. Closure under multiplication: If a and b are in P , then a ·b is in P .

C. Completeness: If A is a non-empty subset of R that is bounded
above, then A has a least upper bound in R.

Table 7.1: Axioms for the numbers.
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to the right of every point of A, then there exists a leftmost point (i.e.,
smallest number) lying on or to the right of every element of A.

Remark 7.1. The multiplication dot is often omitted: a · b = ab.

Remark 7.2. These axioms have minor redundancies built in for conve-
nience. For example, if a+ b = 0, then by the commutative Axiom A4.,
b + a = 0 as well; there is no need to assume both equations in A3.
Further, the uniqueness conditions in the axioms for identity elements
and inverses can be deduced from associativity.

In fact, the set of real numbers, including the operations of addition
and multiplication and the set of positive numbers, can be constructed
entirely from the natural numbers. The axioms in Table 7.1 would then
be proven as theorems.

Auxiliary Concepts

We define the operations of subtraction and division in terms of addition
and multiplication.

Definition 7.3. If a and b are real numbers, we define their difference
to be a− b = a+ (−b).

If b 6= 0, we define their quotient to be a/b = a · b−1. In particular,
1/b = b−1.

Remark 7.4. Subtraction and division are neither associative nor com-
mutative, as you should check.

We define the concepts of positive and negative numbers, and the
relations greater-than and less-than, using Axioms O1.–O3.

Definition 7.5. Let a, b and c be real numbers.
If c ∈ P , we say c is positive, or 0 is less than c, and write 0 < c.
If b − a ∈ P , we say a is less than b and write a < b. If a < b or

a = b, we say a is less than or equal to b, and write a ≤ b.

Remark 7.6. If 0 < c, we also say c is greater than 0 and write c > 0.
If a < b, we also say b is greater than a and write b > a. If a ≤ b

we also say b is greater than or equal to a and write b ≥ a.

Whole numbers and fractions constitute some of the most important
classes of real numbers.

Definition 7.7. The set N of natural numbers is the smallest subset
of R satisfying the following conditions: (i) 0 ∈ N; (ii) If a ∈ N, then
a+ 1 ∈ N.
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A real number a is an integer or whole number if either a or −a is
a natural number. The set of integers is denoted Z, from the German
Zahl.

A real number a is a rational number if there exist integers p and q
such that q > 0 and a = p/q. The set of rational numbers (a.k.a. ratios
or quotients) is denoted Q.

A real number a is irrational if a is not a rational number.

Remark 7.8. In mathematics, a field is a set F together with two arith-
metic operations + and · that satisfy Axioms A1.–A4., M1.–M4., and D.
An ordered field additionally satisfies Axioms O1.–O3.

The real numbers turn out to be the unique complete ordered field.
The rational numbers form an ordered field.

The set of integers is not a field; Axiom M3 (page 58) fails.
The set of complex numbers is a field, but not an ordered field. By

Corollary 7.12 (ii) below, in an ordered field, if a 6= 0, then a2 ∈ P .
However, each of 1 and −1 is the square of some complex number, so
the trichotomy axiom does not hold.

Algebraic Properties

Lemma 7.9. If a ∈ R, then −(−a) = a. If a 6= 0, then (a−1)−1 = a,
i.e., 1/(1/a) = a.

Proof. The equation a+(−a) = 0 may be interpreted as saying that the
(unique) additive inverse of −a is a itself, i.e., −(−a) = a. Similarly, if
a 6= 0, the equation a(a−1) = 1 says (a−1)−1 = a.

Proposition 7.10. For all real numbers a and b:

(i) 0 · a = a · 0 = 0.

(ii) If ab = 0, then a = 0 or b = 0.

(iii) −a = (−1) · a = a · (−1).

(iv) (−a)(−b) = ab. Particularly, (−1)(−1) = 1.

Proof. (i) Taking a = 0 in A2, we have 0 = 0 + 0. Now let a denote
an arbitrary real number. Multiplying on the right by a and using the
distributive law, we have

0 + (0 · a) = (0 · a) = (0 + 0) · a = (0 · a) + (0 · a).
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By the cancellation law, 0 = 0 · a. By the commutative Axiom M4.,
0 = a · 0 as well.

(ii) Suppose ab = 0. If a = 0, there is nothing to prove. If a 6= 0,

b = (a−1a)b = a−1(ab) = a−1(0) = 0.

(iii) Multiply 0 =
(
1 + (−1)

)
on the right by a:

a+ (−a) = 0 = 0 · a =
(
1 + (−1)

)
· a = 1 · a+ (−1) · a = a+ (−1) · a.

By cancellation, −a = (−1) · a. By commutativity, −a = a · (−1).
(iv) Taking a = −1 in (iii) and invoking Lemma 7.9, we have

(−1)(−1) = −(−1) = 1. Thus

(−a)(−b) =
(
(−1)a

)(
(−1)b

)
= (−1)(−1)(ab) = ab.

Order Properties

Proposition 7.11. For all real numbers a, b, and c:

(i) If a < b and b < c, then a < c.

(ii) If a < b, then a+ c < b+ c.

(iii) If a < b and 0 < c, then ac < bc.

(iv) If a < b and c < 0, then bc < ac.

(v) If 0 < a < b, then 0 < 1/b < 1/a.

Two additional extensions are useful occasionally:

Corollary 7.12. Let a, b, c, and d be real numbers.

(i) If a < b and c < d, then a+ c < b+ d.

(ii) If 0 < a < b and 0 < c < d, then 0 < ac < bd.

In particular, 0 ≤ a · a, with equality if and only if a = 0.

Remark 7.13. In words, (i) says two inequalities can be “added”, pre-
serving the sense of the inequality; (ii) expresses a similar guarantee
when inequalities are multiplied, provided all quantities involved are
positive.
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To reduce Proposition 7.11 to Axioms O1.–O3., it is convenient to
establish special cases where one comparand is zero:

Lemma 7.14. For all real numbers a and b,

(i) If 0 < a and b < 0, then ab < 0.

(ii) If a < 0 and b < 0, then 0 < ab.

(iii) If 0 < a, then 0 < 1/a.

Proof. (i) By trichotomy, b < 0 if and only if −b ∈ P . By Axiom O3.
and Proposition 7.10 (iii), −(ab) = a(−b) ∈ P , i.e., ab < 0.

(ii) If −a and −b ∈ P , then by Axiom O3. and Proposition 7.10 (iv),
0 < (−a)(−b) = ab.

(iii) By trichotomy, either 1 ∈ P or −1 ∈ P . Since P is closed under
multiplication, either 1 ·1 = 1 is positive, or (−1) · (−1) = 1 is positive.
Under either alternative, we conclude 1 is positive, or 0 < 1.

Suppose 0 < a. If a−1 were negative, then by (i), we would have
1 = a(a−1) < 0, which we have just seen is false. Contrapositively, if
0 < a, then 0 < a−1.

Proof of Proposition 7.11. (i) By definition, a < b if and only if b−a ∈
P , and b < c if and only if c− b ∈ P . By Axiom O2.,

c− a = (c− b) + (b− a) ∈ P,
which is equivalent to a < c.

(ii) For all a, b, and c, we have b− a = (b+ c)− (a+ c). The claim
follows immediately.

(iii) If a < b and 0 < c, then b−a ∈ P and c ∈ P , so by Axiom O3.,
their product (b− a)c = bc− ac is in P , which means ac < bc.

(iv) Since a < b and 0 < −c, part (iii) gives

0 < (b− a)(−c) = (a− b)c = ac− bc,
i.e., bc < ac.

(v) By Lemma 7.14 (iii), if 0 < a < b, then 0 < 1/a and 0 < 1/b.
Algebra gives 1/a− 1/b = (b− a)/(ab) > 0, i.e., 1/b < 1/a.

Proof of Corollary 7.12. (i) By Proposition 7.11 (ii), adding a to c < d
and adding d to a < b gives a+ c < a+ d < b+ d.

(ii) follows similarly from Proposition 7.11 (iii).
For the assertion about real squares, it suffices to note that 0 ·0 = 0

by Proposition 7.10 (i), while we have just shown that if a 6= 0, then
0 < a · a.



CHAPTER 7. REAL AND COMPLEX NUMBERS 111

The “limiting behavior” of αn as n grows without bound plays a
central role in analysis.

Theorem 7.15. Let u > 0 be a real number. We have

1 + nu ≤ (1 + u)n for all n ≥ 0.

Proof. Let P (n) denote the inequality in the theorem. The base case
P (0) asserts that 1 ≤ 1, which is true. Assume inductively that P (k) is
true for some k ≥ 0. We have

1 + (k + 1)u ≤ 1 + (k + 1)u+ ku2 0 ≤ ku2

= (1 + ku)(1 + u) Algebra

≤ (1 + u)k(1 + u) Inductive hypothesis

= (1 + u)k+1 Definition of exponentiation

so that P (k) implies P (k + 1).

Corollary 7.16. Let 0 < α < 1. There exists a positive real number u
such that α = 1/(1 + u), and

0 < αn ≤ 1

1 + nu
for all n ≥ 0.

Proof. If 0 < α < 1, then 1 < 1/α by Proposition 7.11 (v), so we may
write 1/α = 1 + u for some positive real number u. By Theorem 7.15,
we have 0 < 1+nu ≤ (1/α)n = 1/(αn) for all n ≥ 0. Taking reciprocals
again establishes the corollary.

7.2 Complex Numbers

Points in the Cartesian plane may be viewed as numerical entities in a
way that extends the real number system.

Definition 7.17. A complex number is an expression α = a + ib in
which a and b are real numbers and i is a symbol satisfying i2 = −1.
The set of complex numbers is the complex plane C.

The real numbers a and b are, respectively, the real part and imag-
inary part of α. Viewing the real and imaginary parts of a complex
number α = a + bi as Cartesian coordinates, we identify α with the
point (a, b), Figure 7.1.
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A complex number α is real if b = 0, and non-real if b 6= 0. The set
of complex numbers of the form α = a+ 0 · i = a is the real axis.

A complex number α is imaginary if a = 0. The set of all numbers
of the form α = 0 + b · i = bi is the imaginary axis.

The conjugate of α is the complex number ᾱ = a − bi obtained by
reflecting α across the real axis.

α = a + bi

ᾱ = a− bi

i

0 1−1
Re

Im

a

bi

−bi

Figure 7.1: The complex plane.

Remark 7.18. Imaginary numbers may seem tainted with suspicion, as
if they don’t really exist but it’s mathematically convenient to pretend
they do. This sentiment traces back to the Ancient Greeks, who viewed
numbers as lengths, what we now call “real numbers”. Indeed, no real
number has square equal to −1.

As noted above, hoewever, i has a perfectly concrete existence as
the point (0, 1) in the Cartesian plane. Even the mysterious equation
i2 = −1 turns out to have a natural interpretation: Multiplication by i
corresponds to a counterclockwise quarter-turn of the complex plane
about the origin. Performing this operation twice, namely squaring,
amounts to a half-turn, which multiplies each complex number by −1.

Complex Addition and Multiplication

From a modern perspective, the complex numbers earn their status as
“numbers” by admitting operations of addition, subtraction, multipli-
cation, and division that generalize the familiar algebraic properties of
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real numbers.

Definition 7.19. Let α1 = a1 + ib1 and α2 = a2 + ib2 be complex
numbers. Their sum is defined by the formula

α1 + α2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

The formula for subtraction is similar, and left to you to work out.
Adding two complex numbers corresponds to the parallelogram law for
vector addition in the plane, see Figure 7.2.

α2

α1

α1 + α2

−α2

α1 − α2

0

Figure 7.2: Adding and subtracting complex numbers.

Definition 7.20. A set A contained in C is closed under addition if
for all α1 and α2 in A, the sum α1 + α2 is in A.

Example 7.21. The set {0} is closed under addition, since 0 + 0 = 0.

Example 7.22. Suppose A is closed under addition and 1 ∈ A. Of
necessity, 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, and so forth, are in A. That
is, A contains the set Z+ of positive integers. Since the set of positive
integers is closed under addition, our hypotheses imply nothing further.

Similarly, if A is closed under addition and α 6= 0 is an element
of A, the set αZ+ of positive integer multiples of α is contained in A.

If A is closed under addition, it does not follow that A is “generated”
by one element as in the previous examples.

Example 7.23. The set Z of integers is closed under addition in C, as
are the set Q of rational numbers (ratios of integers) and the set R of
real numbers. None of these sets is obtained by adding a single element
to itself repeatedly.
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Example 7.24. The set Z + iZ = {m + in : m,n ∈ Z} of Gaussian
integers, Figure 7.3, is closed under addition: If α1 = m1+in1 and α2 =
m2 + in2 are Gaussian integers, the addition formula gives α1 + α2 =
(m1 +m2) + i(n1 + n2). Since a sum of integers is an integer, the real
and imaginary parts of α1 +α2 are integers. That is, α1 +α2 ∈ Z + iZ.
Since α1 and α2 were arbitrary, Z + iZ is closed under addition.

0

Figure 7.3: The Gaussian integers.

Example 7.25. The upper half-plane {a + bi : b > 0} is closed under
addition.

Example 7.26. The set A of complex numbers that are either real
or imaginary, i.e., the union of the real and imaginary axes, is not
closed under addition. Since “closed under addition” is a “for every”
condition, its negation is a “there exists” condition; that is, it suffices
to find a single counterexample. For instance, 1 ∈ A (since 1 is real)
and i ∈ A (since i is imaginary) but 1 + i 6∈ A (the sum is neither real
nor imaginary), so A is not closed under addition.

To define multiplication of complex numbers, we treat i as a symbol
distributing over addition of real numbers, commuting with multiplica-
tion of real numbers, and satisfying i2 = −1. A short calculation using
familiar laws of algebra leads us to

(a1 + ib1)(a2 + ib2) = a1a2 + i(a1b2 + a2b1) + i2b1b2

= (a1a2 − b1b2) + i(a1b2 + a2b1).
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Definition 7.27. Let α1 = a1 + ib1 and α2 = a2 + ib2 be complex
numbers. Their product is defined by the formula

α1α2 = (a1a2 − b1b2) + i(a1b2 + a2b1).

Example 7.28. If α = a + bi, then iα = i(a + bi) = −b + ai. As
expected, the vector (−b, a) is obtained by rotating the vector (a, b)
through a quarter turn.

As a consistency check, i(iα) = i(−b+ ai) = −a− bi = −α.

Example 7.29. If α = a+ bi, then

(7.1) αᾱ = (a+ bi)(a− bi) = a2 − (bi)2 = a2 + b2.

By the Pythagorean theorem, αᾱ = (distance from 0 to α)2.

Complex multiplication is commutative: For all complex numbers
α1 and α2, we have α2α1 = α1α2. We may therefore attempt to define
division by declaring β = α1/α2 if and only if βα2 = α1 = α2β.

Remark 7.30. If multiplication were not commutative, the equations
α1 = βα2 and α1 = α2β might well be incompatible conditions for α1.

To define complex division, let α1 and α2 be complex numbers with
α2 6= 0. We wish to write α1/α2 = c1 + ic2, namely, to find formulas
for c1 and c2 in terms of the real and imaginary parts of the numerator
and denominator.

The trick is analogous to rationalizing the denominator in high
school algebra: Here we “realify” the denominator, multiplying top
and bottom by the conjugate number ᾱ2 = a2 − ib2 and using (7.1):

a1 + ib1
a2 + ib2

=
a1 + ib1
a2 + ib2

· a2 − ib2
a2 − ib2

=
(a1a2 + b1b2) + i(−a1b2 + a2b1)

a22 + b22
.

Example 7.31. To divide α1 = 2 − i by α2 = 4 + 3i, calculate as
follows:

2− i
4 + 3i

=
2− i
4 + 3i

· 4− 3i

4− 3i
=

(8− 3) + (−6− 4)i

42 + 32

=
5− 10i

25
=

1− 2i

5
.

In practice, direct calculation is easier than memorizing the formula.
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Example 7.32. If α = a+ bi 6= 0, then

1

α
=

1

a+ ib
=

a− ib
a2 + b2

=
a

a2 + b2
− i b

a2 + b2
.

That is, every non-zero complex number has a reciprocal.

The arithmetic operations on complex numbers satisfy familiar rules
of algebra.

Example 7.33. For all complex α and β, the difference of squares
identity holds: α2 − β2 = (α + β)(α− β).

Example 7.34. If αx2 + βx + γ = 0 with α, β, and γ complex and
α 6= 0, then

x =
−β ±

√
β2 − 4αγ

2α
,

by the same completing-the-square proof you have seen for real coeffi-
cients. There are no “exceptional” cases; every quadratic has exactly
two complex solutions, counting multiplicity.

Complex multiplication has a beautiful and useful geometric inter-
pretation, most easily expressed in terms of polar coordinates. Recall
that every point (a, b) in the plane can be written (r cos θ, r sin θ) for
some radius r ≥ 0 and some angle θ, measured counterclockwise from
the positive x axis and unique up to an added integer multiple of 2π.

Definition 7.35. Let α = a + bi = r cos θ + ir sin θ be a complex
number. The radius r is called the magnitude of α, and the polar angle
is the argument of α. If −π < θ < π, we say θ is the principal argument
of α.

Remark 7.36. The magnitude of α = a + ib, denoted |α|, is given
by (7.1):

|α| = r =
√
a2 + b2 =

√
αᾱ.

Example 7.37. Since i = 0 + 1 · i = cos π2 + i sin π
2 , the magnitude of i

is 1 and the principal argument of i is π
2 .

Example 7.38. Let θ be a real number. By Euler’s formula (see
appendix), we have cos θ+ i sin θ = eiθ. The magnitude of eiθ is 1, and
the argument is θ.

Generally, α = |α|(cos θ + i sin θ) = |α|eiθ.
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If eiθ1 = (cos θ1 + i sin θ1) and eiθ2 = (cos θ2 + i sin θ2) are complex
numbers of unit magnitude, the sum formulas for the cosine and sine
functions allow us to write their product as

eiθ1 · eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2).

That is, the law of exponents holds for imaginary exponents. Since every
complex number has polar form α = |α| eiθ, complex multiplication
satisfies

α1α2 =
(
|α1| eiθ1

)(
|α2| eiθ2

)
=
(
|α1| |α2|

)
ei(θ1+θ2).

Geometrically, we multiply two complex numbers by multiplying their
magnitudes and adding their arguments (polar angles).

0
z1 = r1 e

iθ1

z2 = r2 e
iθ2

z3 = r3 e
iθ3

θ

αz1

αz2αz3

Figure 7.4: Complex multiplication by α = |α|eiθ.

Example 7.39. Since i = cos π2 + i sin π
2 = ei

π
2 , we have

iα = i|α| eiθ = |α| ei(θ+
π
2 );

again we see that multiplication by i rotates the plane about the origin
by a quarter turn counterclockwise.

Definition 7.40. A set A contained in C is closed under multiplication
if, for all α1 and α2 in A, the product α1 · α2 is an element of A.

Example 7.41. The set of complex numbers of magnitude 1 is the unit
circle

U(1) = {z in C : |z| = 1} = {z in C : z = eiθ for some real θ}.
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The set U(1) is closed under multiplication: If |α1| = 1 and |α2| = 1,
i.e., α1, α2 ∈ U(1), then |α1α2| = |α1||α2| = 1, so α1α2 ∈ U(1).

Example 7.42. The finite subsets {1} and {−1, 1} of U(1) are also
closed under multiplication. More generally, for each positive integer n
there exists a subset Un of U(1) that contains exactly n elements and
is closed under multiplication:

Un = {1 = e0, ei 2π/n, ei 4π/n, . . . , ei 2π(n−1)/n}
= {ei 2πk/n : k = 0, . . . , n− 1}.

Figure 7.5 depictes the cases n = 4 and n = 6.

0
1= −1

ei π/2 = i

ei π

ei 3π/2 = −i

0
1= −1

ei π/3ei 2π/3

ei π

ei 4π/3 ei 5π/3

Figure 7.5: The unit circle, U(1), and two finite subsets, U4 and U6,
that are closed under multiplication.

The elements of Un are precisely the complex numbers ζ = reiθ

satisfying the equation ζn = 1, namely the so-called nth roots of unity.
To see why, note that 1 = ζn = rneinθ precisely when r = 1 and nθ is
an integer multiple of 2π. Assuming without loss of generality that
0 ≤ θ < 2π, we have 0 ≤ nθ < 2nπ, so that nθ = 0, 2π, 4π, . . . ,
2(n− 1)π, or nθ = 2kπ for some integer k with 0 ≤ k < n.

To see that the set of nth roots of unity is closed under multiplica-
tion, note that if ζn1 = 1 and ζn2 = 1, then (ζ1ζ2)

n = ζn1 ζ
n
2 = 1, which

means ζ1ζ2 is an nth root of unity.
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7.3 The Laws of Exponents

Theorem 7.43 (The Law of Exponents). If α and β are non-zero
complex numbers, then

(i) (αβ)n = (αn)(βn),

(ii) αm+n = αm · αn,
(iii) αnm = (αn)m,





for all integers m and n.

In particular, α−n = (α−1)n for all α 6= 0 and all integers n.

Remark 7.44. Conceptually, these results amount to counting the num-
ber of factors in a product. For instance, αm+n represents a product of
(m + n) factors all equal to α; such a product can be separated into a
product of m factors and a product of n factors, i.e., into αm · αn.

Proof. (Proof of (i)). For each natural number n, consider the state-
ment

P (n): (αβ)n = (αn)(βn).

The base case P (0) reduces to 1 = 1, which is true. Assume inductively
that P (k) is true for some k ≥ 0. We have

(αβ)k+1 = (αβ)k(αβ) Definition of exponentiation,

= (αkβk)(αβ) Inductive hypothesis,

= αk(βk · α)β Associativity,

= αk(α · βk)β Commutativity,

= (αk · α)(βk · β) Associativity,

= (αk+1)(βk+1) Definition of exponentiation.

Since P (0) is true and P (k) implies P (k + 1) for all k ≥ 0, the state-
ment P (n) is true for all n ≥ 0 by the principle of mathematical induc-
tion. If n < 0, replace α and β by their multiplicative inverses.

Taking β = α−1, we have

(αn)(α−1)n = 1n = 1 = (αn)(αn)−1 = (αn)(α−n);

by cancellation, (α−1)n = α−n for all n.
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(Proof of (ii)). We first assume m and n are non-negative integers.
For each n in N, consider the statement

P (n) αm+n = αm · αn for all m in N.

This single statement may be viewed as an infinite family of statements,
one for each natural number m, with n a fixed natural number.

The base case P (0) asserts αm+0 = αm · α0 for all m, which is true
since m + 0 = m for all m and α0 = 1. Next, assume inductively that
P (k) is true for some k, namely that

αm+k = αm · αk for all m in N.

For all m, we have

αm+k+1 = αm+k · α Definition of exponentiation

= (αm · αk) · α Inductive hypothesis

= αm · (αk · α) Associativity

= αm · αk+1 Definition of exponentiation

which establishes the inductive step. By the principle of mathematical
induction, αm+n = αm · αn for all non-negative m and n.

If m and n are both non-positive, conclusion (ii) of the theorem now
follows immediately by replacing α with α−1.

It remains to check the case where one exponent is positive, the
other negative. Without loss of generality, say −m and n are positive.

Suppose first that 0 ≤ m + n. Since −m is positive, the preceding
argument shows

αn = α(m+n)+(−m) = αm+n · α−m.

Multiplying both sides by αm gives αm+n = αm · αn, as claimed.
If instead m+ n < 0, then 0 < −(m+ n), and

α−m = α−(m+n)+n = α−(m+n) · αn;

rearranging establishes the asserted claim.

(Proof of (iii)). For m and n non-negative, this follows by induction
on the statement

P (n) αnm = (αn)m for all m in N.
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To establish the inductive step, note that

αn(m+1) = αnm+n = αnm · αn = (αn)m · αn = (αn)m+1

by (ii) and the definition of exponentiation. As a fringe benefit, we find
that

(αm)n = αmn = αnm = (αn)m for all α 6= 0, all m and n in N.

If m < 0 or n < 0, replace α by α−1 and use (α−1)n = α−n.

7.4 The Binomial Theorem

The identity (α+β)2 = α2+2αβ+β2 is doubtless familiar. The binomial
theorem generalizes to arbitrary positive integer powers (α + β)n.

Theorem 7.45 (Binomial Theorem). If α and β are complex numbers
and n is a non-negative integer,

(α + β)n =
n∑

k=0

(
n

k

)
αn−kβk

=
(n
0

)
αn +

(n
1

)
αn−1β +

(n
2

)
αn−2β2 + · · ·+

(n
n

)
βn.

Proof. Conceptually, the n-fold product

(α + β)n = (α + β)(α + β) · · · (α + β)

is expanded by the following procedure:

• Pick an arbitrary integer k with 0 ≤ k ≤ n;

• Distribute k check marks among the n copies of (α + β);

• If a copy of (α + β) is unchecked, choose α from that copy; oth-
erwise choose β. Multiply the resulting n factors to get αn−kβk.

• Sum over all k and all ways of distributing k check marks.

By the first and third points, the expanded product has the form

(α+β)n = αn+ αn−1β+ αn−2β2 + · · ·+ αβn−1 + βn

for some coefficients. By the second and fourth points, the coefficient
of αn−kβk is

(n
k

)
, the number of distinct ways of distributing k check

marks among n parenthesized binomials. This completes the proof.
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Pascal’s Triangle

The binomial coefficients for any particular exponent n can be found in
the (n+ 1)th row of a recursive diagram known as “Pascal’s triangle”.

0 0 0 1 0 0 0 0 . . .
0 0 0 1 1 0 0 0 . . .

0 0 1 2 1 0 0 0 . . .
0 0 1 3 3 1 0 0 . . .

0 1 4 6 4 1 0 0 . . .
0 1 5 10 10 5 1 0 . . .

...
...

...
...

...
...

...
...

k = −1 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 · · ·
n = 0 0 1 0 0 0 0 0 · · ·
n = 1 0 1 1 0 0 0 0 · · ·
n = 2 0 1 2 1 0 0 0 · · ·
n = 3 0 1 3 3 1 0 0 · · ·
n = 4 0 1 4 6 4 1 0 · · ·
n = 5 0 1 5 10 10 5 1 · · ·

...
...

...
...

...
...

...
...

Table 7.2: Pascal’s triangle, “classic” format (top) and tabular.

Imagine expanding successive powers of (α + β) recursively, in as
lazy a manner as possible. Because

(α + β)n+1 = (α + β)n(α + β) = (α + β)nα + (α + β)nβ,

knowledge of (α + β)n can be “recycled” in calculating (α + β)n+1.

Starting from n = 2 and (α + β)2 = α2 + 2αβ + β2, we find

(α + β)3 = (α2 + 2αβ + β2)α + (α2 + 2αβ + β2)β

= α3 + 2α2β + αβ2

+ α2β + 2αβ2 + β3

= α3 + 3α2β + 3αβ2 + β3.
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Recycling this formula gives

(α + β)4 = (α3 + 3α2β + 3αβ2 + β3)α + (α3 + 3α2β + 3αβ2 + β3)β

= α4 + 3α3β + 3α2β2 + αβ3

+ α3β + 3α2β2 + 3αβ3 + β4

= α4 + 4α3β + 6α2β2 + 4αβ3 + β4.

To be sure you understand, check in detail that

(α + β)5 = α5 + 5α4β + 10α3β2 + 10α2β3 + 5αβ4 + β5.

A useful pattern is emerging: If the coefficients for (α+β)n are laid
out in a row, “duplicate” the row underneath itself, shift the second
copy one entry to the right, and add in columns to get the coefficients
for (α+β)n+1. Alternatively, “pad” the coefficients on either side with
an infinite row of 0’s. Then, to get the entries in the “next” row, add
each entry to its neighbor on the left. The result is Pascal’s triangle.

Table 7.2 shows two versions of Pascal’s triangle. On top is the
“classic” format, in which each entry below the first row is the sum of
its “parents”, the two nearest entries in the preceding row.

In the tabular formatting of Pascal’s triangle, the entries are ar-
ranged so that n indexes the rows and k indexes the columns.

Example 7.46. The binomial theorem can be used with specific num-
bers. For example,

113 = (10 + 1)3 = 103 + 3 · 102 · 1 + 3 · 10 · 12 + 13

= 1000 + 300 + 30 + 1 = 1331.

The digits constitute the fourth row of Pascal’s triangle.

Exercises

Exercise 7.1. Without using a calculator, express each of the fractions
1
7 , 2

7 , 3
7 , 4

7 , 5
7 , and 6

7 as repeating decimals.
Suggestion: You’ll need to do long division at least once, but can reduce
the amount of computation by exploiting patterns.

Exercise 7.2. Express 1.12, 0.249, and 0.0416 as reduced fractions.
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Exercise 7.3. Let x and y be real. Prove that xy = 1
2

(
(x+ y)2− x2−

y2
)
. (In words, multiplication is uniquely determined by squaring.)

Exercise 7.4. Let x, y, u, and v be real. Prove that 2u = x + y and
2v = x− y if and only if x = u+ v and y = u− v.

Exercise 7.5. Let x and y be real. Prove that x2 = y2 if and only
if x = y or x = −y. (You may use the axioms and results from the
text. Do not use properties of square roots, which have not yet been
established.)

Exercise 7.6. If a ∈ R, define the absolute value of a by

|a| =
{

a if 0 ≤ a

−a if a < 0

For arbitrary real numbers a and b, prove:

(a) | − a| = |a|. (b) |ab| = |a| · |b|.

(c) −|a| ≤ a ≤ |a|. (d) |b| ≤ a if and only if −a ≤ b ≤ a.

(e) |a+ b| ≤ |a|+ |b|. (The triangle inequality.)
Hint: Apply part (c) to a and b separately, add the inequalities, and
use part (d).

(f)
∣∣|a| − |b|

∣∣ ≤ |a− b|. (The reverse triangle inequality.)
Hint: First apply the triangle inequality to a = (a − b) + b and to
b = a+ (b− a).

Exercise 7.7. Let a and b be real numbers. Define the minimum and
maximum of a and b by

min(a, b) =

{
a if a ≤ b,

b if b < a,
max(a, b) =

{
b if a ≤ b,

a if b < a.

(a) Prove a+ b = min(a, b) + max(a, b).
Give two proofs: One involving verbal explanation, and one based
on manipulation of formulas.

(b) Prove |a− b| = max(a, b)−min(a, b).
Suggestion: Again, give two proofs. For the algebraic proof, con-
sider two cases, a ≤ b and b < a.
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(c) Use parts (a) and (b) to find algebraic formulas for min(a, b) and
max(a, b).

Exercise 7.8. Alice and Bob have two sandwiches. Because Alice isn’t
very hungry, they will split one sandwich evenly, and Bob will eat the
other.

(a) In order to distribute the food most nearly equally, should they
split the smaller or the larger sandwich?

(b) Formulate a precise mathematical model for the sandwiches, and
use your model to give a proof of your assertion in part (a).

Exercise 7.9. If A = {a1, a2, . . . , an} is a finite set of real numbers,
there exist unique elements maxA and minA in A such that

minA ≤ x ≤ maxA for all x in A.

Suggestion: Use induction on the number of elements of A to prove
existence.

Exercise 7.10. Let a, b, and c be real numbers, and assume a > 0.
By completing the square, show that ax2 + bx+ c ≥ (4ac− b2)/(4a) for
all real x, with equality if and only if x = −b/(2a).

Exercise 7.11. Let n > 0 be an odd integer. Prove that if x < y are
real numbers, then xn < yn.

Exercise 7.12. Give a formal proof by mathematical induction that if
x1, x2, . . . , xn are real numbers, then

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.

Exercise 7.13. Let u > 0 be real and n a non-negative integer.

(a) Use induction to prove 1 + nu+ n(n−1)
2 u2 ≤ (1 + u)n.

(b) Use the binomial theorem to prove 1 + nu+ n(n−1)
2 u2 ≤ (1 + u)n.

Exercise 7.14. Let x and y be real numbers, and assume x < y.

(a) Prove that x < 1
2(x+ y) < y and x < 1

3(2x+ y) < 1
3(x+ 2y) < y.

(b) More generally, show that if 0 < t < 1, then x < (1− t)x+ ty < y.
(The expression (1− t)x + ty is called a convex linear combination
of x and y.)
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(c) If s < t are real, then (1− s)x+ sy < (1− t)x+ ty.

Exercise 7.15. Let x0 and r > 0 be real numbers. Prove that if x is
real, then

(a) |x− x0| < r if and only if x0 − r < x < x0 + r.

(b) 0 < |x− x0| < r if and only if x0− r < x < x0 or x0 < x < x0 + r.

Exercise 7.16. Use the binomial theorem to calculate 93 = (10− 1)3,
114 = (10 + 1)4, and 123 = (10 + 2)3. Do not use a calculator.

Exercise 7.17. Let r be a complex number, and let

Sn(r) =
n∑

k=0

rk = 1 + r + r2 + · · ·+ rn.

(a) Use induction to prove 1 + rSn(r) = Sn+1(r) for all n ≥ 0.

(b) Use part (a) and the identity Sn+1(r) = Sn(r) + rn+1 to prove
(1− r)Sn(r) = 1− rn+1 for all n ≥ 0.

(c) Find a closed expression (the finite geometric series formula) for
Sn(r). (Handle the cases r = 1 and r 6= 1 separately.)

(d) Calculate (and simplify):
n∑
k=0

9 ·
(

1
10

)k
,

n∑
k=0

(−1)k,
100∑
k=0

1
2 ·
(
1
4

)k
.

Exercise 7.18. With the help of the binomial theorem, expand:

(a) (a+ b)3, (a− b)3, and 1
2

[
(a+ b)3 ± (a− b)3

]
.

(b) (a+ b)4, (a− b)4, and 1
2

[
(a+ b)4 ± (a− b)4

]
.

(c) (a+ b)6. (Hint: Extend Pascal’s triangle.)

Exercise 7.19. Suppose i2 = −1. Use the binomial theorem to ex-
pand:

(a) (x+ iy)2. (b) (x+ iy)3. (c) (x+ iy)4.

In each part, separate the real and imaginary parts.

Exercise 7.20. Use the binomial theorem to establish the identities:

(a)
n∑

k=0

(
n

k

)
= 2n for n ≥ 0. (b)

n∑

k=0

(−1)k
(
n

k

)
= 0 for n ≥ 1.
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Exercise 7.21. Let α, β, and γ be complex numbers, and n ≥ 0 an
integer. State and prove a “trinomial theorem” for (α + β + γ)n.

Exercise 7.22. Let n ≥ 2 be an integer, and consider the complex
number ζ = e2πi/n, an nth root of unity, see Example 7.42. Prove that

1 + ζ + ζ2 + · · ·+ ζn−1 =
n−1∑

k=0

ζk = 0

in two ways:

(a) Using the geometric series formula from Exercise 7.17.

(b) Calling the unknown sum S, and multiplying by ζ.

Exercise 7.23. Let n ≥ 2 be an integer.

(a) Show that the polynomial zn − 1 factors as

zn − 1 = (z − 1)(z − ζ)(z − ζ2) . . . (z − ζn−1) =
n−1∏

k=0

(z − ζk).

Hint: Each side has the same roots and the same leading coefficient.

(b) Use part (a) and the geometric series formula to show that

n−1∑

j=0

zj = 1 + z + z2 + · · ·+ zn−1 =
n−1∏

k=1

(z − ζk).

(c) By setting z = 1 in part (b), prove that

n =
n−1∏

k=1

(1− ζk) =
n−1∏

k=1

|1− ζk|.

[This identity has a beautiful geometric interpretation: Inscribe a
regular n-gon in the unit circle. Fix a vertex, and consider the
(n− 1) chords joining that vertex to each of the other vertices. The
product of the lengths of these chords is n, the number of sides of
the polygon.]
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Exercise 7.24. Under modest technical assumptions, a complex-valued
function f on the interval [−π, π] can be approximated by Fourier poly-
nomials, namely “linear combinations” of the form

a0
2

+
N∑

k=1

[
ak cos(kφ) + bk sin(kφ)

]
, ak, bk complex scalars.

The identities below are useful in showing that a suitable sequence of
Fourier polynomials “converges to f”.

Let φ be a real number. Recall that by Exercise 9.15,

cosφ =
eiφ + e−iφ

2
, sinφ =

eiφ − e−iφ
2i

.

(a) Prove that if n ≥ 0, then

n∑

k=−n
eikθ = 1 + 2

n∑

k=1

cos(kθ).

Hint: On the left, pair up the terms eikθ and e−ikθ.

(b) Sum the left-hand series in the preceding part, and prove that

1 + 2
n∑

k=1

cos(kθ) =
sin(n+ 1

2)θ

sin 1
2θ

.

Hints: Use the geometric series formula from Exercise 7.17; multiply
and divide the resulting fraction by e−iθ/2; and use the formula
above for sinφ.

Exercise 7.25. This question requires facts from calculus about infi-
nite series. Let s > 1 be a real number.

(a) Show that if p is prime, then

∞∑

k=0

1

(ps)k
= 1 +

1

ps
+

1

(ps)2
+

1

(ps)3
+ · · · = 1

1− p−s .

(b) Argue formally that

∞∑

n=1

1

ns
=

∏

p prime

1

1− p−s .

Hint: Multiply the identities in (a) over all primes p, and use the
Fundamental Theorem of Arithmetic.



Chapter 8

Completeness and Topology

Calculus is built on the idea of a “limit”. Informally, “f(x) approaches L
as x approaches a” means “we can make f(x) as close to L as we like
by taking x sufficiently close to a”.

The problem is, two distinct real or complex numbers f(x) and L are
separated by a “gap” of fixed, finite size. Eventually, mathematicians
came to formulate the definition of a limit in terms of sets of numbers.
This chapter introduces “prototypical” sets, intervals and disks, and
lays groundwork for the study of limits in Chapter 10.

8.1 Sets of Real Numbers

Definition 8.1. Let a and b be real numbers with a < b. The sets

(a, b) = {x in R : a < x < b}
[a, b] = {x in R : a ≤ x ≤ b}

are called, respectively, the open interval and the closed interval with
endpoints a and b.

For either of these intervals, the center is the midpoint x0 = 1
2(b+a),

the length is b− a = 2r, and half the length is the radius, r = 1
2(b− a).

a = x0 − r b = x0 + rx0

r︷ ︸︸ ︷

Definition 8.2. Let x0 be a real number, and r a positive real number.
When we wish to emphasize the center and radius of an interval, we

129
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use the notation
Br(x0) = (x0 − r, x0 + r),

and call this set the (open) interval of radius r about x0.

Remark 8.3. By Exercise 7.15, if x0 = 1
2(b+ a) and r = 1

2 |b− a|, then

(a, b) = {x in R : |x− x0| < r}, [a, b] = {x in R : |x− x0| ≤ r}.

Definition 8.4. Let a be a real number. We define unbounded open
and closed intervals by

(−∞, a) = {x in R : x < a} (a,∞) = {x in R : a < x},
(−∞, a] = {x in R : x ≤ a} [a,∞) = {x in R : a ≤ x}.

Remark 8.5. The symbols −∞ and∞ do not denote real numbers, but
are merely place-holders for an omitted inequality.

Example 8.6. If a < b, then (a, b) = (−∞, b) ∩ (a,∞), etc.

Operations on Sets

In Chapter 2, we encountered the complement of a set, the difference
of two sets, and the union or intersection or an arbitrary family of sets.
Starting from closed and open intervals, these operations can be used
to construct interesting sets of real numbers, or to express properties
of the real number system.

Example 8.7. For all real a, we have (−∞, a) = R \ [a,∞), etc.

Definition 8.8. Let x0 be a real number, and let r > 0. We define the
deleted interval B×r (x0) of radius r about x0 to be the set

Br(x0) \ {x0} = (x0 − r, x0) ∪ (x0, x0 + r)

= {x in R : 0 < |x− x0| < r}.

That is, B×r (x0) is the interval Br(x0) from which the center x0 has
been removed.

Br(x0)

B×
r (x0)x0 − r x0 x0 + r
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Example 8.9. Let a be a real number. The one-element set {a} is
called a singleton. Every set can be written as the union of its singleton
subsets:

A =
⋃

a∈A
{a}.

Definition 8.10. Assume A ⊆ R, and let c be a real number. The set

c+ A = {c+ a : a ∈ A}

is called the translation of A by c. The set

cA = {ca : a ∈ A}

is called the scaling of A by c. In particular, −A = {−a : a ∈ A} is the
reflection of A across the origin.

Remark 8.11. If c = 0, then c + A = A and cA = {0}. In practice, we
almost always assume c 6= 0.

Definition 8.12. If A and B are non-empty sets of real numbers, we
define their sum and product to be

A+B = {a+ b : a ∈ A and b ∈ B} =
⋃

a∈A
a+B,

AB = {ab : a ∈ A and b ∈ B} =
⋃

a∈A
aB.

Example 8.13. The sum of two integers is an integer, and the sum of
two rational numbers is a rational number: Z+Z = Z, and Q+Q = Q.

Since every real number x may be written uniquely as the sum of an
integer n and a real number r with 0 ≤ r < 1, as have Z + [0, 1) = R.

Example 8.14. Let q ≥ 1 be an integer. The set

1
qZ = {p/q in R : p ∈ Z}

consists of all rational numbers that can be represented as a (possi-
bly improper and/or non-reduced) fraction whose denominator is pre-
cisely q.

The elements of 1
qZ are spaced regularly along the number line, with

adjacent elements separated by a distance of 1/q, Figure 8.1.
If q and q′ are positive, then 1

qZ ⊆ 1
q′Z if and only if q divides q′.



132 INTRODUCTION TO PROOFS
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Figure 8.1: The sets 1
qZ and QN .

Example 8.15. Let N ≥ 1 be an integer. The set

QN =
N⋃

q=1

1
qZ

consists of all rational numbers that can be represented as a (possibly
improper and/or non-reduced) fraction whose denominator is no larger
than N .

The sets QN are nested outward : QN ⊆ QN+1 = QN ∪ 1
N+1Z.

Example 8.16. With the notation of Examples 8.14 and 8.15, the set
of rational numbers can be expressed in two ways as an infinite union:

Q =
∞⋃

q=1

1
qZ =

∞⋃

N=1

QN .

Example 8.17 (The Cantor ternary set). Let [a, b] be an arbitrary
closed interval. The weighted averages

a = 1
3(3a) < 1

3(2a+ b) < 1
3(a+ 2b) < 1

3(3b) = b

subdivide the interval into three pieces of equal length. The result of
“removing the (open) middle third” of [a, b] is the set

[a, b]̌ = [a, b] \
(
1
3(2a+ b), 13(a+ 2b)

)
=
[
a, 13(2a+ b)

]
∪
[
1
3(a+ 2b), b

]
.

The closed intervals
[
a, 13(2a+ b)

]
and

[
1
3(a+ 2b), b

]
will be called the

components of [a, b]̌ in this context.
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Recursively construct a family of sets as follows. Let K0 = [0, 1]
be the closed unit interval. Then let K1 be the result of removing
the middle third of K0, let K2 be the result of removing the middle
third of each component of K1, and generally, let Kn+1 be the result
of removing the middle third of each component of Kn.

0
1
3

2
3 1

K0

K1

K2

K3

K4

K5

K6

Figure 8.2: Approximations to the Cantor ternary set.

Mathematical induction shows the set Kn is a union of 2n compo-
nents, each of length 3−n. The sets Kn are nested inward : Kn ⊃ Kn+1

for each n ≥ 0.

The intersection

K =
∞⋂

n=0

Kn

is called the Cantor ternary set, or simply “the Cantor set”. Each
endpoint of Kn is an element of Kn+1, and consequently “survives”
in the intersection. The Cantor set therefore contains the union of the
endpoints of the sets Kn. Since Kn has 2n+1 endpoints, K has infinitely
many elements. (K also contains “non-endpoint” elements.)

The Cantor set is self-similar. Precisely, K = 1
3K ∪ 1

3(K + 2);
the Cantor set is a union of two disjoint subsets, each a scaled copy
one-third the size of the entire set.

8.2 Upper and Lower Bounds

Definition 8.18. Let A be a set of real numbers. A real number U is
an upper bound of A if x ≤ U for every x in A. If there exists an upper
bound of A, we say A is bounded above (in R).
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A real number L is a lower bound of A if L ≤ x for every x in A. If
there exists a lower bound of A, we say A is bounded below (in R).

The set A is bounded if A is bounded above and bounded below.

Example 8.19. Let a < b be real numbers. The interval [a, b] is
bounded. The left-hand endpoint a is a lower bound, and the right-
hand endpoint b is an upper bound.

Every subset of a bounded set is obviously bounded. For example,
the open interval (a, b) and the Cantor set K ⊆ [0, 1] are bounded.

Example 8.20. The set N of natural numbers is bounded below; 0 is
a lower bound. As we will see presently (Theorem 8.44), N is not
bounded above in R. In other words, for every real number x, there
exists a natural number n such that x < n.

The set of integers is not bounded above or below in R, nor is any
set that contains Z; thus Q and R are not bounded above or below.

Remark 8.21. If A ⊆ R, then the following are equivalent:

(i) L is a lower bound of A and U is an upper bound of A.

(ii) A ⊆ [L,U ].

Remark 8.22. If U is an upper bound of A and if U < U ′, then U ′ is
an upper bound of A by transitivity of inequality. Similarly, if L is a
lower bound of A and if L′ < L, then L′ is also a lower bound of A.

xL′ L U U ′

A︷ ︸︸ ︷Lower bounds L︷ ︸︸ ︷ Upper bounds U︷ ︸︸ ︷

Proposition 8.23. A subset A of R is bounded if and only if there
exists a positive real number M such that |x| ≤M for all x in A.

Proof. If there exists an M > 0 such that |x| ≤M for all x in A, then
−M ≤ x ≤ M for all x in A, i.e., L = −M and U = M are lower and
upper bounds of A, respectively.

Conversely, if L ≤ x ≤ U for all x in A, take M = 1+max
(
|L|, |U |

)
.

For all x in A, we have −M < |L| ≤ L ≤ x ≤ U ≤ |U | < M .

Remark 8.24. In practice, we often choose “symmetrical” upper and
lower bounds for a bounded set.
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Maxima and Minima

Definition 8.25. Let A be a non-empty set of real numbers. A real
number M in A is called the maximum of A or the largest element of A
if x ≤M for every x in A.

A real number m in A is called the minimum of A or the smallest
element of A if m ≤ x for every x in A.

Example 8.26. A finite set of real numbers A = {a1, a2, . . . , an} has
a maximum and a minimum, see Exercise 7.9.

Example 8.27. A closed interval [a, b] has a smallest element a and a
largest element b.

Example 8.28. Let a < b be real numbers. The open interval (a, b) is
bounded below by a and bounded above by b, but contains no smallest
or largest element: If x ∈ (a, b), i.e., if a < x < b, then by Exercise 7.14,

a < 1
2(a+ x) < x < 1

2(x+ b) < b.

In words, 1
2(a+x) in (a, b) is smaller than x (so x is not the minimum),

and 1
2(x+ b) in (a, b) is larger.

Remark 8.29. We often write M = maxA and m = minA. If a set A
has a largest element maxA, then A is bounded above by maxA. Con-
trapositively, if A is not bounded above, then A has no largest element.
Analogous remarks hold for lower bounds and smallest elements.

Note carefully that a bounded, non-empty set A need not have a
maximum element or minimum element, see Example 8.28.

Suprema and Infima

Definition 8.30. Let A be a set of real numbers that is bounded above.
A real number β is called a least upper bound or supremum of A if

(i) x ≤ β for all x in A, i.e., β is an upper bound of A.

(ii) For every upper bound U of A, we have β ≤ U .

Lemma 8.31. If A ⊆ R, and β and β′ are suprema of A, then β = β′.

Proof. By hypothesis, β′ is an upper bound of A, so β ≤ β′ by condi-
tion (ii). Reversing roles, β′ ≤ β.
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Remark 8.32. We are therefore justified in writing supA to denote the
least upper bound of A; the symbol supA may signify no number at
all, but it never signifies more than one.

If A has a largest element, then supA = maxA. Otherwise, supA is
the leftmost number lying to the right of every element of A.

Remark 8.33. The completeness axiom says that if A is a non-empty
set of real numbers that is bounded above, then supA ∈ R.

Proposition 8.34. Let A be a set of real numbers having a least upper
bound β. Then β is the unique number satisfying the conditions

(i) If x ∈ A, then x ≤ β.

(ii)′ For every ε > 0, there exists an x in A such that β − ε < x.

Proof. Conceptually, the conditions (ii) and (ii)′ are contrapositives.

In other words, β is the least upper bound of A if and only if every
upper bound U of A satisfies β ≤ U . The contrapositive says that for
every U < β, U fails to be an upper bound of A. That is, for every
ε > 0, there exists an x in A such that U = β − ε < x.

Everything said above for upper bounds has a corresponding con-
cept or statement for lower bounds.

Definition 8.35. A number α is called a greatest lower bound or infi-
mum of A if

(i) α is a lower bound of A.

(ii) If L is a lower bound of A, then L ≤ α.

Remark 8.36. Geometrically, an infimum of A lies to the left of A, but
is the rightmost such point. Infima are unique (if they exist), so we
are justified in writing inf A. For practice, write out an alternative
characterization of infima corresponding to Proposition 8.34.

inf A supAx

A︷ ︸︸ ︷Lower bounds L︷ ︸︸ ︷ Upper bounds U︷ ︸︸ ︷
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Extended Real Numbers

Definition 8.37. Let +∞ and −∞ denote objects that are not real
numbers, and extend the ordering on the real numbers by declaring that
−∞ < x < +∞ for every real number x. The set R = R∪{−∞,+∞}
is called the extended real number system.

Remark 8.38. As yet we make no attempt to define addition or multi-
plication involving +∞ or −∞.

Definition 8.39. If A ⊆ R is arbitrary, we write supA = +∞ if and
only if A is not bounded above, and write inf A = −∞ if and only if
A is not bounded below.

Remark 8.40. Every set A of real numbers has an infimum and a supre-
mum in the extended real number system.

If A = ∅, then supA = −∞ (because every extended real number
is an upper bound) and inf A = +∞. The empty set is the only set
whose supremum is smaller than its infimum. If a ∈ A, then

−∞ ≤ inf A ≤ a ≤ supA ≤ +∞.

Proposition 8.41. Let A and B be non-empty sets of real numbers. If
A ⊆ B, then inf B ≤ inf A ≤ supA ≤ supB.

Proof. Every lower bound of B is a fortiori a lower bound of A. In
particular, inf B ≤ inf A. Similarly, supA ≤ supB.

8.3 More About Suprema

Scaling or translating a bounded set of real numbers affects the supre-
mum in a natural way.

Proposition 8.42. Let A be a bounded set of real numbers, and let
k be a real number.

(i) sup(k + A) = k + supA.

(ii) If k ≥ 0, then sup(kA) = k supA.

(iii) If k > 0, then sup(−kA) = −k inf A.
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Example 8.43. If A = [a, b] is an interval, then k+A = [k+ a, k+ b].
If k ≥ 0, then kA = [ka, kb] and −kA = [−kb,−ka]. In each case,
the suprema can be read off by inspection. This is a useful way of
remembering the conclusion of Proposition 8.42.

Proof. The strategy in each part is to show that the right-hand side
satisfies the two conditions for a supremum in Definition 8.30.

(i). Since k + A = {x′ in R : x′ = k + x for some x in A}, a real
number U is an upper bound of A if and only if x ≤ U for all x in A,

if and only if x′ = k + x ≤ k + U for all x′ in k + A,

if and only if k + U is an upper bound of k + A.

But supA is an upper bound of A, so k + supA is an upper bound
of k + A. By Definition 8.30 (ii), sup(k + A) ≤ k + supA.

Conversely, sup(k+A) is an upper bound of k+A, so sup(k+A)−k
is an upper bound of A. By Definition 8.30 (ii), supA ≤ sup(k+A)−k,
or k + supA ≤ sup(k + A).

(ii). If k = 0, then kA = {0} and the claim is obvious. Assume,
therefore, that 0 < k. The proof in this case is nothing but a mechanical
modification of the preceding argument. The main idea is that mul-
tiplication or division by k preserves the sense of an inequality since
0 < k, so a real number U is an upper bound of A if and only if kU is
an upper bound of kA. Just as in the preceding argument, k supA is an
upper bound of kA, so sup(kA) ≤ k supA, and sup(kA)/k is an upper
bound of A, so k supA ≤ sup(kA).

(iii). Since −k < 0, multiplication or division by −k reverses in-
equalities. That is, L is a lower bound of A if and only if U ′ = −kL
is an upper bound of −kA. Particularly, −k inf A is an upper bound
of −kA, so sup(−kA) ≤ −k inf A, and sup(−kA)/(−k) is a lower bound
of A, so sup(−kA)/(−k) ≤ inf A, or −k inf A ≤ sup(−kA).

The Archimedean Property

Theorem 8.44 (The Archimedean property). For every number x,
there exists a non-negative integer n such that x < n.

Remark 8.45. In words, the set N of natural numbers is not bounded
above in R. (Note that N is bounded above in R; +∞ is an upper
bound.)
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Proof. Suppose to the contrary that there exists a real number x such
that n ≤ x for every natural number n. This means, by definition, that
N is bounded above in R. By the completeness axiom, there exists a
least upper bound ω in R.

By Proposition 8.34 with ε = 1, the real number ω − 1 < ω is not
an upper bound of N, so there exists a natural number n0 such that
ω − 1 < n0. But we would then have ω < n0 + 1, and n0 + 1 ∈ N
by the definition of the natural numbers, contradicting the fact that
ω = sup N. Contrapositively, if the axioms for the real numbers are
logically consistent, then N is not bounded above in R.

Corollary 8.46 (The generalized Archimedean Property). If M is an
arbitrary real number and ε > 0 is an arbitrary positive real number,
there exists a positive integer n such that M < nε.

Proof. Let x = M/ε. By the Archimedean property, there exists a
positive integer n such that M/ε < n. Multiplying through by the
positive number ε gives M < nε.

Remark 8.47. Metaphorically, a journey of 1000 miles (M) can be ac-
complished one step (ε) at a time, no matter how small the steps are.

Corollary 8.48. If ε is a real number and 0 < ε, there exists a positive
integer n such that 1/n < ε. Contrapositively, if ε ≤ 1/n for every
positive integer n, then ε ≤ 0.

Proof. Set x = 1/ε, and note that 0 < x. By the Archimedean property,
there exists an integer n such that 0 < x < n. Proposition 7.11 (v)
implies that 1/n < ε.

Remark 8.49. This corollary asserts, informally, that there are no in-
finitesimal real numbers, i.e., no positive numbers that are smaller than
every reciprocal of a positive integer.

Example 8.50. The Archimedean property has noteworthy conse-
quences for families of sets. For each positive integer n, define the
open intervals An = (0, n) and Bn = (0, 1n). The Archimedean prop-
erty implies

∞⋃

n=1

An = {x in R : x > 0},
∞⋂

n=1

Bn = ∅.

In particular, a union of bounded intervals may be unbounded, and an
intersection of nested, non-empty sets may be empty.
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Density of the Rational Numbers

Definition 8.51. A set A of real numbers is dense (in R) if for every
real number x and every ε > 0, there exists a number x0 in A such that
|x− x0| < ε.

Remark 8.52. If A is dense in R, then every real number can be ap-
proximated arbitrarily closely by elements of A.

Theorem 8.53. Let x < y be distinct real numbers. There exists a
non-zero rational number r = m/n such that x < r < y.

Remark 8.54. In words, the set Q of rational numbers is dense in R:
If x ∈ R and if ε > 0, there exists a rational number r = p/q such that
x < r < y = x+ ε.

Proof. Assume first that 0 ≤ x < y. The real number ε = y − x
is positive because x < y. By Corollary 8.48, there exists a positive
integer n such that 1/n < ε. It suffices to prove that some integer
multiple r = m/n lies between x and y. Geometrically this is plausible:
By taking steps of size 1/n across the interval between x and y, we
must step in the interior at least once.

Formally, consider the set S = {p in Z+ : y ≤ p/n}. By the gen-
eralized Archimedean property, there is a positive integer p such that
y < p/n; that is, the set S is non-empty. Now, a non-empty set of
positive integers has a smallest element, say m + 1. By definition of
the set S, we have m/n < y ≤ (m + 1)/n. To complete the proof, it
suffices to prove x < m/n. But

y − m

n
≤ m+ 1

n
− m

n
=

1

n
< y − x.

Rearranging the inequality gives x < m/n. We have proven that if
0 ≤ x < y, then there exists a non-zero rational number r = m/n such
that x < r < y.

If instead x < y ≤ 0, then 0 ≤ −y < −x. By the preceding
argument, there exists a rational number r 6= 0 such that −y < r < −x,
so the non-zero rational number −r satisfies x < −r < y.

Finally, if neither alternative holds, then x < 0 < y, and by the first
part of the proof there is a rational number x < 0 < r < y.

Remark 8.55. Theorem 8.53 says that between any two real numbers
can be found a rational number. Moreover, between any two real num-
bers can be found an irrational number. For example, if x < y, then
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by Theorem 8.53 there exists a non-zero rational number r such that
x/
√

2 < r < y/
√

2, i.e., such that x < r
√

2 < y. But r
√

2 is irrational.

It is tempting to conclude that rational and irrational numbers “al-
ternate” along the number line, as if by painting rational numbers red
and irrational numbers blue, the number line would consist of alternat-
ing red and blue points. Unfortunately, this picture is utterly incorrect.
Distinct real numbers are never adjacent to each other, but instead are
endpoints of an interval containing infinitely many rational and irra-
tional numbers.

8.4 Sets of Complex Numbers

Let α = a + bi be a complex number. Recall that the absolute value
of α,

|α| =
√
αα =

√
a2 + b2,

represents the distance from 0 to α according to the Pythagorean the-
orem. If α is real, this reduces to the definition for real numbers, since√
x2 = |x| for all real x.

The complex numbers are not ordered, so the definition of an inter-
val does not have an obvious generalization. In practice, two types of
sets, disks and rectangles, generally play the role of intervals.

Definition 8.56. Let z0 be a complex number. For each positive real
number r, the sets

Br(z0) = {z in C : |z − z0| < r},
Br(z0) = {z in C : |z − z0| ≤ r},

are called the open disk and the the closed disk of center z0 and radius r.

The deleted open disk is the set

B×r (z0) = {z in C : 0 < |z − z0| < r}.

z0

r

z0

r r

z0
a+ bi

c+ di

a+ bi

c+ di
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Definition 8.57. Let a < b and c < d be real numbers. The sets

(a, b)× i(c, d) = {z in C : a < Re z < b, c < Im z < d},
[a, b]× i[c, d] = {z in C : a ≤ Re z ≤ b, c ≤ Im z ≤ d},

are called an open rectangle and a closed rectangle.

The operations of scaling and translation of a set, and of the sum
or product of two sets, are defined exactly as for sets of real numbers.

Example 8.58. If B = B1(0) is the open unit disk, the set

∞⋃

n=−∞
n+B

is the result of placing a copy of U at each integer, while

∞⋃

n=0

[
(2− 3 · 2−n) + 2−nB

]

is a sequence of shrinking disks, each tangent to its neighbors.

Example 8.59. The upper half-plane H = {z in C : Im(z) > 0}
contains an open disk about each of its points: A complex number
z0 = x0 + iy0 is in H if and only if y0 > 0, in which case By0(z0) ⊆ H.

The Triangle Inequalities

If the lengths of two sides of a planar triangle are known, the third side
cannot be longer than the sum of the lengths, and cannot be shorter
than the difference of the lengths. These inequalities, the triangle in-
equality and reverse triangle inequality, are ubiquitous in analysis.

Theorem 8.60. If α and β are complex numbers, then

(i) |α + β| ≤ |α|+ |β|.

(ii) |α− β| ≥
∣∣|α| − |β|

∣∣.
Remark 8.61. Since | − β| = |β| for all β, the signs on the left-hand
sides are arbitrary; that is,

∣∣|α| − |β|
∣∣ ≤ |α± β| ≤ |α|+ |β| for all complex α and β.
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Proof. (i). The complex numbers αβ and αβ = βα are conjugates, so
their sum is twice the real part of either. Since |Re(z)| ≤ |z| for all z,

αβ + βα = 2 Re(αβ) ≤ 2|αβ| = 2|α| |β|.

By definition,

|α + β|2 = (α + β)(α + β) = (α + β)(α + β) = αα + (αβ + βα) + ββ

≤ |α|2 + 2|α| |β|+ |β|2 =
(
|α|+ |β|

)2
.

Since the terms of each side of the desired inequality are non-negative,
|α + β| ≤ |α|+ |β|.

(ii). Apply (i) to the identity α = β + (α− β), obtaining

|α| ≤ |β|+ |α− β|, or |α| − |β| ≤ |α− β|.

Reversing the roles of α and β shows |β| − |α| ≤ |β − α|, and therefore
|α| − |β| ≥ −|β − α| = −|α− β|. Combining,

−|α− β| ≤ |α| − |β| ≤ |α− β|.

By Exercise 7.6,
∣∣|α| − |β|

∣∣ ≤ |α− β|.

Definition 8.62. Let α and β be complex numbers. The distance
between α and β is |α− β| = |β − α|.
Corollary 8.63. If α, β and γ are complex numbers, then

∣∣|α− β| − |γ − β|
∣∣ ≤ |α− γ| ≤ |α− β|+ |β − γ|.

Proof. Apply Theorem 8.60 to the identity

(α− β)− (γ − β) = (α− γ) = (α− β) + (β − γ).

Exercises

Exercise 8.1. For each positive real number r, let Or = B×r (0) be
the deleted neighborhood of radius r about 0. Determine

⋂
r Or with

justification.

Exercise 8.2. Let A be a bounded set of real numbers, and let k be
a real number. Formulate and prove a version of Proposition 8.42 for
infima.
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Exercise 8.3. For n > 1, let An = [ 1n ,
n
n+1 ]. Express the union

⋃
nAn

as an interval, with proof.

Exercise 8.4. For each positive integer n, let In = [an, bn] be a closed,
bounded interval of real numbers. Prove that if the intervals are nested
inward, i.e., if In+1 ⊆ In, then the infinite intersection

⋂
n In is non-

empty. (Compare Example 8.50, in which the sets Bn are not closed.)
Hint: Consider the sets A = {an} and B = {bn}. Show that A is
bounded above, B is bounded below, and supA ≤ inf B; conclude that
[supA, inf B] is contained in

⋂
n In.

Exercise 8.5. Let O be a non-empty open set of real numbers. This
exercise outlines a proof that O is a union of open intervals.

(a) Suppose x ∈ O, and put

ax = inf{t : (t, x) ⊆ O}, bx = sup{t : (x, t) ⊆ O}.

Prove that ax < x < bx (note strict inequalities).

(b) In the notation of part (a), prove that (ax, bx) ⊆ O, and that no
strictly larger open interval is contained in O. (An interval of the
form (ax, bx) is called a component of O.)

(c) Prove that O is the union over x in O of the components (ax, bx).

Exercise 8.6. Let O = {x in R : x 6= 0, x 6= ±1/n for all n ≥ 1}.
Sketch the set O, show O is open, and find the components of O.



Chapter 9

Mappings and Relations

Recall that if A and B are sets, then a mapping f : A→ B is a subset
f ⊆ A×B of the Cartesian product satisfying the condition:

For every a in A, there exists a unique b in B such that (a, b) ∈ f .

As in calculus, a mapping is a rule associating a unique “output” to each
“input”, but the domain and codomain, the sets of allowable inputs and
potential outputs, are an intrinsic part of the definition.

Example 9.1. Consider the familiar squaring function f(x) = x2,
where x ranges over the set of real numbers. If we set y = f(x), we
might wish to “solve” for x in terms of y. At first glance this is trivial:
set x =

√
y. Unfortunately, closer inspection reveals two fatal flaws.

First, if y < 0, there is no real x satisfying x2 = y. In this context,
the square root is undefined. Second, if y > 0, there exist two values
of x with x2 = y; the input x is not a function of the output y, so the
square root is not well-defined. In either event, we have not associated
a unique output to each input.

In high school, you learned to avoid complications with square roots
by only considering non-negative numbers y, and agreeing that

√
y al-

ways refers to the non-negative square root. Technically you are no
longer inverting the function f(x) = x2 with x real, but a different
function defined by the same formula, for which the allowable inputs
and potential outputs have been explicitly restricted.

Example 9.2. Consider longitude (measured in degrees) as a function
of position on the earth. Upon circumnavigating the earth to the east,
longitude increases by 360◦. But this cannot be the whole story; if it

145
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were, each geographic location would have multiple longitudes, any two
differing by a whole multiple of 360◦.

Instead, when you circumnavigate the globe in an eastward direc-
tion, you must cross a line where longitude “jumps down” by 360◦. This
discontinuity is a mathematical artifact of the impossibility of invert-
ing sine and cosine to recover longitude continuously as a real-valued
function of position on the earth.

The earth is approximately spherical and rotates with respect to the
distant stars. A sidereal day, or 24 hours, is the time required for the
earth to rotate 360◦ with respect to the stars. This duration is the same
for all points on the earth, but the starting time (midnight) depends on
one’s longitude. By international treaty, the earth’s surface is divided
into twenty-four time zones, each a sector of longitude 15◦ wide (with
substantial allowances for geographical and political boundaries). The
times in neighboring zones differ by one hour.

The global discontinuity of longitude has a notable practical con-
sequence: the existence of the International Date Line, an imaginary
“cut” along the surface of the earth joining the south and north poles,
along which local time “jumps” by 24 hours, affecting global travelers
and international stock traders alike.

9.1 Images, and Preimages

A variety of mathematical considerations all but require that we study
how functions act on sets.

Definition 9.3. Let f : A→ B be a mapping. If S ⊆ A, we define the
image of S under f to be the set

f(S) = {b in B : b = f(s) for some s in S} ⊆ B.

The image of f is the set f(A) ⊆ B of all values of f .

A

B

f(S)

S

f

A× B

A

B

f(A)

f

A× B
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Definition 9.4. Let f : A → B be a mapping. If T ⊆ B, we define
the preimage of T under f to be the set

f−1(T ) = {a in A : f(a) ∈ T} ⊆ A

of elements of the domain mapped into T by f .

A

B

T

f−1(T )

f

A× B

A

B

T

f−1(T ) = ∅

f

A× B

Remark 9.5. A mapping f : A → B may be viewed as a “poll” taken
of a population A, with responses in the set B. The image under f of a
set S ⊆ A is the set of responses from individuals in S. The preimage
of a set T ⊆ B is the set of individuals whose responses are in T .

Example 9.6. If A is a non-empty set, we define the identity mapping
IA : A→ A by IA(a) = a for all a in A. Under the identity map, every
set is its own image, and its own preimage.

Example 9.7. Let A and B be non-empty sets. For each b in B, there
is a constant mapping cb : A → B defined by cb(a) = b for all a in A.
The image of an arbitrary non-empty subset of A is the singleton {b}.
The preimage of a set T is either the empty set (if b 6∈ T ) or the entire
domain A (if b ∈ T ).

Proposition 9.8. Let f : A → B be a mapping, S1 and S2 subsets
of A, and T1 and T2 subsets of B. Then

(i) f(S1 ∪ S2) = f(S1) ∪ f(S2).

(ii) f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2).

(iii) f−1(T1 ∪ T2) = f−1(T1) ∪ f−1(T2).

(iv) f−1(T1 ∩ T2) = f−1(T1) ∩ f−1(T2).
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Proof. To prove two sets are equal, we must establish inclusions in both
directions. Assume S1 and S2 are subsets of A.

(The inclusion f(S1 ∪ S2) ⊆ f(S1)∪ f(S2)). If b ∈ f(S1 ∪ S2), then
by definition there exists an element a in S1 ∪ S2 such that f(a) = b.
Since either a ∈ S1 or a ∈ S2 by definition of the union of sets, either
b ∈ f(S1) or b ∈ f(S2), which means b ∈ f(S1) ∪ f(S2). This proves
f(S1 ∪ S2) ⊆ f(S1) ∪ f(S2).

(The inclusion f(S1) ∪ f(S2) ⊆ f(S1 ∪ S2)). If b ∈ f(S1) ∪ f(S2),
there exists an a in S1 ⊆ S1 ∪ S2 such that f(a) = b or there exists
an a in S2 ⊆ S1 ∪ S2 such that f(a) = b. In either case, there exists
an a in S1 ∪ S2 such that f(a) = b, which means b ∈ f(S1 ∪ S2). This
proves f(S1) ∪ f(S2) ⊆ f(S1 ∪ S2).

The other parts are entirely similar, and are left to you.

9.2 Surjectivity and Injectivity

Our inability to invert the map f : R→ R, f(x) = x2, had two aspects:
When we wrote y = f(x), some y were associated with no values of x,
and some were associated with multiple values of x.

Definition 9.9. A mapping f : A→ B is surjective if for every b in B,
there exists an a in A such that f(a) = b.

A mapping f is surjective if the preimage f−1({b}) is non-empty for
each b in B, i.e., if the image of f is the entire codomain, f(A) = B.
Geometrically, f : R→ R is surjective if every horizontal line hits the
graph of f at least once.

A

B

{b}

f−1({b})

f

A×B
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Definition 9.10. Let f : A → B be a mapping. Distinct points
a1 and a2 in A are identified by f if f(a1) = f(a2), namely if a1 and a2
are mapped to the same value by f .

A mapping f is injective if no distinct points are identified by f ,
namely, if a1 6= a2, then f(a1) 6= f(a2). Contrapositively, f(a1) = f(a2)
implies a1 = a2.

A mapping f is injective if every preimage f−1({b}) contains at
most one element. Geometrically, f : R → R is injective if every
horizontal line hits the graph of f at most once.

Remark 9.11. Continuing Remark 9.5, a mapping f : A → B is sur-
jective if every allowable answer to the poll is given by at least one
individual. Similarly, f is injective if no two people give the same re-
sponse; knowledge of the response uniquely determines the individual
who gave that response.

Definition 9.12. A mapping f : A → B is bijective if f is both
surjective and injective.

Remark 9.13. If f : A → B is bijective, then each element a in A
corresponds to exactly one element b in B. Procedurally, f “relabels”
elements of the set A using elements of B as names.

Example 9.14. Define f1 : R→ [0,∞) by f1(x) = x2. This mapping
is surjective (every non-negative real y can be written as x2 = f1(x) for
at least one real x), but not injective (since f1(−1) = 1 = f1(1), but
−1 6= 1).

Example 9.15. Define f2 : (0,∞)→ R by f2(x) = x2. This mapping
is not surjective (there is no real x such that x2 = f2(x) = −1), but is
injective. To establish injectivity, suppose a21 = f2(a1) = f2(a2) = a22.
Subtracting and factoring, we find 0 = a22 − a21 = (a2 − a1)(a2 + a1),
which implies a1 = a2 or a1 = −a2. The latter is impossible since
a1 and a2 are positive by hypothesis.

We have shown that if f2(a1) = f2(a2), then a1 = a2. Since
a1 and a2 were arbitrary, f2 is injective.

Note carefully that the mappings f1 and f2 in these examples are de-
fined by the same formula, but have distinct domains and/or codomains.

Example 9.16. Let A = {−1, 0, 1} ⊆ C. The mapping f : A → A
defined by f(z) = z2 is neither injective nor surjective. As is eas-
ily checked, f(z) = −1 has no solution (so f is not surjective) while
f(−1) = 1 = f(1) (so f is not injective).
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The mapping g : A → A defined by g(z) = z3 is bijective. In fact,
g(z) = z for all z in A.

Example 9.17. Let ζ = e2πi/3 = 1
2(−1 + i

√
3), and consider the set

A = {1, ζ, ζ2} ⊆ C×, the set of non-zero complex numbers. Since ζ is
a cube root of unity, (ζ2)2 = ζ4 = ζ and (ζ2)3 = 1.

The mapping f : A→ A defined by f(z) = z2 is bijective: 1 = f(1),
ζ = f(ζ2), and ζ2 = f(ζ).

The mapping g : A → A defined by g(z) = z3 is neither injective
nor surjective. Indeed, f(z) = 1 for every z in A.

Example 9.18. Define f : Z→ Z by f(a) = 1−a. Prove f is bijective.

(Injectivity). Let a1 and a2 be arbitrary integers, and assume that
f(a1) = f(a2). By the definition of f , 1 − a1 = 1 − a2, so a1 = a2 by
elementary algebra. Since a1 and a2 were arbitrary, f is injective.

(Surjectivity). Informally, we wish to solve b = f(a) = 1 − a for a
in terms of b. Rearrangement gives a = 1− b.

Formally, let b be an arbitrary integer, and consider the integer
a = 1− b. Since f(a) = f(1− b) = 1− (1− b) = b, we have shown that
for every integer b, there exists an integer a such that f(a) = b. This
means f is surjective.

Example 9.19. Let f : Z → Z be defined by f(a) = 1 − 2a. Prove
f is injective (one-to-one) but not surjective (onto).

(Injectivity). Let a1 and a2 be integers, and assume f(a1) = f(a2),
i.e., 1 − 2a1 = 1 − 2a2. Subtracting the left side from the right gives
0 = 2a1 − 2a2 = 2(a1 − a2). By Theorem 4.6 (ii), a1 − a2 = 0 as well.
Since f(a1) = f(a2) implies a1 = a2, f is injective.

(Non-surjectivity). To show f is not surjective, it suffices to exhibit
an integer not in the image of f . Let b = 0. The equation f(a) = b
becomes 1−2a = 0, or 1 = 2a. There exists no integer a satisfying this
condition, which means 0 is not in the image of f .

Example 9.20. Define f : Z+ → Z by

f(a) =





a− 1

2
if a is odd,

−a
2

if a is even.

Prove f is bijective. (Informally, there are just as many positive integers
as there are integers!)
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(Initial exploration). To understand f intuitively, list its first several
values. The inputs (elements of the domain) are 1, 2, 3, 4, . . . . To find
an output, determine whether the input is even or odd, and evaluate
the corresponding formula. Thus f(1) = 0 (1 is odd), f(2) = −1 (2 is
even), f(3) = 1, f(4) = −2, f(5) = 2, and so forth:

a 1 2 3 4 5 6 7 8 9

f(a) 0 −1 1 −2 2 −3 3 −4 4

In words, f alternately “counts off” one negative, one positive. Using
arrows to indicate successive values:

0−1 1−2 2−3 3−4 4

Since the same value is never achieved twice, f is injective. Since every
integer value is achieved, f is surjective. We must convert this intuition
into a formal proof.

(Injectivity). Let a1 and a2 be integers, and assume f(a1) = f(a2).
Because f is defined “piecewise”, it’s most convenient to consider three
separate cases.

Case 1: a1 and a2 both odd. By hypothesis and the definition of f ,
(a1 − 1)/2 = (a2 − 1)/2, and elementary algebra implies a1 = a2.

Case 2: a1 and a2 both even. Here, −a1/2 = −a2/2, and again we
find a1 = a2.

Case 3: a1 and a2 have opposite parity (one is odd, one is even).
Without loss of generality, we may assume a1 is odd and a2 is even.
(Otherwise, swap their names.) Since f(a2) < 0 ≤ f(a1), the hypoth-
esis f(a1) = f(a2) is false. Said contrapositively, if f(a1) = f(a2), we
are not in Case 3.

Since the conclusion a1 = a2 followed in each case, we have shown
f is injective.

(Surjectivity). Let b be an arbitrary integer, and consider two cases:
Case 1: b < 0. Let a = −2b. Since a is an even integer, we have

f(a) = −a/2 = b; there exists an a such that f(a) = b provided b < 0.
Case 2: 0 ≤ b. Let a = 1 + 2b. Since a is odd, f(a) = (a − 1)/2 =

2b/2 = b; there exists an a such that f(a) = b provided 0 ≤ b.
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Since every integer b is either negative or non-negative, we have
handled all possibilities. In each case, there exists an integer a such
that f(a) = b, so f is onto.

Example 9.21. Let A be an arbitrary set, and let P(A) be its power
set. The following argument of G. Cantor shows there is no surjection
f : A→P(A).

Let f : A → P(A) be an arbitrary mapping. For each a in A, the
value f(a) is a subset of A, so the statement a ∈ f(a) is meaningful for
each a. Let

T = {a in A : a 6∈ f(a)}.
To prove f is not surjective, it suffices to show f(t) 6= T for all t in A.
We will prove that if f(t) = T for some t, then set theory is logically
inconsistent. Contrapositively, if set theory is logically consistent then
f(t) 6= T for all t in A.

If f(t) = T , we may ask which alternative is true: t 6∈ T or t ∈ T .
By the definition of T , if t ∈ f(t) = T , then t fails to satisfy the
criterion for membership in T , so t 6∈ T . However, if t 6∈ f(t) = T ,
then t satisfies the criterion of membership, so t ∈ T . In summary,
the statement t ∈ T is logically equivalent to its negation t 6∈ T . This
completes the proof.

9.3 Composition and Inversion

Definition 9.22. Let f : A → B and g : B → C be mappings. Their
composition is the mapping g ◦ f : A→ C defined by

(g ◦ f)(a) = g
(
f(a)

)
for each a in A.

In this situation we say g is composable with f .

Remark 9.23. In words, plug the output of f into g; the resulting output
is (g ◦ f)(a).

When context clearly signifies composition of functions, the opera-
tor symbol ◦ may be omitted, and the composition g ◦ f denoted gf .

Proposition 9.24. Mapping composition is associative: If f : A→ B,
g : B → C, and h : C → D are composable mappings, then h(gf) =
(hg)f as mappings from A to D.
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Proof. If a is an arbitrary element of A, then
[
h ◦ (g ◦ f)

]
(a) = h

[(
g ◦ f

)
(a)
]

= h
[
g
(
f(a)

)]

=
(
h ◦ g

)(
f(a)

)
=
[(
h ◦ g

)
◦ f
]
(a).

Surjectivity and injectivity of mappings f and g are related to
whether or not the composition gf is surjective and/or injective. Think
of two functions “cooperating”, with g acting on the output of f . If
f achieves every value in B and g achieves every value in C, then in
tandem they achieve every value in C. Similarly, if neither g nor f
identifies any pair of distinct points, then gf does not either. Before
reading further, you should express these observations formally as log-
ical implications and try to prove them.

Proposition 9.25. Let f : A→ B and g : B → C be mappings.

(i) If f and g are surjective, then gf is surjective.

(ii) If f and g are injective, then gf is injective.

Proof. (i). Suppose f : A → B and g : B → C are surjective. Let c
in C be arbitrary. Because g is surjective, there exists a b in B such
that g(b) = c. Since f is surjective, there exists an a in A such that
f(a) = b. But (gf)(a) = g

(
f(a)

)
= g(b) = c. We have shown that for

every c in C, there exists an a in A such that (gf)(a) = c, which by
definition means gf is surjective.

(ii). Exercise 9.5 (a).

Conversely, suppose we know gf is surjective, or that gf is injective.
What can we deduce about f and g?

In our cooperation metaphor, if gf achieves every value in C, then
g itself must as well, since any value not achieved by g is certainly not
achieved by gf . Thus, if gf is surjective, then g is surjective.

Similarly, if f identifies some pair of points, then gf identifies that
pair as well, since g cannot split asunder what f has joined. Formally,
if gf is injective, then f is injective, Exercise 9.5 (b).

The following examples show nothing more can be deduced.

Example 9.26. Let f : [−1, 1] → R and g : R → [−1, 1] be defined
by f(x) = arcsinx, g(x) = sinx. The mapping f is injective but
not surjective (why?), g is surjective but not injective (why?), while
gf : [−1, 1] → [−1, 1] is the identity map (which is bijective), and
fg : R→ R is neither injective nor surjective.
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Example 9.27. An arbitrary mapping f : A → B can be “factored”
into the composition of an injection followed by a surjection. Define
γf : A→ A×B and π2 : A×B → B by

γf (a) =
(
a, f(a)

)
, π2(a, b) = b.

Geometrically, “γf lifts a to the graph of f” and “π2 projects A × B
onto the second factor.” Clearly, f = π2 ◦ γf : A → B, γf is injective,
and π2 is surjective.

Inversion of Mappings

Definition 9.28. Let A and B be sets. A mapping f : A → B is
invertible if there exists a mapping g : B → A that inverts f , i.e., such
that g ◦ f is the identity map of A and f ◦ g is the identity map of B.

Remark 9.29. If f : A→ B is invertible and g : B → A inverts f , then
(g ◦ f)(a) = a for all a in A and (f ◦ g)(b) = b for all b in B. That is,

(9.1) For all a in A and all b in B, g(b) = a if and only if f(a) = b.

Proposition 9.30. Let A and B be sets, f : A→ B a mapping.

(i) f is invertible if and only if f is bijective.

(ii) If f is invertible, there exists a unique map inverting f .

Remark 9.31. Both conclusions hold (with essentially vacuous proof) if
either A or B is the empty set. It suffices to assume A, B are non-empty.

Proof. (i). Assume f is invertible, and let g be a mapping that inverts f ,
i.e., that satisfies gf = IA and fg = IB. If f(a1) = f(a2) for some
a1 and a2 in A, applying g to both sides gives a1 = a2, so f is injective.
If b is an arbitrary element of b, and if a = g(b), then f(a) = (fg)(b) = b,
so f is surjective.

Conversely, suppose f is bijective: For each b in B, there exists a
unique a in A such that b = f(a). Define g(b) = a. This prescription
defines a mapping g : B → A that satisfies (9.1), so f is invertible.

(ii). If g1, g2 : B → A invert f , then

g1 = g1 ◦ IB = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = IB ◦ g2 = g2.

A mapping f is invertible if and only if f is injective and surjective.
We now consider what happens if each condition holds individually.
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Left Inverses

Assume f is one-to-one; not every element of B need be a value of f ,
but every value (every element of f(A), the image of A under f) is
achieved exactly once. We may define h : f(A) → A by the analog
of (9.1): For all b in f(A), h(b) = a if and only if f(a) = b.

If we apply f to a in A, then apply h to b = f(a), we find

(hf)(a) = h
(
f(a)

)
= h(b) = a for all a in A.

That is, hf = IA, the identity map on A; h is a left inverse of f .∗

In order to obtain a mapping g : B → A satisfying gf = IA, we
must “enlarge” the domain of h; any convenient “rule” will do. For
example, pick an element a0 in A arbitrarily, and define, for b in B,

g(b) =

{
a if b = f(a) for some a in A

a0 otherwise

The easy verification that gf = IA is left to you.

Example 9.32. Define f : R → R by f(x) = ex, see Figure 9.1, left.
For each y > 0 (namely, for each y in the image of f), we have y = ex

if and only if x = ln y. Define

g(y) =

{
ln y if y > 0,

0 if y ≤ 0,

see Figure 9.1, right. Then (gf)(x) = g
(
f(x)

)
= x for all x; what about

f
(
g(y)

)
?

Right Inverses

Assume f is onto; every element of B is a value of f , but some values b
may be achieved at distinct points: f(a1) = f(a2) but a1 6= a2. Define
g : B → A by the following prescription: For each b in B, use the
Axiom of Choice to pick an a in A such that f(a) = b, and define
g(b) = a.†

∗In general, fh 6= IB , the identity map on B, since (i) h is defined only on the
image of f , and (ii) the image of fh, which is a subset of the image of f , may be a
proper subset of B.

†The Axiom of Choice asserts that if {Si}i∈I is a collection of non-empty sets
indexed by a set I, it is possible to choose, for each i in I, an element xi of Si. For
finite or countable index sets I, choice is not very controversial. For “uncountably
infinite” index sets, choice is not universally-accepted among mathematicians.
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x

y

y

x

Figure 9.1: A left inverse of f(x) = ex.

It is straightforward to check that fg = IB, the identity map on B.∗

Any particular g defined this way is called a branch of f−1.

x

y

x = +
√
y

x = −√
y

y

x

Figure 9.2: Right inverses of f(x) = x2.

Example 9.33. Define f : R → [0,∞) by f(x) = x2, see Figure 9.2,
left. For each y > 0, there exist two real x such that f(x) = y, namely
x = ±√y. In particular, there are two “obvious” branches of f−1,
defined by g±(y) = ±√y for y ≥ 0, see Figure 9.2, right. (There are
infinitely many other choices, though all are discontinuous.) For any
such choice, (fg)(y) = f

(
g(y)

)
= y for all y ≥ 0. What about g

(
f(x)

)
?

Example 9.34. The squaring mapping f : C → C sends z = x + yi
to z2 = (x2 − y2) + 2xyi. In polar coordinates, the mapping takes the
form f(reiθ) = r2e2iθ.

∗In general, gf 6= IA, the identity map on A, since if f(a1) = b = f(a2) for
a1 6= a2, we cannot have both g(b) = a1 and g(b) = a2.
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Pairs of points z and −z are identified by f . Conversely, if z21 = z22 ,
then 0 = z22 − z21 = (z2 − z1)(z2 + z1), so either z2 = z1 or z2 = −z1.

The open half-plane H = {z in C : Re z > 0} contains no pair
{z,−z}, so f restricted toH is injective. OnH, the polar angle function
satisfies |θ| < π/2, so the image of H under f is contained in the “slit
plane” where |θ| < π, namely, C \ (−∞, 0].

There is a branch of inverse g+ : C \ (−∞, 0]→ H that sends each
complex number ρeiφ with |φ| < π to

√
ρeiφ/2.

There is also a branch of inverse g− : C \ (−∞, 0] → −H sending
each complex number ρeiφ with |φ| < π to −√ρeiφ/2 =

√
ρei(φ/2+π).

Each branch is undefined on the negative real axis, and neither can
be defined continuously on the negative real axis. Instead, the values
of g+ along the upper edge of the negative real axis “patch together
with” the values of g− along the lower edge of the negative real axis,
and vice versa.

9.4 Equivalence Relations

Definition 9.35. Let A be a non-empty set. A relation on A is a
subset R ⊆ A× A. Elements a and b of A are R-related, written aRb,
if (a, b) ∈ R.

Example 9.36. The equality relation = on A is defined by the diagonal
R = ∆ = {(a, a) : a ∈ A}.

A×A

a

c

b

(a, c) ∈ R

(a, b) 6∈ R

A×A

a

c

b

(a, c) 6∈ R

(a, b) ∈ R

Figure 9.3: Equality and inequality: a 6= b and a = c.

Example 9.37. The inequality relation 6= is the complement of the
equality relation, A× A \∆ = {(a1, a2) : a1 6= a2}.
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Remark 9.38. Generally, if R2 = A × A \ R1, the relations R1 and R2

are logical opposites: One relation holds for a pair of elements if and
only if the other fails for the same pair.

Example 9.39. Let A = Z be the set of integers. The less-than rela-
tion is the set R = {(n1, n2) : n1 < n2}.

(0, 0) (0, 0)

Figure 9.4: Less-than and parity on Z.

Example 9.40. Again, let A = Z. The parity relation on Z is the set
R = {(n1, n2) : n2 − n1 is even}. Two integers are related if and only
if they are both even or both odd.

Example 9.41. Let f : A → A be a mapping. Viewing f as a subset
of A×A defines the maps-to-under-f relation on A: aRb if and only if
f(a) = b, if and only if a maps to b under f .

Definition 9.42. Let R be a relation on a set A. We say R is

• reflexive if aRa for all a in A;

• symmetric if, for all a and b in A, aRb implies bRa;

• transitive if, for all a, b, and c in A, aRb and bRc imply aRc.

Example 9.43. Though not a formal example, the “friendship” rela-
tion may help you assimilate the conditions in the preceding definition.
Let A be some set of people, and let aRb mean “b is a friend of a”.

R is reflexive if and only if every person is their own friend; R is
symmetric if and only if all friendships are mutual; R is transitive if
and only if every friend-of-a-friend is a friend.
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Definition 9.44. A reflexive, symmetric, and transitive relation is an
equivalence relation.

If R is an equivalence relation on A and a ∈ A, the equivalence class
of a is the set

[a] = {x in A : aRx} ⊆ A

comprising all elements related to a.

Example 9.45. Equality is an equivalence relation on an arbitrary set:
For all a, b, and c, we have a = a (reflexivity), a = b implies b = a
(symmetry), and if a = b and b = c, then a = c (transitivity).

Inequality is symmetric, but neither reflexive nor transitive.
Less-than is transitive (if a < b and b < c, then a < c), but neither

reflexive nor symmetric.

Example 9.46. Parity is an equivalence relation on the set of integers:
For all a, b, and c, a− a is even (reflexivity), if b− a is even (aRb) then
a− b is even (bRa), and if b− a and c− b are even (aRb and bRc), then
c− a = (c− b) + (b− a) is even (aRc).

Generally, if n > 2 is an integer then congruence (modn) is an
equivalence relation on the set of integers, Exercise 9.1.

Equivalence Relations and Partitions

Let A be a non-empty set. Recall that a partition of A is a collec-
tion of non-empty, disjoint subsets whose union is A. Partitions and
equivalence relations are two ways of viewing a single mathematical
structure: Every equivalence relation gives rise to a partition, every
partition gives rise to an equivalence relation, and these associations
are inverse to each other.

Proposition 9.47. Let R be an equivalence relation on A. The equiv-
alence classes of R partition A.

Proof. Since a ∈ [a] for each a, every element of A lies in at least one
equivalence class. It remains to prove that two arbitrary equivalence
classes [a] and [b] are either disjoint or identical. To prove this it suffices
to show that if [a] ∩ [b] 6= ∅ (i.e., the classes are not disjoint), then
[a] = [b].

Let’s first run through the argument using the friendship metaphor.
If a and b have a friend in common, then a and b are themselves friends
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(transitivity). Consequently, every friend of a is a friend of b (transi-
tivity again) and vice versa, so a and b have exactly the same set of
friends.

Formally, if [a]∩ [b] 6= ∅, there exists a c in A such that c ∈ [a]∩ [b].
Consequently, aRc and bRc. By symmetry of R, aRc and cRb, and by
transitivity aRb. This means a ∈ [b] and b ∈ [a].

It is now easy to prove [a] ⊆ [b] and [b] ⊆ [a]: If x ∈ [a], then xRa,
and since aRb, transitivity guarantees xRb, meaning x ∈ [b]. Reversing
the roles of a and b completes the argument.

We have shown that non-disjoint equivalence classes are identical,
so the set of equivalence classes of R is indeed a partition of A.

Remark 9.48. Conversely, if A is partitioned into subsets {Ai}i∈I , there
is an induced equivalence relation defined by aRb if and only if there
exists an index i such that a ∈ Ai and b ∈ Ai. Informally, aRb if and
only if both elements lie in the same subset of the partition. Be sure
to convince yourself that R is an equivalence relation, and that the
partition induced by R is the original partition.

Example 9.49. The equivalence classes of the equality relation are the
singletons, sets having one element: [a] = {a} for each a in A.

Example 9.50. The parity relation on Z has two equivalence classes:
[0] = 2Z and [1] = 2Z + 1.

Partitions and Prejudice

Our minds organize the external world by categorizing, unconsciously
identifying people, objects, or phenomena that share some attribute.

Example 9.51. A physicist, a statistician, and a mathematician saw a
flock of 100 sheep, of which one was black. The physicist said, “We can
deduce that one in 100 sheep is black.” The statistician said, “No, only
that in this sample of 100 sheep, one is black.” The mathematician
corrected, “No, we can only deduce that one sheep in this sample is
black on one side.”

Often we cope fluently with such hierarchies: a particular man-
darin orange, mandarin oranges, oranges, citrus fruit, fruit. . . . At other
times, prejudice deceives us into identifying individuals according to su-
perficial characteristics (such as gender, ethnicity, religion, or scientific
field) and incorrectly presuming “all such people are alike”.
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In mathematics, we can sometimes turn prejudice to good use. Per-
haps we don’t care which integer we’re dealing with, but only if it’s
even or odd, or if it leaves a remainder of 5 on division by 12. Maybe
we’re dealing with pairs of points in the plane, but don’t care where
they’re located, only that the second is located one unit to the right of
the first. In such cases, an equivalence relation allows us to formalize
our prejudice and discard irrelevant information.

Let A be a set, R an equivalence relation on A, and {Ai}i∈I the
partition of A into equivalence classes. Each “index” i is associated
with the non-empty set Ai ⊆ A, and the index set I is in bijective
correspondence with the set of equivalence classes. We call the set
of equivalence classes the quotient of A by R, denoted I = A/R and
read “A modulo R” (or “A mod R” for short). Elements of A/R are
collections of objects in A. The equivalence relation R is “unable to
distinguish” elements of Ai, so when R “looks at” A it “sees” I = A/R.

Example 9.52. Two real numbers θ1 and θ2 determine the same long-
itude on the earth if and only if their difference is a multiple of one
full turn, say 360◦. To formalize this in the language of quotients, let
A = R be the set of real numbers (a.k.a. the number line), and define
the relation R by θ1Rθ2 if and only if θ2 − θ1 is an integer multiple
of 360. By an argument entirely similar to that given for the parity
relation in Example 9.45, R is an equivalence relation.

The set of equivalence classes is indexed by the half-open interval
[0, 360), since every angle is equivalent mod R to a unique number
between 0 and 360 (excluding 360, which is equivalent to 0). We call
this set the “space of angles”.

−720

−720 + θ

−360

−360 + θ

0

θ

360

360 + θ

720

720 + θ

[θ][0] [360]

Figure 9.5: The number line, and the space of angles.

Mappings and Equivalence Classes

Let A be non-empty, R an equivalence relation on A, and f : A→ B a
mapping. We will often be interested in trying to define an “induced”
map f̄ from the quotient set Ā = A/R to B.
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Think of the elements of an equivalence class [a] as a clique of friends
who are polled by f , the question being “Which element of B do you
map to?” If the clique responds unanimously (“We all map to b”), then
by fiat f̄ maps [a] in Ā to b in B. If every clique reaches a unanimous
decision, there is a mapping f̄ : A/R→ B defined by f̄

(
[a]
)

= f(a).
If the responses are mixed for some clique [a], then f̄ is undefined; a

mapping must be single-valued for every input, but the members of [a]
do not decide unanimously where to be mapped by f .

Definition 9.53. Let f : A→ B be a mapping, and R an equivalence
relation on A. We say f is well-defined modulo R, or f is constant
on equivalence classes of R, if aRa′ implies f(a) = f(a′). If f is well-
defined modulo R, we define the induced mapping f̄ : A/R → B by
f̄
(
[a]
)

= f(a) for each a in A.

Remark 9.54. If R is an equivalence relation on A, there is a “quotient
map” Π : A → A/R defined by Π(a) = [a]. If f : A → B is well-
defined modulo R and f̄ : A/R → B denotes the induced mapping,
then f = f̄ ◦ Π. We say “f factors through A/R”.

Example 9.55. Let A = Z be the set of integers, R the parity relation,
and f : Z → {1,−1} the mapping defined by f(a) = (−1)a. Under f ,
every even integer maps to 1 and every odd integer maps to −1, so
f is well-defined modulo parity. Intuitively, to compute (−1)a for some
integer a, we only need to know whether a is even or odd.

The quotient space A/R = {[0], [1]} = {2Z, 2Z + 1} is a set having
two elements, and the induced map f̄ : A/R = {2Z, 2Z+1} → {1,−1},
defined by

f̄
(
[0]
)

= (−1)0 = 1, f̄
(
[1]
)

= (−1)1 = −1,

is bijective.

Example 9.56. Let A = Z, R the parity relation, and f : Z → Z
defined by f(a) = a2. The integers 0 and 2 are elements of [0], but
f(0) = 0 6= 4 = f(2). Thus f is not well-defined modulo parity.

This should be no surprise: To compute the square of an integer a,
it is not enough to know whether a is even or odd.

Example 9.57. Let A = R be the set of real numbers, R the “long-
itude” relation, and define f : R → R2 by f(t) = (cos t, sin t), the
standard trigonometric parametrization of the circle, with trig func-
tions in “degrees mode”.
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[0] = [360]

[90]

[180]

[270]

[θ]

If θ2 − θ1 is an integer multiple of 360, then cos θ1 = cos θ2 and
sin θ1 = sin θ2, so f(θ1) = f(θ2). Consequently, there is an induced
mapping from the space of angles to the unit circle in the plane. In
words, f factors through locations on the earth.

Since cos θ1 = cos θ2 and sin θ1 = sin θ2 if and only if θ2 − θ1 is an
integer multiple of 360, the mapping f̄ is bijective, so the space of angles
may be regarded as the unit circle. Geometrically, each equivalence
class [θ] corresponds to a unique point of the unit circle.

Exercises

Exercise 9.1. Let n > 2 be an integer. Prove that congruence (modn)
is an equivalence relation on the set of integers.

Exercise 9.2. Let f : A → B be a mapping, and let U and V be
subsets of A. Prove the following:

(a) If U ⊆ V , then f(U) ⊆ f(V ).

(b) f(A \ U) = f(A) \ f(U).

(c) If f is injective and f(U) ⊆ f(V ), then U ⊆ V .

Exercise 9.3. Let f : A → B and g : B → C be mappings, and
assume S ⊆ A, T ⊆ C.

(a) Prove g
(
f(S)

)
= (gf)(S).

(b) Prove f−1
(
g−1(T )

)
= (gf)−1(T ).
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Exercise 9.4. Let f : A→ B be a mapping.

(a) Assume T ⊆ B is arbitrary. Prove f
(
f−1(T )

)
⊆ T , and that

equality holds if f is surjective. Give an example of a mapping f
and a set T for which the inclusion is proper.

(b) Assume S ⊆ A is arbitrary. Prove S ⊆ f−1
(
f(S)

)
, and that

equality holds if f is injective. Give an example of a mapping f and
a set S for which the inclusion is proper.

Exercise 9.5. (a) Let f : A→ B and g : B → C be injective. Prove
gf is injective. (This is the second assertion of Proposition 9.25.)

(b) Suppose gf is injective. Prove f is injective.
Suggestion: Prove the contrapositive.

Exercise 9.6. Letm and b be integers, and define a mapping f : Z→ Z
by f(x) = mx+ b.

(a) Prove f is injective if and only if m 6= 0.

(b) Find necessary and sufficient conditions on m and b for f to be
surjective. If f is bijective, find a formula for the inverse mapping.

Exercise 9.7. Let f : A → B be a mapping. If S ⊆ A, define the
restriction of f to S to be the mapping f |S : S → B defined by
f |S(a) = f(a) for all a in S.

(a) Prove that f is injective if and only if f |S is injective for every
subset S of A.

(b) Assume f is a bijection. Prove that if S is a non-empty subset
of A, then the restriction f |S is a bijection from S to f(S) and the
restriction f |A\S is a bijection from A \ S to B \ f(S).

Exercise 9.8. Let m, n, and q be positive integers.

(a) Let A be a set containing m elements, B a set containing n ele-
ments, and assume m > nq. Prove that if f : A→ B is a mapping,
then there exists a b in B such that f−1({b}) contains at least
q + 1 elements. (This result is known as the Pigeonhole Principle.
If you distribute m > nq pigeons among n holes, then some hole
contains more than q pigeons.)
Suggestion: Write B as a union of singleton sets, and use Proposi-
tion 9.8. The contrapositive may be more natural to prove.
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(b) With the same notation, let f : A→ B be a mapping. Prove that
if f is injective, then m ≤ n, and that if f is surjective, then m ≥ n.
Show by example that both converse statements are false.

(c) With the same notation, assume m = n, and let f : A → B
be a mapping. Prove f is injective if and only if f is surjective.
(Suggestion: Use part (b) to prove that f is injective if and only if
f(A) contains m elements, if and only if f is surjective.)

Exercise 9.9. Define f : C→ C by f(z) = z2.

(a) By writing z = x + iy with x and y real, calculate the real and
imaginary parts of f(z).

(b) By writing z = reiθ with r ≥ 0 and θ real, re-calculate f(z), and
use your result to describe the geometric action of the mapping f .

(c) Find the preimages of the singletons {1}, {−1}, {i}, and {ρeiφ}.

Exercise 9.10. Repeat the preceding question for f : C→ C defined
by f(z) = z3. In part (c), do you notice any “geometric pattern”?

Exercise 9.11. Let n > 1 be an integer, and define f : C → C by
f(z) = zn. By writing z = reiθ, describe the geometric action of f ,
and find the preimage of {ρeiφ}. If ρ > 0, how many points are in the
preimage, and how are these points situated geometrically in C?

Exercise 9.12. Let g : R → R be a real-valued function of one real
variable. We say g is even if g(−x) = g(x) for all x in R, and that g is
odd if g(−x) = −g(x) for all x in R. (Analogous formulas define the
notions of “even” and “odd” functions whose domain and/or codomain
is Z or any other set in which negatives are defined.)

(a) Find all functions that are both even and odd.

(b) Let f : R→ R be an arbitrary function. Show the functions

feven(x) = 1
2

[
f(x) + f(−x)

]
, fodd(x) = 1

2

[
f(x)− f(−x)

]

are even and odd, respectively.

(c) Suppose there exist an even function E and an odd function O
such that f(x) = E(x) + O(x) for all real x. Find formulas for
E and O. Hint: Compute f(−x).
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(d) Prove every function f : R → R can be written uniquely as the
sum of an even function and an odd function. These functions are
called the even part and odd part of f .

(e) Find the even and odd parts of f(x) = x3−2x2 +x+1, g(x) = ex,
and h(x) = cos x.

Exercise 9.13. The hyperbolic functions cosh and sinh are defined by

coshx = 1
2(ex + e−x), sinhx = 1

2(ex − e−x), x real.

(a) Show that cosh2− sinh2 = 1. Carefully sketch the graphs of
cosh and sinh on a single set of axes. Suggestion: First calculate
cosh± sinh.

(b) Show that for all real x,

cosh(2x) = cosh2 x+ sinh2 x, sinh(2x) = 2 coshx sinhx.

(c) Show that cosh′ = sinh and sinh′ = cosh.

(d) The hyperbolic tangent and hyperbolic secant functions are

tanh =
sinh

cosh
, sech =

1

cosh2 .

Carefully sketch their graphs on a single set of axes, show that
tanh2 = 1 + sech2, and find formulas for tanh′ and sech′.

(e) Find an algebraic formula for the inverse function tanh−1. Hint:
Solve y = tanhx for x by cross-multiplying and rearranging.

(f) Find algebraic formulas for sinh−1, and for two branches of cosh−1.
Use algebra to show the branches of cosh−1 differ by a sign.
Hint: Solve (e.g.) y = sinhx for x by multiplying through by ex

and rearranging to get a quadratic in ex; then use the quadratic
formula.

Exercise 9.14. Let x and y be arbitrary real numbers. Show that

cosh(x+ y) = cosh x cosh y + sinhx sinh y,

sinh(x+ y) = sinh x cosh y + coshx sinh y,

tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y
.
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Exercise 9.15. Let φ be a real number, and recall Euler’s formula

eiφ = cosφ+ i sinφ.

(a) Express e−iφ in terms of cosφ and sinφ.

(b) Show that

cosφ =
eiφ + e−iφ

2
, sinφ =

eiφ − e−iφ
2i

.

(c) Show that for all real φ,

cosh(iφ) = cosφ, sinh(iφ) = i sinφ.

(The hyperbolic functions are defined in Exercise 9.13.)

Exercise 9.16. Let A be a non-empty set, and let R = ∅ ⊆ A × A.
Prove R is symmetric and transitive, but not reflexive.

Exercise 9.17. Define a relation R on Z by aRb if and only if |a| = |b|.
(a) Prove R is an equivalence relation.

(b) Let f : Z→ Z be defined by f(a) = a2. Is f well-defined mod R?

(c) Let g : Z→ Z be defined by g(a) = 3a. Is g well-defined mod R?

(d) Prove f : Z→ Z is well-defined mod R if and only if f is an even
function, see Exercise 9.12.

Exercise 9.18. Let A = Z, and define a relation R by aRb if and only
if b− a is an integer multiple of 4.

(a) Prove R is an equivalence relation, and find the equivalence classes
of R, and describe the quotient Z/R.

(b) Let f : Z→ C be defined by f(a) = (−1)a. Prove f is well-defined
mod R. Is f̄ injective?

(c) Let g : Z → C be defined by g(a) = ia. Is g well-defined mod R?
If so, is ḡ injective?

Exercise 9.19. Let f : A→ A be a mapping, and suppose the “maps-
to” relation, aRb if and only if b = f(a), is an equivalence relation.
What can you say about f?
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Exercise 9.20. Let R be an equivalence relation on A. If f : A→ B is
a mapping such that a1Ra2 if and only if f(a1) = f(a2), i.e., whose level
sets are precisely the equivalence classes of R, prove that the induced
mapping f̄ : A/R→ B is injective.

Exercise 9.21. Let f : A → B be a mapping, and define a relation
on A by a1Ra2 if and only if f(a1) = f(a2).

(a) Prove R is an equivalence relation, and the equivalence classes of R
are preimages of singletons, namely level sets of f : f−1({b}) for
some b in B.

(b) Let f : R→ R be defined by f(x) = x2. Describe the equivalence
classes of f .

(c) Let f : R2 → R be defined by f(x, y) = x2 + y2. Describe the
equivalence classes of f .

Exercise 9.22. Let f : A→ B be a mapping. A mapping g : A→ B
is said to be constant on the level sets of f if f(a1) = f(a2) implies
g(a1) = g(a2). (Compare the two preceding questions.)

(a) Define f : R2 → R by f(x, y) = x2 + y2. Which of the following
are constant on the level sets of f?

g1(x, y) =
(
1−
√
x2 + y2

)2
, g2(x, y) = x2−y2, g3(x, y) = 1.

(b) For a general mapping f : A→ B, prove the following are equiva-
lent:

(i) g is constant on the level sets of f .

(ii) There exists a mapping φ : B → B such that g = φ ◦ f . (In
this situation we say “g is a function of f”.)



Chapter 10

Sequences and Convergence

The placid depiction of the real number system as a line belies com-
plexity utterly beyond human comprehension. In a precise technical
sense, there are fewer algorithms (finite-state Turing machines and ini-
tial conditions) than there are real numbers. Consequently, most real
numbers cannot be output by any computer program.

Instead, we approximate numbers by rational numbers (ratios of
integers) or by “mildly irrational” numbers. One common scheme is to
form running totals from a list of numbers, and to take “the limit as
the number of summands grows without bound”, as in

∞∑

k=0

1

k!
= 1 + 1 + 1

2! + 1
3! + 1

4! + 1
5! + . . . ,

∞∑

k=0

(−1)k

2k + 1
= 1− 1

3 + 1
5 − 1

7 + 1
9 − 1

11 + . . . .

10.1 Sequences

Definition 10.1. Let k0 be an integer, k0 +N = {k in Z : k ≥ k0} the
set of integers greater than or equal to k0.

A real sequence (ak)
∞
k=k0

is a mapping a : k0 + N→ R.

Remark 10.2. Unpacking the definition of a mapping, a sequence is a
collection of ordered pairs (k, ak) in which k ≥ k0 is an integer and
ak is a number. We call ak the kth term of the sequence.

The first coordinate k imposes an ordering on the terms ak. The
ordering of the terms is crucial; a sequence must be carefully distin-
guished from its image, i.e., from its set of terms {ak : k ≥ k0} ⊆ R.

169
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We often assume k0 = 0 or 1, and write (ak) for brevity when the
initial index is unimportant.

Example 10.3. The formulas ak = 1/(k + 1) and bk = (−1)k define
real sequences. The respective sets of terms are A = {1, 12 , 13 , 14 , . . . },
and the finite set B = {1,−1}.
Example 10.4. For each real number x, the formula ak = xk defines
a real sequence.

Example 10.5. The recursive specification

a0 = 2, ak+1 =
1

2

(
ak +

2

ak

)

defines a sequence. The next three terms are a1 = 3
2 , a2 = 17

12 , a3 = 577
408 .

Example 10.6. The recursive rule ak+1 = ak + 1
k+1 , with a0 = 0,

defines a sequence whose nth term (n ≥ 1) may be written

an = 1 + 1
2 + 1

3 + · · ·+ 1
n =

n∑

k=1

1

k
.

10.2 Convergence

In this section, we define formally what it means for a sequence to have
a limit. Though not difficult to state, the definition is easily the most
complicated logical criterion in this book. It takes practice, concerted
effort, and time to develop technical intuition for whether or not a
specific sequence has or does not have a limit.

Definition 10.7. Let (ak) be a real sequence, and let a∞ ∈ R. We say
(ak) converges to a∞, and write (ak) → a∞, if the following condition
holds:

For every ε > 0, there exists a natural number N such that
if k ≥ N , then |ak − a∞| < ε.

Remark 10.8. In words, the terms ak can be made “as close as we like”
to a∞ (i.e., within an error of ε > 0, no matter how small ε is chosen)
by “going sufficiently far out into the sequence” (i.e., considering only
terms ak with k ≥ N). Loosely, “the ak eventually get arbitrarily close
to a∞”. Note carefully that ε is chosen before N . Loosely, we choose
what is meant by “arbitrarily close” before we decide what qualifies as
“sufficiently far out”.
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Proposition 10.9. If (ak) is a real sequence that converges to a∞ and
to a′∞, then a∞ = a′∞.

Proof. Let ε > 0 be arbitrary. Since (ak) → a∞, there exists an in-
dex N1 such that if k ≥ N1, then |ak − a∞| < ε/2. Similarly, since
(ak) → a′∞, there exists an index N ′1 such that if k ≥ N ′1, then
|ak − a′∞| < ε/2.

Let N = max(N1, N
′
1). Since N ≥ N1 and N ≥ N ′1, the triangle

inequality implies

|a′∞ − a∞| = |(a′∞ − aN ) + (aN − a∞)|
≤ |a′∞ − aN |+ |aN − a∞| < (ε/2) + (ε/2) = ε.

But ε > 0 was arbitrary, which means a′∞ − a∞ = 0.

Remark 10.10. Proposition 10.9 says that a real sequence converges to
at most one number. If (ak) → a∞, we call a∞ the limit of (ak), and
write a∞ = lim

k→∞
ak.

Remark 10.11. Informally, we say “ak approaches a∞ as k → ∞”.
Indeed, the notation a∞ is meant to suggest “setting k = ∞ in the
limit”. Logically, however, this is not what convergence means. The
terms ak of a sequence (ak) are merely individual real numbers, which
do not “approach” anything. It is the sequence (i.e., the ordered list of
terms) that converges (or fails to converge) to a limit.

The ε-N Game, and Examples

Convergence of a sequence may be understood as an adversarial game.
A sequence (ak) and a putative limit a∞ are specified in advance. The
first player chooses a positive “tolerance” ε, which defines a target, the
interval Bε(a∞) = (a∞ − ε, a∞ + ε).

The second player now tries to “hit the target”, i.e., to ensure that
|ak − a∞| < ε, solely by taking k to be sufficiently large. A “successful
response” to the first player’s “challenge” is a positive integer N such
that if k ≥ N , then |ak − a∞| < ε.

If Player N is able to respond successfully to a particular ε, they
“win the round”. Otherwise Player ε wins the round.

To say (ak) → a∞ means that Player N has a winning strategy
against a perfect opponent : No matter how “skillful” Player ε is (i.e.,
no matter how small ε > 0 is chosen), Player N can always issue a
successful response.
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Success in analysis is largely a matter of learning to play the ε-N
game and its variants. When you read proofs, you may notice that
seemingly magical choices of N are made. To make these choices, the
author imagined an arbitrary ε > 0 was given, and formulated a strat-
egy for choosing a “winning” index N . The proof itself is merely a
written demonstration that Player N wins.

Remark 10.12. Yet another interpretation of convergence of a sequence
has the procedural appeal of a solitaire game. Imagine an infinite deck
of playing cards in which the kth card has the term ak of the sequence
written on its face. The cards are placed in a row in order, face up.
Now an ε > 0 is specified, and for each k, if |ak−a∞| ≥ ε, the kth card
is turned face down. At issue is whether all the cards past some point
remain face up, i.e., whether only finitely many cards must be turned.
If this is the case no matter how ε > 0 is specified, we say (ak)→ a∞.

Example 10.13. Let c be real. The sequence ak = c is called a constant
sequence. A constant sequence obviously converges to a∞ = c: For
every ε > 0 and for every k, we have |ak − a∞| = |c− c| = 0 < ε. That
is, Player N cannot lose against a perfect opponent when playing with
a constant sequence!

Example 10.14. The sequence ak = 1/(k + 1) converges to 0. Before
giving a proof, we’ll play a few rounds of the ε-N game.

If ε = 100, Player N cannot lose, and in particular may take N = 0:
Indeed, |ak − 0| = 1/(k + 1) ≤ 1 < ε regardless of k. Note carefully
that this fact by itself does not prove (ak)→ 0; Player N must be able
to win against an arbitrary ε > 0.

If ε = 0.01 = 1/100, player N may take N = 100: If k ≥ 100, then
|ak − 0| = 1/(k + 1) ≤ 1/101 < 1/100 = ε.

If ε = 1/
√

200 (assuming such a real number exists), Player N ’s goal
is to find an N such that 1/(N+1) < ε = 1/

√
200, or after rearranging,

200 < (N + 1)2. The “best” (i.e., smallest) choice, N = 14, is easy
to find in this example, but there is no harm in taking, for example,
N = 200, which is surely sufficient.

To show (ak) → 0, it suffices to construct a winning strategy for
PlayerN . Let ε > 0 be arbitrary. By Corollary 8.48 of the Archimedean
property, there exists a positive integer N such that 1/N < ε. This N
is our response. If k ≥ N , then |ak − 0| = 1/(k + 1) < 1/N < ε.

Remark 10.15. If an index N “wins” against some challenge ε > 0, then
every larger integer N ′ ≥ N also wins, because k ≥ N ′ implies k ≥ N .
It is not necessary (or desirable) to pick the smallest winning N .
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Correspondingly, making ε smaller makes the target smaller, which
makes the condition |ak − a∞| < ε “harder to meet”, and generally
forces N to be larger.

Remark 10.16. The standard idiom for picking a single N satisfying
finitely many conditions is to pick multiple Ns, each satisfying one
condition, then let our response be the largest of our choices. This was
done already in the proof of Proposition 10.9.

Example 10.17. The sequence ak = (−1)k has terms that are alter-
nately 1 and −1; precisely, the “even” terms a2` are all 1 and the “odd”
terms a2`+1 are all −1. We will show that (ak) has no limit. That is,
for every real number a∞, the statement “(ak) → a∞” is false. To
prove this, we fix a putative limit a∞ arbitrarily, then take the side of
Player ε and look for a winning strategy:

No matter what N is, k = 2N ≥ N is even, and k = 2N+1 ≥ N
is odd. We are therefore assured that |ak−a∞| takes both values
|1 − a∞| and | − 1 − a∞| = |1 + a∞| for some k ≥ N . In order
to win, Player N must make both of these quantities smaller
than ε. But in that event, the triangle inequality would imply
2 ≤ |1 − a∞| + |1 + a∞| < ε + ε = 2ε. If this inequality is not
satisfied, Player N loses.

Having reasoned thusly, Player ε chooses any ε with 0 < ε ≤ 1. For
definiteness, take ε = 1. By the preceding reasoning, there does not
exist a positive integer N such that if k ≥ N , then |ak − a∞| < ε = 1;
if such an N existed, we would have

2 ≤ |1− a∞|+ |1 + a∞| = |a2N − a∞|+ |a2N+1 + a∞| < ε+ ε = 2,

which is false. Since “(ak) → a∞” is false for every real number a∞,
the sequence (ak) =

(
(−1)k

)
has no limit.

Theorem 10.18. Let x be a real number satisfying −1 < x < 1. The
sequence (ak) = (xk) converges to 0.

Proof. Set a∞ = 0. By Corollary 7.16, if we write |x| = 1/(1 +u), then
|xk| ≤ 1/(1 + ku) for all k ≥ 0.

Fix ε > 0 arbitrarily. By the generalized Archimedean property,
there exists a natural number N such that 1/(Nu) < ε. If k ≥ N , then

|xk − a∞| = |xk| ≤
1

1 + ku
<

1

ku
≤ 1

Nu
< ε.

By definition, this means (xk)→ a∞ = 0.



174 INTRODUCTION TO PROOFS

Example 10.19. For x = 1/2 or x = −4/5, say, the conclusion of
Theorem 10.18 is not intuitively surprising. However, for a number
such as x = 0.99999999999999999999 = 1 − 10−20, a “fairly large”
exponent n may be needed to make the power xn “small”.

Remark 10.20. The sequences in Examples 10.5 and 10.6 cannot be
handled so naively from the definition. We turn next to theoretical
criteria that help resolve these examples.

10.3 Convergence Criteria

Definition 10.21. A real sequence (ak) is bounded if there exists a real
number M such that |ak| ≤M for all k.

We say (ak) is bounded above if its set of terms is bounded above,
i.e., if there exists a real number M such that ak ≤ M for all k. Any
particular M is called an upper bound for the sequence.

Similarly, (ak) is bounded below if there exists a real number m such
that m ≤ ak for all k.

Remark 10.22. Geometrically, a real sequence is bounded if there exists
an interval (of finite radius) centered at 0 that contains every term.

A real sequence is bounded above if every term lies to the left of
some fixed real number, and is bounded below if every term lies to the
right of some (other) number.

Proposition 10.23. If (ak) is a convergent sequence with limit a∞,
then

(i) (ak) is bounded.

(ii) The sequence
(
|ak|
)

converges to |a∞|.

Proof. By hypothesis, for every ε > 0, there exists an N such that if
k ≥ N , then |ak − a∞| < ε.

(i). Taking ε = 1, there exists an N such that |ak − a∞| < 1 for
k ≥ N . Let M = max(|a0|, |a1|, . . . , |aN−1|, |a∞| + 1). It suffices to
show |ak| ≤M for all k.

If 0 ≤ k < N , then |ak| ≤M by construction. If k ≥ N , the triangle
inequality implies

|ak| ≤ |a∞|+ |ak − a∞| < |a∞|+ 1 ≤M.
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In summary, |ak| ≤M for all k.

(ii). Let ε > 0, and choose N such that if k ≥ N , then |ak−a∞| < ε.
By the reverse triangle inequality,

∣∣|ak|−|a∞|
∣∣ ≤ |ak−a∞| < ε if k ≥ N .

Since ε > 0 was arbitrary,
(
|ak|
)
→ |a∞|.

Monotone Sequences

Definition 10.24. Let (ak) be a real sequence.
If ak ≤ ak+1 for all k, namely if ak ≤ ak′ whenever k ≤ k′, we say

(ak) is non-decreasing.
If ak+1 ≤ ak for all k, namely if ak′ ≤ ak whenever k ≤ k′, we say

(ak) is non-increasing.
A sequence that is either non-decreasing or non-increasing is said

to be monotone.

A slightly more general condition is useful in practice, and does not
require much extra work to accommodate.

Definition 10.25. A real sequence (ak) is eventually non-decreasing if
there exists an index N such that ak ≤ ak+1 for all k ≥ N .

Remark 10.26. By induction, if N ≤ k ≤ k′ then aN ≤ ak ≤ ak′ .

Example 10.27. The real sequence defined by ak = k2/(k2 − 500) is
eventually non-decreasing, since

k2

k2 − 500
=
k2 − 500 + 500

k2 − 500
= 1− 500

k2 − 500
,

and if k2 > 500, i.e., if k ≥ 23 = N , the denominator increases with k.

Example 10.28. The real sequences defined by ak = (−1)kk or by
ak = (−1)k/k are not eventually non-decreasing.

For practice, give definitions of eventually non-increasing and even-
tually monotone real sequences, and modify of the statement and proof
of Theorem 10.29 below to handle these types of sequence.

Theorem 10.29. If (ak) is an eventually non-decreasing sequence, then

(i) (ak) is bounded below.

(ii) (ak) converges if and only if it is bounded above.
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Proof. By hypothesis, there exists an integer N such that ak ≤ ak′
whenever N ≤ k ≤ k′. Particularly, aN ≤ ak if N ≤ k.

(i). The real number m = min(a0, a1, . . . , aN ) is a lower bound
for (ak): By construction, m ≤ ak for 0 ≤ k ≤ N . On the other hand,
if N ≤ k, then m ≤ aN ≤ ak as noted above.

(ii). (Convergent implies bounded above). By Proposition 10.23, a
convergent real sequence is bounded, hence bounded above.

(Bounded above implies convergent). Suppose there exists a real
number M such that ak ≤ M for all k. The set A = {ak : N ≤ k}
is non-empty and bounded above by M , so a∞ = supA exists by the
completeness axiom. It suffices to prove (ak)→ a∞.

Let ε > 0 be arbitrary. The number a∞ − ε < a∞ is not an upper
bound of A, so there exists an integer N0 ≥ N such that a∞− ε < aN0 .
If N0 ≤ k, then aN0 ≤ ak ≤ supA, so

a∞ − ε < aN0 ≤ ak ≤ a∞ < a∞ + ε.

Since ε > 0 was arbitrary, we have shown (ak)→ a∞.

Example 10.30. The sequence ak = 1/(k + 1) is non-increasing, and
is bounded below since every term is positive. Consequently, (ak) con-
verges to a∞ = inf{ak}. Of course, we have already seen that this
sequence converges to 0; here we have deduced a less specific conclu-
sion using a more general theorem.

Example 10.31. Consider the sequence (ak) in Example 10.5. By
mathematical induction, each term is positive and satisfies a2k − 2 > 0.
Further, the sequence is non-increasing since

ak − ak+1 = ak −
1

2

(
ak +

2

ak

)
=

1

2

(
ak −

2

ak

)
=
a2k − 2

2ak
> 0.

Consequently, lim ak exists. Note that we have shown that this sequence
converges without explicitly exhibiting the limit.

10.4 Algebraic Properties of Limits

Theorem 10.32. Let (ak) and (bk) be real sequences converging to a∞
and b∞ respectively.

(i) (ak + bk) converges to a∞ + b∞.
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(ii) (akbk) converges to a∞b∞.

(iii) If bk 6= 0 for all k and if b∞ 6= 0, then (ak/bk) converges to a∞/b∞.

Proof. (i). Let ε > 0 be arbitrary. By hypothesis, there exists an
integer N1 such that if k ≥ N1, then |ak − a∞| < ε/2. Similarly, there
exists an integer N2 such that if k ≥ N2, then |bk − b∞| < ε/2. Let
N = max(N1, N2).

If k ≥ N , the triangle inequality implies

|ak + bk − (a∞ + b∞) ≤ |ak − a∞|+ |bk − b∞| < (ε/2) + (ε/2) = ε.

Since ε > 0 was arbitrary, (ak + bk)→ a∞ + b∞.

(ii). Our goal is to make |akbk−a∞b∞| small, knowing only that we
can make |ak − a∞| and |bk − b∞| small. The following algebra idiom
is worth remembering:

akbk − a∞b∞ = akbk − a∞bk + a∞bk − a∞b∞
= (ak − a∞)bk + a∞(bk − b∞).

It suffices to make the absolute value of each summand small.
By Proposition 10.23, there exist positive real numbers L and M

such that 1 + |ak| ≤ L and 1 + |bk| ≤M for all k. Let ε be an arbitrary
real number with 0 < ε < 1, and put r = ε/2M < ε and s = ε/2L.

Since (ak) → a∞, there exists an integer N1 such that if k ≥ N1,
then |ak − a∞| < r, and since (bk) → b∞, there exists an integer N2

such that if k ≥ N2, then |bk − b∞| < s.
Let N = max(N1, N2), so that |a∞| < |aN | + ε < L. If k ≥ N , the

preceding algebra idiom gives

|akbk − a∞b∞| ≤ |ak − a∞| |bk|+ |a∞| |bk − b∞|
<

ε

2M
·M +

ε

2L
· L < ε.

Since ε > 0 was arbitrary, (akbk)→ a∞b∞.

(iii). We first prove that (1/bk)→ 1/b∞. Fix ε > 0 arbitrarily, and
put r = 1

2 min(|b∞|, ε · |b∞|2). Note that r > 0 because |b∞| > 0, and
2r/|b∞|2 ≤ ε by construction.

Because (bk) → b∞, there exists an integer N such that if k ≥ N ,
then |bk − b∞| < r. Consequently, |bk| > 1

2 |b∞|, and
∣∣∣∣

1

bk
− 1

b∞

∣∣∣∣ =
|b∞ − bk|
|bk| |b∞|

<
2r

|b∞|2
≤ ε.
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(iii) now follows immediately from (ii) by writing
ak
bk

= ak ·
1

bk
.

Example 10.33. Let m be a positive integer. The sequence (ak)
∞
k=1

defined by ak = k−m = 1/km converges to 0. When m = 1, this
assertion is proven in Example 10.14. For larger m, Theorem 10.32 (ii)
establishes the inductive step.

Example 10.34. In practice, Theorem 10.32 is often invoked without
formally defining a sequence. The theorem grants license to move a
limit into or out of an arithmetic expression:

lim
k→∞

k − 1

k + 1
= lim

k→∞

1− (1/k)

1 + (1/k)
=

1− limk(1/k)

1 + limk(1/k)
=

1

1
= 1;

lim
k→∞

2k

k2 + 1
= lim

k→∞

(2k)/k2

1 + (1/k2)
=

2 limk(1/k)

1 + limk(1/k2)
=

0

1
= 0;

lim
k→∞

(
k + 1

k

)m
=

(
lim
k→∞

k + 1

k

)m
= (1)m = 1; etc.

In the third example, the integer exponent m ≥ 0 is arbitrary, but
“fixed”, i.e., independent of k. Bringing the limit inside the parentheses
implicitly involves an inductive argument together with Theorem 10.32.

Note carefully that Theorem 10.32 does not imply

lim
k→∞

(
k + 1

k

)k
= 1.

In fact, this limit is not 1, but e, an irrational number that pervades
pure and applied mathematics.

Example 10.35. Consider once again the convergent sequence (ak) in
Example 10.5. Because the limit exists and is positive, we can evaluate
the limit by letting k →∞ on each side of the recursion relation:

ak+1 =
1

2

(
ak +

2

ak

)
→ a∞ =

1

2

(
a∞ +

2

a∞

)
.

Algebra gives a2∞ = 2. That is, 2 has a real square root,
√

2.
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Limits and Inequalities

Proposition 10.36. Let (ak) and (bk) be convergent real sequences,
with respective limits a∞ and b∞.

(i) If 0 ≤ ak for all but finitely many k, then 0 ≤ a∞.

(ii) If ak ≤ bk for all but finitely many k, then a∞ ≤ b∞.

(iii) If c ≤ ak ≤ d for all but finitely many k, then c ≤ a∞ ≤ d.

Remark 10.37. In words, “non-strict inequality is preserved in the
limit”. Note that strict inequality is not generally preserved in the
limit: We have 1/k > 0 for all k ≥ 1, but limk 1/k = 0.

Proof. (i) We prove the contrapositive: If a∞ < 0, then ak < 0 for
infinitely many k.

Put ε = −a∞/2, so ε > 0 by hypothesis. Since (ak) → a∞, there
exists an N such that if k ≥ N , then |ak−a∞| < ε. But |ak−a∞| < ε if
and only if a∞/2 < ak−a∞ < −a∞/2, and this implies ak < a∞/2 < 0.
That is, if k ≥ N , then ak < 0.

(ii) Define ck = bk − ak. By hypothesis, 0 ≤ ck for all but finitely
many k. By Theorem 10.32, (ck) converges to b∞−a∞. Part (i) implies
0 ≤ b∞ − a∞, i.e., a∞ ≤ b∞.

(iii) This follows immediately from (ii).

Divergence to Infinity

The definition of sequential convergence makes no sense if a∞ =∞ or
a∞ = −∞. The symbols ∞ and −∞ are not real numbers, so formal
inequalities such as |ak −∞| < ε have no meaning.

Nonetheless, it is useful to be able to study sequences that “ap-
proach” ∞ or −∞. Such sequences diverge (i.e., do not have a real
limit), but they still enjoy some special properties of convergent se-
quences.

Definition 10.38. Let (ak) be a real sequence. We say (ak) diverges
to ∞, denoted (ak)→∞, if the following condition holds:

For every real number M , there exists a natural number N
such that if k ≥ N , then ak > M .
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We say (ak) diverges to −∞, denoted (ak)→ −∞, if:

For every real number M , there exists a natural number N
such that if k ≥ N , then ak < M .

Example 10.39. The sequence ak = k diverges to infinity: By the
Archimedean property, if M ∈ R, there exists a natural number N
such that N > M . If k ≥ N , then ak = k ≥ N > M .

Example 10.40. Fix x > 1. The sequence ak = xk (see Example 10.4)
diverges to infinity. To see this, note that x = 1 + u for some u > 0.
By Theorem 7.15, 1 + ku ≤ xk = ak for all k ≥ 0. Fix M ∈ R, and use
the generalized Archimedean property to choose a natural number N
such that M < Nu. If k ≥ N , then

M < Nu < 1 +Nu ≤ 1 + ku ≤ xk = ak.

Since M was an arbitrary real number, (xk)→∞.

Remark 10.41. If (ak) is a real sequence that is eventually non-decreasing,
then either (ak) is bounded above (hence convergent to a finite limit),
or not bounded above (hence divergent to ∞).

Analogous remarks hold for a real sequence that is eventually non-
increasing. Consequently, an eventually monotone sequence always has
an extended real limit.

Theorem 10.42. Assume (ak) → ∞ and (bk) → b∞ with b∞ real.
Then

(i) (ak + bk)→∞.

(ii) If b∞ > 0, then (akbk)→∞. If b∞ < 0, then (akbk)→ −∞.

(iii) If ak 6= 0 for all k, then (bk/ak)→ 0.

Proof. (i) Since a convergent sequence is bounded (Proposition 10.23)
and (bk) → b∞, there exists a real number B > 0 such that |bk| ≤ B
for all k. Let M be arbitrary. Since (ak)→∞, there exists an N such
that if k ≥ N , then ak > M +B, which implies

ak + bk ≥ ak − |bk| > (M +B)−B = M.

Since M was arbitrary, (ak + bk)→∞.
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(ii) Assume b∞ > 0. Taking ε = b∞/2 > 0, there exists an N1

such that if k ≥ N1, then |bk − b∞| < ε = b∞/2. Rearranging gives
b∞/2 < bk for k ≥ N1.

Fix M arbitrarily. Since (ak) → ∞, there exists an N ≥ N1 such
that if k ≥ N , then ak > 2M/b∞. But this implies

akbk > (2M/b∞) · (b∞/2) = M,

and since M was arbitrary, (akbk) → ∞. To handle the case b∞ < 0,
multiply appropriately by −1 in the preceding proof.

(iii) Suppose ak 6= 0 for all k, so the quotient sequence (bk/ak) is
defined. As in (i), let B > 0 be a bound for |bk|. Fix ε > 0 arbi-
trarily. Since (ak) → ∞, there is an N such that if k ≥ N , then
ak > B/ε, which implies bk/ak < B(ε/B) = ε. Since ε > 0 was
arbitrary, (bk/ak)→ 0.

Remark 10.43. Theorem 10.42 may be interpreted as assigning values
to certain arithmetic expressions containing infinity: If L > 0 is real,
then

∞± L =∞, ∞ · (±L) = ±∞, ±L/∞ = 0.

Easy modifications of the preceding arguments establish that

∞+∞ =∞, −∞−∞ = −∞, ±∞ ·∞ = ±∞.

However, ∞ and −∞ are not real numbers, and the preceding “equa-
tions” must be understood as theorems about limits. By contrast, the
following expressions are undefined, in the sense that their value de-
pends on the sequences used to approximate them:

∞−∞, 0 · (±∞), ∞/∞, 0/0.

Consequently, care is required when manipulating algebraic expressions
involving∞. For example, it is true (in the “limited” sense above) that
1 +∞ =∞, but not legitimate to subtract∞, “deducing” that 1 = 0.

10.5 Subsequences

Definition 10.44. An index sequence is a strictly increasing sequence ν
of natural numbers, i.e., ν(k) ∈ N and ν(k) < ν(k + 1) for all k.
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Two useful properties are easily verified by mathematical induction.

Lemma 10.45. Let ν be an index sequence.

(i) If k < k′, then ν(k) < ν(k′).

(ii) k ≤ ν(k) for all k, and if the inequality is strict for some k0, then
the inequality is strict for all k ≥ k0.

Definition 10.46. Let a be a real sequence and ν an index sequence.
The sequence b defined by bk = aν(k) is called a subsequence of a.

Remark 10.47. In words, a subsequence of (an) is a sequence obtained
by selecting an infinite number of terms aν(1), aν(2), . . . , aν(k), . . . , in
their original ordering, i.e., subject to ν(1) < ν(2) < · · · < ν(k) < . . . .

Example 10.48. The subsequence (a2k), for which we take ν(k) = 2k,
consists of the even terms of (an). The subsequence (a2k+1), taking
ν(k) = 2k + 1, consists of the odd terms of (an).

Example 10.49. Let (an)∞n=0 be a real sequence. For each N in N,
the subsequence (an)∞n=N = (aN+k)

∞
k=0 is a tail of (an), obtained by

discarding the terms a0, . . . , aN−1. Here ν(k) = N + k.

Remark 10.50. Convergence of a sequence is determined solely by con-
vergence of an arbitrary tail; intuitively, prepending or omitting finitely
many terms cannot change the convergence or divergence of a sequence.

Remark 10.51. If some tail of a sequence has a property X, we say
the original sequence is “eventually X”. Terms such as “eventually
non-decreasing” have already been introduced. Similarly, we might say
a sequence is “eventually positive”, “eventually no larger than 1 in
absolute value”, or “eventually constant”.

Conditions such as “eventually bounded” or “eventually conver-
gent” are syntactically “legal”, but carry no meaning, because a tail
cannot be bounded, unbounded, convergent, or divergent unless the
original sequence already possesses the same property.

Proposition 10.52. Let (an) be a real sequence that converges to a∞.
If (bk) = (aν(k)) is an arbitrary subsequence, then (bk)→ a∞.

Proof. Fix ε > 0 arbitrarily, and pick an index N such that if n ≥ N ,
then |an − a∞| < ε. If k ≥ N , then ν(k) ≥ N by Lemma 10.45, so
|bk − a∞| = |aν(k) − a∞| < ε.
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Definition 10.53. Let a be a real sequence. An index n is a peak of a
if am ≤ an for all m > n.

Remark 10.54. Intuitively, a peak is a location n from which, standing
at height an and looking to the right, you can see all the way to infinity.

0 2 4 6 8 10 12 14 16 18 20

Example 10.55. If an = (−1)n4/(4 + n), then every even natural
number is a peak. (Arrows indicate unobstructed lines of sight.)

Example 10.56. A sequence a is non-increasing if and only if every
natural number is a peak of a.

If a is non-decreasing, then a has no peaks.
If a is unbounded above, then a has no peaks.

Theorem 10.57. Every real sequence has a monotone subsequence.

Proof. We consider two cases: The sequence a has infinitely many
peaks, or only finitely many. In each case, we construct a monotone
subsequence recursively.

(Infinitely many peaks). Let ν(1) be a peak. Now let m ≥ 1, and
assume inductively that there exist peaks ν(1) < ν(2) < · · · < ν(m).
Since a has infinitely many peaks, there exists a peak ν(m+1) > ν(m).
The subsequence (aν(k)) is non-increasing: By definition of a peak,
aν(k+1) ≤ aν(k) for all k.

(Finitely many peaks). Since there are only finitely many peaks,
there exists an integer ν(1) that is greater than every peak. Now let
m ≥ 1, and assume inductively that there exist indices ν(1) < ν(2) <
· · · < ν(m) such that aν(1) < aν(2) < · · · < aν(m). Since ν(m) is not a
peak, there exists an index ν(m+1) > ν(m) such that aν(m) < aν(m+1).
This completes the recursive step.

The subsequence (aν(k)) is increasing by construction.

Corollary 10.58 (The Bolzano-Weierstrass theorem). Every bounded
real sequence has a convergent subsequence.

Proof. Let a be a bounded sequence. By the theorem, there exists
a monotone subsequence (aν(k)). But a bounded, monotone sequence
converges by Theorem 10.29.
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10.6 Cauchy Sequences

In order to prove from the definition that a real sequence (ak) con-
verges, the correct “candidate” limit a∞ must be known. In practice,
unfortunately, the limit is not known. The “Cauchy criterion” refor-
mulates the definition of convergence in a way that refers only to the
terms of the sequence itself.

Definition 10.59. A real sequence a is a Cauchy sequence if the fol-
lowing condition holds:

For every ε > 0, there exists an index N such that if k and
k′ ≥ N , then |ak′ − ak| < ε.

Remark 10.60. Exchanging k and k′ has no effect on |ak′ − ak|, so (as
dictated by convenience) we may assume without loss of generality that
k′ > k, or that k′ < k.

Instead of specifying that k′ > k, we often write k′ = k + m with
m a positive integer. The “Cauchy predicate” becomes “If k ≥ N and
m > 0, then |ak+m − ak| < ε”.

Theorem 10.61. Let (ak) be a real sequence. Then (ak) converges to
some real number a∞ if and only if (ak) is a Cauchy sequence.

Proof. (Convergent implies Cauchy). Assume (ak)→ a∞, and fix ε > 0
arbitrarily. There exists a natural number N such that if k ≥ N , then
|ak − a∞| < ε/2. Consequently, if k and k′ ≥ N , then

|ak′ − ak| ≤ |ak′ − a∞|+ |a∞ − ak| < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, (ak) is Cauchy.

(Cauchy implies convergent). The proof proceeds as follows. We
first prove that every Cauchy sequence is bounded. By the Bolzano-
Weierstrass theorem, a Cauchy sequence has a convergent subsequence.
Finally, we prove that a Cauchy sequence having a convergent subse-
quence is itself convergent to the same limit.

Taking ε = 1 in the Cauchy criterion, there is an index N such that
if k and k′ ≥ N , then |ak′ − ak| < 1. In particular, |ak − aN | < 1 for
all k ≥ N . Let M = max(|a0|, |a1|, . . . , |aN−1|, |aN |+ 1). Just as in the
proof of Proposition 10.23 (ii), it follows that |ak| ≤M for all k.

Since the Cauchy sequence (ak) is bounded, the Bolzano-Weierstrass
theorem guarantees there is a subsequence (aν(k)) converging to some
real number a∞. To complete the proof, it suffices to show (ak)→ a∞.
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Fix ε > 0 arbitrarily, and pick an index N1 such that if k ≥ N1,
then |aν(k)−a∞| < ε/2. Now use the Cauchy criterion to pick N ≥ N1

such that if k and k′ ≥ N , then |ak − ak′| < ε/2.
Since ν(N) ≥ N , we have |aν(N)−a∞| < ε/2, and |ak−aν(N)| < ε/2

for all k ≥ N . By the triangle inequality, if k ≥ N , then

|ak − a∞| ≤ |ak − aν(N)|+ |aν(N) − a∞| < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, (ak)→ a∞.

10.7 Infinite Series

Definition 10.62. Let (ak)
∞
k=0 be a real sequence. We define the se-

quence (sn) of partial sums as follows:

sn =
n∑

k=0

ak = a0 + a1 + a2 + · · ·+ an.

Precisely, the partial sums are defined recursively:

s0 = a0, sn+1 = sn + an+1 for n ≥ 0.

The sequence (ak) is summable if the sequence of partial sums con-
verges to a finite limit s. In this event, we write

s = lim
n→∞

sn = lim
n→∞

n∑

k=0

ak =
∞∑

k=0

ak.

The expression on the right is called the infinite series with terms or
summands ak, and is said to converge to s.

If the sequence of partial sums does not converge, we say the infinite
series

∑
k ak diverges.

Remark 10.63. Think of a real sequence as an infinite list of credits
(non-negative terms) and debits (negative terms). The partial sums
are the “running totals” of the terms taken in a specified order. The
sum of a series, if it exists, is the net value in the limit, when “all the
terms have been added” in their specified order.

Remark 10.64. Since sn+1 − sn = an+1, if ak ≥ 0 for all k, the se-
quence of partial sums is non-decreasing. More generally, if only finitely
many ak are negative, the sequence of partial sums is eventually non-
decreasing. Similar remarks hold if at most finitely many summands
are positive.
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A few general properties are useful to record before we turn to
examples.

Theorem 10.65. Let (ak) and (bk) be summable real sequences, and
assume c ∈ R. The sequences (ak + bk) and (cak) are summable, and

∞∑

k=0

(ak + bk) =
∞∑

k=0

ak +
∞∑

k=0

bk,
∞∑

k=0

(cak) = c
∞∑

k=0

ak.

Proof. If (sn) and (tn) denote the respective sequences of partial sums
of (ak) and (bk), then (sn + tn) and (csn) are the respective partial
sums of (ak + bk) and (cak). The theorem follows immediately from
Theorem 10.32.

Proposition 10.66. Let (ak) be a real sequence. For all natural num-
bers N and m, we have:

sN+m − sN =
N+m∑

k=N+1

ak, and therefore |sN+m − sN | ≤
N+m∑

k=N+1

|ak|.

Theorem 10.67. A real sequence (ak) is summable if and only if the
sequence of partial sums is Cauchy. In particular, if (ak) is summable,
then (ak)→ 0.

Proof. The first assertion is immediate from Theorem 10.61. For the
second, fix ε > 0, and choose an index N such that if k and k′ ≥ N , then
|sk′ − sk| < ε. In particular, if k ≥ N , then |ak+1| = |sk+1 − sk| < ε.
This means (ak)→ 0.

Example 10.68. Let a 6= 0 and r be real numbers. The infinite series

∞∑

k=0

ark = a+ ar + ar2 + ar3 + . . .

is called the geometric series with first term a and ratio r.

If |r| ≥ 1, then |ark| = |a| |r|k does not converge to 0, see Exam-
ple 10.40, so the geometric series diverges.

Suppose −1 < r < 1. The key to analyzing the geometric series is
the algebraic observation that multiplying a partial sum by r “shifts”
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the summands:

sn =
n∑

k=0

ark = a+ar + ar2 + ar3 + · · ·+ arn,

rsn =
n+1∑

k=1

ark = ar + ar2 + ar3 + · · ·+ arn + arn+1.

Subtracting the second line from the first, (1− r)sn = a−arn+1. Since
r 6= 1, this equation can be solved for sn:

sn =
n∑

k=0

ark = a+ ar + ar2 + ar3 + · · ·+ arn =
a(1− rn+1)

1− r ,

the finite geometric series formula. (This formula is correct for all real r
other than 1.)

By Example 10.4, (rn)→ 0 since −1 < r < 1. By Theorem 10.32,

∞∑

k=0

ark = lim
n→∞

n∑

k=0

ark = lim
n→∞

a(1− rn+1)

1− r =
a(1− lim rn+1)

1− r =
a

1− r .

Example 10.69. The so-called harmonic series

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+ . . .

introduced in Example 10.6 has terms that decrease to 0. Nonetheless,
the harmonic series diverges. To prove this, it suffices to show the
partial sums are unbounded.

Each of the first two terms is at least 1/2. The next two terms,
1/3 and 1/4, are each no smaller than 1/4, so their sum is greater than
2 · 1/4 = 1/2.

The next four terms, 1/5, 1/6, 1/7, and 1/8, are each at least 1/8,
so their sum is greater than 4 · 1/8 = 1/2.

Similarly, the next eight terms, 1/9, 1/10, . . . , 1/16, sum to at least
8 · 1/16 = 1/2, the sixteen terms after that sum to at least 1/2, and so
on ad infinitum.

In more detail, if m ≥ 1 is an integer, then

2m∑

k=2m−1+1

1

k
≥

2m∑

k=2m−1+1

1

2m
=

2m−1

2m
=

1

2
.
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0 s1
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1
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1
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1
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1
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1
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1
7

s8

1
8

s9

1
9

Consequently,

2n∑

k=1

1

k
= 1 +

n∑

m=1

2m∑

k=2m−1+1

1

k
≥ 1 +

n∑

m=1

1

2
= 1 +

n

2
,

which is unbounded by the Archimedean property.

Tests for Summability

No single, easily-applied test determines whether a general infinite se-
ries is convergent or divergent. Instead, we develop techniques to handle
special classes of series.

Lemma 10.70. Let (ak) and (bk) be real sequences, and let (sn) and
(tn) denote the sequences of partial sums of (ak) and (bk) respectively.
If (bk) is summable, and if there exists a natural number N0 such that

|sm′ − sm| ≤ |tm′ − tm| whenever m′ > m ≥ N0,

then (ak) is summable.

Proof. If (bk) is summable, i.e., if the sequence (tn) of partial sums
converges, then (tn) is Cauchy. Thus, for every ε > 0, there exists an
index N ≥ N0 such that if m′ > m ≥ N , then |tm′ − tm| < ε. By
the hypotheses of the lemma, if m′ > m ≥ N , then |sm′ − sm| < ε as
well. This implies the sequence (sn) is Cauchy, hence convergent by
Theorem 10.61.

Theorem 10.71 (The comparison test). Let (ak) and (bk) be non-
negative real sequences, and assume ak ≤ bk for all but at most finitely
many k. If (bk) is summable, then (ak) is summable. Contrapositively,
if (ak) is not summable, then (bk) is not summable.

Proof. Let (sn) and (tn) denote the sequences of partial sums of (ak)
and (bk) respectively. By hypothesis, there exists an index N0 such
that ak ≤ bk for all k ≥ N0. If n ≥ N0 and m > 0, then

|sn+m − sn| =
n+m∑

k=n+1

ak ≤
n+m∑

k=n+1

bk = |tn+m − tn|.

The theorem follows from Lemma 10.70.
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Absolute Summability

Theorem 10.72. Let (ak) be a real sequence. If the sequence (|ak|) of
absolute values is summable, then (ak) is summable, and

∣∣∣∣∣
∞∑

k=0

ak

∣∣∣∣∣ ≤
∞∑

k=0

|ak|.

Proof. Let (sn) and (tn) denote the sequences of partial sums of (ak)
and (|ak|) respectively. By the triangle inequality,

|sn+m − sn| =
∣∣∣∣∣
n+m∑

k=n+1

ak

∣∣∣∣∣ ≤
n+m∑

k=n+1

|ak| = |tn+m − tn|

for all natural numbers n and m. If (tn) converges, then (sn) converges
by Lemma 10.70. Since

∣∣∣∣∣
n∑

k=0

ak

∣∣∣∣∣ ≤
n∑

k=0

|ak| for all n ≥ 0

the inequality in the theorem holds by Proposition 10.36.

Definition 10.73. A real sequence (ak) is absolutely summable if the
sequence (|ak|) is summable.

If (ak) is summable but (|ak|) is not, then (ak) is conditionally
summable.

Remark 10.74. Alternatively, an infinite series
∑

k ak is absolutely con-
vergent if

∑
k |ak| is convergent, and is conditionally convergent if∑

k ak converges but
∑

k |ak| diverges.

Definition 10.75. Let (ak) be a real sequence. The sequences (a+k )
and (a−k ) defined by

a+k = max(ak, 0) =
|ak|+ ak

2
, a−k = −min(ak, 0) =

|ak| − ak
2

,

are called the sequence of positive terms of (ak) and the sequence of
negative terms of (ak), respectively.
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Example 10.76. If ak = (−1/2)k for k ≥ 0, then

k = 0 1 2 3 4 5 . . .

ak = 1 −1/2 1/4 −1/8 1/16 −1/32 . . .
|ak| = 1 1/2 1/4 1/8 1/16 1/32 . . .

a+k = 1 0 1/4 0 1/16 0 . . .
a−k = 0 1/2 0 1/8 0 1/32 . . .

Remark 10.77. Each sequence (a±k ) is non-negative, so each is summable
if and only if its sequence of partial sums is bounded. Further,

ak = a+k − a−k , |ak| = a+k + a−k ,

and 0 ≤ a±k ≤ |ak| for all k.

Proposition 10.78. Let (ak) be a real sequence.

(i) (ak) is absolutely summable if and only if both sequences (a+k ) and
(a−k ) are summable.

(ii) If (ak) is conditionally summable, then both sequences (a+k ) and
(a−k ) are non-summable.

Proof. (i) If (ak) is absolutely summable, i.e., if (|ak|) is summable,
then each sequence (a±k ) is summable by comparison with (|ak|).

Conversely, if the sequences (a+k ) and (a−k ) are both summable, then
(|ak|) = (a+k + a−k ) is summable by Theorem 10.65.

(ii) By hypothesis, (ak) is summable but (|ak|) is not. If either of
(a±k ) were summable, then (|ak|) would be as well by Theorem 10.65,
since |ak| = 2a±k ∓ ak. Contrapositively, (a±k ) is not summable.

The Ratio Test

Theorem 10.79 (The ratio test). Let (ak) be a real sequence. If the
limiting ratio

ρ = lim
k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣

exists, and if ρ < 1, then
∑

k ak is absolutely convergent.
If ρ > 1, then

∑
k ak diverges.

Remark 10.80. If ρ = 1, the ratio test is inconclusive:
∑

k ak may
converge absolutely, converge conditionally, or diverge.
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Proof. Let r = (1 + ρ)/2, so that ρ < r < 1, and put ε = r − ρ, see
diagram. Since |ak+1/ak| → ρ, there exists an index N such that if
k ≥ N , then ∣∣∣∣

ak+1

ak

∣∣∣∣ < ρ+ ε = r < 1.

Rearranging, |ak+1| < |ak|r for all k ≥ N . By induction on m,

0 1ρ

r = ρ+ ερ− ε

|aN+m| < |aN |rm for all m > 0.

Consequently, we have

∞∑

k=N+1

|ak| =
∞∑

m=1

|aN+m| ≤ |aN |
∞∑

m=1

rm.

This upper bound is a convergent geometric series, so
∑

k |ak| converges
by comparison.

The assertion for ρ > 1 is left to you, Exercise 10.8.

Corollary 10.81. Let r be a real number with |r| < 1. For each positive
integer m, the series

∑
k k

mrk is absolutely convergent. Consequently,
the sequence (kmrk) converges to 0, and in particular is bounded.

Proof. Setting ak = kmrk, we have

lim
k→∞

∣∣∣∣
(k + 1)mrk+1

kmrk

∣∣∣∣ = lim
k→∞

(
1 + (1/k)

)m|r| = |r| < 1,

so
∑

k k
mrk is absolutely convergent by the ratio test. The remaining

assertions are immediate.

Alternating Series

Definition 10.82. If (ak) is a sequence of positive terms, an infinite
series ±∑k(−1)kak is said to be alternating.
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0 s0

a0 > 0

s1

a1 < 0

s2

a2 > 0

s3
a3 < 0

ℓ

Theorem 10.83 (The alternating series test). If (ak) is a non-increasing
positive real sequence, and if (ak) → 0, then the alternating series∑

k(−1)kak converges, and

∣∣∣∣∣
∞∑

k=n+1

(−1)kak

∣∣∣∣∣ ≤ |an+1|.

Proof. Assume for definiteness that the first summand, say a0, is posi-
tive, and let

sn =
n∑

k=0

(−1)kak.

If n is an arbitrary even index, then sn+2 = sn−an+1+an+2 ≤ sn since
an+2 ≤ an+1. With the same n, sn+3 = sn+1 + an+2 − an+3 ≥ sn+1.
Writing n = 2m and combining these inequalities,

s2m+1 ≤ s2m+3 ≤ s2m+2 ≤ s2m

for all m ≥ 0. Consequently, the even partial sums form a non-
increasing sequence that is bounded below by every odd partial sum,
and is therefore convergent to a real number `+ = infm s2m. Similarly,
the odd partial sums form a non-decreasing sequence that is bounded
above by every even partial sum, and is therefore convergent to a real
number `− = supm s2m+1. Since (ak)→ 0 and

`+ − `− ≤ s2m − s2m+1 = a2m+1

for all m ≥ 0, we have `+ = `−, i.e., the sequence of partial sums
converges to some real number `, and

∣∣∣∣∣
∞∑

k=n+1

(−1)kak

∣∣∣∣∣ = |`− sn| ≤ |an+1|.



CHAPTER 10. SEQUENCES AND CONVERGENCE 193

Exercises

Exercise 10.1. Consider the real sequence defined by ak = k(−1)
k
.

Show that (ak) has a subsequence converging to 0 and a subsequence
diverging to ∞.

Exercise 10.2. Construct a sequence a of positive real numbers such
that a→ 0 but a is not eventually non-decreasing.

Exercise 10.3. Let `1, `2, . . . , `m be arbitrary distinct real numbers.
Prove there exists a real sequence a such that for each i = 1, . . . ,m,
some subsequence of a converges to `i.

Exercise 10.4. Let (ak) be a sequence of positive real numbers, and
let bk = 1/ak. Prove that if (ak)→ 0, then (bk)→∞.

Exercise 10.5. Let (ak) be an integer sequence, i.e., ak is an integer
for all k. Prove that (ak) converges if and only if (ak) is eventually
constant.

Exercise 10.6. Let (ak) and (bk) be real sequences. Prove that if (bk)
is bounded and (ak)→ 0, then (akbk)→ 0.

Exercise 10.7. (The squeeze theorem) Suppose (ak), (bk), and (ck)
are real sequences, and assume there exists an N0 such that if k ≥ N0,
then ak ≤ ck ≤ bk. Prove that if (ak) and (bk) converge to the same
limit L, then limk ck exists is equal to L.

Exercise 10.8. Prove the second part of Theorem 10.79: Let (ak) be
a real sequence. If ρ = lim

k→∞
|ak+1/ak| > 1, then

∑
k ak diverges.

Exercise 10.9. Use the ratio test to determine whether the following
converge:

(a)
∞∑

k=0

10k

k!
; (b)

∞∑

k=0

k!

kk
; (c)

∞∑

k=0

kk

10k k!
; (d)

∞∑

k=0

(k!)2

(2k)!
.

Exercise 10.10. Determine the set of real x for which the following
converge:

(a)
∞∑

k=0

xk

k!
; (b)

∞∑

k=0

xk k!

kk
; (c)

∞∑

k=0

(−1)kx2k

(2k)!
; (d)

∞∑

k=1

xk

k
.
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Exercise 10.11. Determine the set of real x for which the following
converge:

(a)
∞∑

k=0

(2x− 3)k

k
; (b)

∞∑

k=0

(2x− 3)k

k2
; (c)

∞∑

k=0

k(2x− 3)k.

Exercise 10.12. Let (ak) be an absolutely summable sequence. Prove
the sequence (a2k) is absolutely summable.

Exercise 10.13. If (ak) and (bk) are real sequences, we may define a
new sequence (ck) by “shuffling” the two given sequences, i.e., c2k = ak
and c2k+1 = bk for k ≥ 0.

Write out the first six terms of (ck). Prove that (ck) converges if
and only if (ak) and (bk) converge to the same limit.

Exercise 10.14. Let (ak) be a real sequence and a∞ a real number.
Consider the following conditions:

(i) For every ε > 0, there exists an N such that if k ≥ N then
|ak − a∞| < ε.

(ii) There exists an N such that for every ε > 0, if k ≥ N then
|ak − a∞| < ε.

Are these conditions logically equivalent? If so, give a proof. If not,
find a “familiar” condition equivalent to (ii), and give an example of a
sequence satisfying (ii) but not (i).

Exercise 10.15. Let (ak) be a real sequence and a∞ a real number.
Consider the following conditions:

(i) There exists an ε > 0 such that for every integer N ≥ 0, if k ≥ N
then |ak − a∞| < ε.

(ii) For every integer N ≥ 0, there exists an ε > 0 such that if k ≥ N
then |ak − a∞| < ε.

Are these conditions logically equivalent? If so, give a proof. If not,
find a “familiar” condition equivalent to (ii), and give an example of a
sequence satisfying (ii) but not (i).

Exercise 10.16. Let a be a sequence of positive real numbers, and
assume a→ 0.

(a) Prove that for every natural number m, there exists a natural
number n > m such that an < am.
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(b) Prove that a has a strictly decreasing subsequence. Suggestion:
Use part (a) to construct a decreasing subsequence inductively.

Exercise 10.17. Let a be a real sequence that is not bounded above.
Prove there exists a strictly increasing subsequence.

Exercise 10.18. Let a be a sequence that is not eventually constant.

(a) Prove that if a is non-increasing, then a has a strictly decreasing
subsequence.

(b) Use the proof of Theorem 10.57 to prove a has a strictly monotone
subsequence.

Exercise 10.19. Let a be a non-increasing sequence of positive real
numbers, and assume a → 0. Prove there exists a positive, non-
increasing sequence b such that b→ 0 but (bk/ak)→∞.

Exercise 10.20 (Convergence in the mean). Let (ak)
∞
k=1 be a sequence

of real numbers, and define the sequence of means by

sn =
1

n

n∑

k=1

ak =
a1 + a2 + · · ·+ an

n
.

(a) Prove that if (ak)→ a∞, then (sn)→ a∞.

(b) Show that if ak = (−1)k, then the sequence of means converges.

Exercise 10.21. Let (ak)
∞
k=0 be a summable sequence. If ν : N →

N is a bijection, the infinite series with terms bk = aν(k) is called a
rearrangement of

∑
k ak.

Prove that if (ak) is absolutely summable, then every rearrangement
is summable, and has the same sum.
Hint: Fix ε > 0 arbitrarily, and choose a positive integer N such that

∞∑

k=N+1

|ak| < ε/2.

If bk = aν(k) is a rearrangement, choose N ′ greater than max{ν(k) :
0 ≤ k ≤ N}, and show that if n ≥ N ′, then

∣∣∣∣∣
n∑

k=1

bk −
∞∑

k=1

ak

∣∣∣∣∣ < ε.
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Exercise 10.22. Let (ak)
∞
k=1 be a “digit sequence”, i.e., a sequence all

of whose terms are integers between 0 and 9 inclusive.

(a) Prove that the series
∞∑

k=1

ak
10k

=
a1
10

+
a2
100

+
a3

1000
+ · · · = 0.a1a2a3 . . .

converges to a real limit between 0 and 1.
Suggestion: The geometric series formula may be useful in obtaining
an upper bound.

(b) Prove that the digit sequences (5, 0, 0, . . . ) and (4, 9, 9, 9, . . . ) give
rise to the same sum in part (a).

(c) Under what conditions do two distinct digit sequences define the
same sum in part (a)?
Suggestions: Let (ak) and (bk) be distinct digit sequences defining
the same real number, and assume (i) ak = bk for 1 ≤ k < n, and
(ii) an < bn. How much smaller than bn can an be? What can you
say about all subsequent digits of each sequence?

Exercise 10.23. Let (ak)
∞
k=1 be a sequence all of whose terms are

either 0 or 1, and (bk)
∞
k=1 be a sequence all of whose terms are either 0

or 2.

(a) Prove that the series
∞∑

k=1

ak
2k

=
a1
2

+
a2
22

+
a3
23

+ . . .

converges to an element of the unit interval [0, 1]. Conversely, show
that every element of [0, 1] can be expressed in this form.

(b) Prove that the series
∞∑

k=1

bk
3k

=
b1
3

+
b2
32

+
b3
33

+ . . .

converges to an element of the Cantor set K. Conversely, show that
every element of K can be expressed in this form in exactly one
way.
Suggestion: Consider how successive “digits” of x are related to the
location of x with respect to the approximating sets Kn.

(c) Construct a surjection from K to [0, 1].
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Chapter 11

Binary Operations

We have encountered a variety of “number-like” objects: natural num-
bers, integers, rational, real and complex numbers, residue classes, ma-
trices.

Ordinary addition of numbers may be viewed as mapping each or-
dered pair (a, b) of numbers to the number a + b. Multiplication of
numbers has precisely the same abstract description, sending an or-
dered pair of numbers to a number. Moreover, the properties of these
operations share features, including associativity, existence of identity
elements, and perhaps commutativity and existence of inverses.

This chapter discusses “binary operations”, mathematical functions
that accept an ordered pair of objects of some type and return an object
of the same type. Algebraic notions, such as associativity and identity
elements, make sense in this general setting.

Once we have established a property of general binary operations,
such as uniqueness of identity elements, we are assured the property
holds automatically each time we encounter a new example, whether it
be addition and multiplication of complex numbers, or composition of
maps from a set X to itself.

11.1 Definitions

Definition 11.1. Let A be a non-empty set. A binary operation on A
is a mapping µ : A× A→ A.

Remark 11.2. Conceptually, a binary operation is a rule for combining
two elements of A to obtain an element of A. If a and b are elements
of a, we usually write ab instead of µ(a, b). The expressions a · b or a∗ b

199
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are used to emphasize the operation, especially when more than one
binary operation is under consideration.

Example 11.3. The familiar operations of addition, multiplication,
and subtraction are binary operations on Z, the set of integers.

Division is not a binary operation on Z since, for example, 1 ÷ 0
and 1÷ 2 do not represent integers.

Example 11.4. Addition, multiplication, and exponentiation are bi-
nary operations on the set N of natural numbers.

Example 11.5. Let X be an arbitrary set, and let M (X) be the set
of all mappings f : X → X. Function composition, µ(g, f) = g ◦ f , is
a binary operation on A = M (X).

Example 11.6. Let X be an arbitrary set. The intersection operator
defines a binary operation on A = P(X), the power set of X. Similarly,
the union operator defines a binary operation on P(X).

When A is a finite set of n elements, a binary operation may be
represented by a Cayley table, an n× n tabular listing of all products,
µ(a, b) = ab being placed in the “ath row” and “bth column”.

Example 11.7. Let A = {E,O} be a set with two elements, which
we view as representing a general even integer (E) and a general odd
integer (O). The Cayley table

+ E O

E E O
O O E

expresses the fact that a sum of two even integers or two odd integers
is even, while the sum of an even and an odd integer is odd.

Example 11.8. Let A = {a, b, c} be a set with three elements. The
following Cayley tables define binary operations on A:

µ1 a b c

a a c b
b b a c
c c b a

µ2 a b c

a a b c
b b c a
c c a b

µ3 a b c

a a a a
b a b c
c a c b

We have, e.g., µ1(b, a) = b, (second row, first column of the first table),
while µ1(a, b) = c, µ2(a, b) = b, and µ3(a, b) = a from the first row,
second column of the respective tables.
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Example 11.9. Let B = {0, 1, 2}. The following tables define binary
operations on B “isomorphic to” those of Example 11.8:

µ1 0 1 2

0 0 2 1
1 1 0 2
2 2 1 0

µ2 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

µ3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

The concept of “abstractly identical” operations, formalized in Exam-
ple 11.10, boils down to relabeling.

Example 11.10. Given a binary operation · on a set A and a bijection
φ : A→ B, define a binary operation ∗ on B as follows:

(11.1) φ(a1) ∗ φ(a2) = φ(a1 · a2) for all a1 and a2 in A.

In words, attach each element b in B to its “avatar”, the unique ele-
ment a in A such that φ(a) = b. Since the binary operation · combines
pairs of avatars, Equation (11.1) tells us how to combine elements of B.

This relationship can be visualized as a “commutative diagram”,
Figure 11.1. Starting with a pair (a1, a2) in A×A, there are two ways
of getting to an element of B: (i) Multiply the elements in A (left edge)
and map the product to B by φ (bottom edge), or (ii) map the elements
individually to B (top edge) then multiply in B (right edge).

The diagram “commutes” because these two mapping compositions
yield the same value for all pairs of inputs.

A× A B × B

A B

(a1, a2) (φ(a1), φ(a2))

a1 · a2 φ(a1 · a2) = φ(a1) ∗ φ(a2)

· ∗

φ× φ

φ

Figure 11.1: Isomorphism depicted as a commutative diagram.

Example 11.11. Consider Examples 11.8 (whereA = {a, b, c}) and 11.9
(B = {0, 1, 2}). If we define φ : A → B by φ(a) = 0, φ(b) = 1,
and φ(2) = c, the respective binary operations are related as in Exam-
ple 11.10. Be sure you understand this example in detail.
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11.2 Properties of Binary Operations

Definition 11.12. Suppose µ is a binary operation on A, and S ⊆ A is
non-empty. We say S is closed under µ if µ(s1, s2) ∈ S for all s1 and s2
in S.

If S is closed under µ, then the “restricted” mapping µ : S×S → S
is a binary operation on S.

Example 11.13. Let µ : Z× Z→ Z be addition: µ(a, b) = a+ b.
The set S = 2Z of even integers is closed under addition: A sum of

even integers is even.
Similarly, the set S = Z+ of positive integers is closed.
The set S = {0, 1} is not closed under addition: s1 = 1 and s2 = 1

are elements of S, but s1 + s2 = 2 6∈ S.
The set S = 2Z + 1 of odd integers is not closed in a particularly

strong way: A sum of odd integers is never odd.

Remark 11.14. Note carefully that the existence of a single pair s1, s2
in S with µ(s1, s2) not in S is enough to prove S is not closed under µ.
Examples do not suffice to show S is closed under µ, however.

Associativity

By definition, a binary operation gives rise to “products” involving
two elements. In practice, we often wish to combine three or more
elements. This gives rise to a potential ambiguity: When we write a
product “abc”, we might mean either

(ab)c = µ
(
µ(a, b), c

)
or a(bc) = µ

(
a, µ(b, c)

)
.

In general these expressions represent different elements of A. For the
binary operation µ1 of Example 11.8, we have

(ba)c = bc = c, b(ac) = bb = a.

Definition 11.15. A binary operation µ on a set A is associative if
a(bc) = (ab)c for all a, b, and c in A.

Example 11.16. Addition and multiplication are associative opera-
tions on the set of natural numbers, on the set of integers, on the sets
of rational numbers, real numbers, and complex numbers.
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Example 11.17. Subtraction on C is not associative: If c 6= 0, then

(a− b)− c 6= a− (b− c) = (a− b) + c.

Similarly, division is not associative on the set of non-zero complex
numbers.

Example 11.18. Exponentiation defines a binary operation on N, but
this operation is not associative. Even in the special case a = b = c,
we have a(a

a) = (aa)a if and only if a = 1 or a = 2.

Example 11.19. If A is a set, then as noted earlier, mapping composi-
tion is a binary operation on M (A), the set of all mappings f : A→ A.
This operation is automatically associative by Proposition 9.24.

Example 11.20. Let A be a set. By Exercise 2.8, the operations of
intersection and union are associative binary operations on P(A), the
power set of A.

When a binary operation is associative, products of any finite num-
ber of factors may be grouped arbitrarily (preserving only the order of
the factors) without changing the result. For example,

a
(
(bc)d

)
= a
(
b(cd)

)
= (ab)(cd) =

(
(ab)c

)
d = . . . .

Rather than proving directly that any two groupings of a product have
the same value, we’ll pick one specific grouping, and show that an
arbitrary grouping has the same value.

Definition 11.21. Let A be a non-empty set equipped with a binary
operation. A product of n elements is grouped from the right if pairs of
factors are grouped from right to left:

a1

(
a2
(
a3 . . . (an−1an) . . .

))
.

Proposition 11.22. Let A be a non-empty set equipped with an asso-
ciative binary operation. If a1, . . . , an is an ordered n-tuple of elements
of A, then every grouping of these n factors has the same value as the
grouping from the right.

In particular, an arbitrary grouping of the factors taken in order
from left to right has the same value.

Proof. If n is an integer with n ≥ 3, let P (n) denote the statement:

Every m-fold product with 3 ≤ m ≤ n can be regrouped
from the right without changing the value of the product.
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The associative law says every threefold product can be regrouped
from the right without changing the value of the product; P (3) is true.

Assume inductively that P (k) is true for some integer k ≥ 3. Every
grouping of a product of (k+1) factors a1, . . . , ak+1 may be viewed as a
product A1A2 of two factors, with each of A1 and A2 a product of k or
fewer factors. By the inductive hypothesis, we may regroup A1 from
the right without changing the value of the product, say A1 = a1A

′
1.

By associativity,

A1A2 = (a1A
′
1)A2 = a1(A

′
1A2).

The product (A′1A2) has k factors, and by the inductive hypothesis can
be regrouped from the right without changing the value of the product.
The previous equation therefore states that A1A2 can be regrouped
from the right without changing the value of the product.

Identity Elements

Definition 11.23. Let (A, µ) be a set equipped with a binary opera-
tion. An element e in A is an identity element for µ if

ea = ae = a for all a in A.

A binary operation may have no identity element at all. However,
there can be at most one, for if e and e′ are identity elements for µ,
then e = ee′ (since e′ is an identity element) and ee′ = e′ (since e is an
identity element), so e = e′.

Example 11.24. The integer 0 is the identity element for addition
on Z. The integer 1 is the identity element for multiplication on Z.

Example 11.25. The 2×2 identity matrix I2 is the identity for matrix
multiplication on R2×2.

Example 11.26. There is no identity element for subtraction. In other
words, there exists no integer e such that a − e = e − a = a for every
integer a. (Why not?)

Example 11.27. An identity element can be located at a glance from
a Cayley table: The corresponding row and column of the table will
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contain the same entries as the “index” entries across the top and down
the left side. Consider the operations in Example 11.8:

µ1 a b c

a a c b
b b a c
c c b a

µ2 a b c

a a b c
b b c a
c c a b

µ3 a b c

a a a a
b a b c
c a c b

µ1 has no identity element, while a is the identity element for µ2 and
b is the identity element for µ3

Example 11.28. Let U be a universe. Since A ∪ ∅ = ∅ ∪ A = A for
every subset A ⊆ U , e = ∅ for the union operator.

Dually, since A ∩ U = U ∩ A = A for all A, e = U is the identity
element for the intersection operator.

Inverse Elements

Definition 11.29. Let (A, µ) be a set equipped with a binary opera-
tion, and assume there is an identity element for µ. If a ∈ A, then an
element b in A is an inverse of a (with respect to µ) if

ab = ba = e.

Remark 11.30. It makes no sense to ask about inverses unless µ has an
identity element. Moreover, even if µ has an identity element, a specific
element a in A may or may not have an inverse.

Remark 11.31. If µ is associative and has an identity element e, then
each element a has at most one inverse, see Exercise 11.3. Briefly,
inverses are unique with respect to an associative operation. The in-
verse of a is normally denoted a−1. A commutative binary operation is
customarily denoted +, in which case the inverse of a is denoted −a.

Example 11.32. In the set N of natural numbers, addition has identity
element 0, but no non-zero natural number has an additive inverse.

Example 11.33. In the set Z of integers, addition has identity ele-
ment 0, and every integer a has an additive inverse, −a.

Example 11.34. In the set Z of integers, multiplication has an identity
element 1. The only invertible integers are 1 and −1, each being its
own inverse.
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Example 11.35. In the set of rational or real numbers equipped with
the operation of multiplication, 1 is the identity element, and every
non-zero number has an inverse.

Example 11.36. The complex number 1 is the identity element for
multiplication on the set C× of non-zero complex numbers. If α = a+bi
is non-zero, then α−1 = (a− bi)/(a2 + b2), see Example 7.32.

Remark 11.37. (Non-)existence of inverse elements can be read off a
Cayley table. First locate the identity element e; if none exists, nothing
further need be done.

To seek the inverse of a specific element a, inspect the ath row of the
table, looking for the identity element e. If e is found in the bth column
(signifying ab = e), check to see whether ba = e as well. If so, a−1 = b;
otherwise a has no inverse.

Example 11.38. The operation µ1 in Example 11.8 has no identity
element, so the concept of inverses makes no sense.

For µ2, a
−1 = a, b−1 = c, and c−1 = b; every element has an inverse.

For µ3, b
−1 = b and c−1 = c, but a has no inverse.

Example 11.39. Let A be a non-empty set, M (A) the set of mappings
from A to A equipped with the operation of function composition.

The identity mapping IA : A → A is the identity element for com-
position. A mapping f : A → A has an inverse in the sense of binary
operations if and only if f is a bijection, if and only if f is invertible in
the sense of mappings.

Example 11.40. In Example 11.28, we saw that the union operation
on P(A) has identity element e = ∅. If S ⊆ A, an inverse of S is a
set T such that S ∪ T = ∅. No such set exists unless S = ∅, in which
case T = ∅ satisfies the conditions for an inverse element. In other
words, ∅−1 = ∅, and no other set has an inverse with respect to the
union. See also Exercise 11.4.

Commutativity

Definition 11.41. A binary operation on A is commutative if ab = ba
for all a and b in A.

Example 11.42. By Axioms A4. and M4., page 58, addition and mul-
tiplication are commutative operations on Z: a+ b = b+a and ab = ba
for all integers a and b.



CHAPTER 11. BINARY OPERATIONS 207

Example 11.43. Subtraction is not commutative on Z: 1− 2 6= 2− 1.

Example 11.44. Set union and intersection are commutative on P(A).

Example 11.45. Function composition is not commutative. For ex-
ample, if f and g : R→ R are defined by f(a) = a+ 1 and g(a) = a2,
then (f ◦ g)(a) = a2 + 1, while (g ◦ f)(a) = (a+ 1)2 = a2 + 2a+ 1.

Example 11.46. Many real-life activities do not commute: Putting
on your socks and putting on your shoes; removing car keys from the
ignition and closing the locked car door; turning off the electricity and
repairing the wiring; looking both ways and crossing the street. In
each case, the result of one activity has some bearing on the success or
failure of the other.

Exercises

Exercise 11.1. Suppose A is a set of n elements and ∗ is a binary
operation on A.

(a) How many conditions must be checked to prove ∗ is commutative?
(The answer is not n2.) Describe how a Cayley table for (A, ∗) can
be used to check commutativity.

(b) How many conditions must be checked to prove ∗ is associative?

(c) For each a in A, construct two binary operations

λa(x, y) = (x ∗ a) ∗ y, ρa(x, y) = x ∗ (a ∗ y).

Note that the operation ∗ is associative if and only if these opera-
tions have the same Cayley table for all a in A. Use this criterion
(Light’s test for associativity) to check whether the following oper-
ations are associative:

⊕ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

� 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

.
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Exercise 11.2. Each part refers to the indicated binary operations on
the set A = {0, 1, 2, 3}.

	 0 1 2 3

0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

� 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(a) Is 	 associative? Is 	 commutative? Does 	 have an identity
element? If so, which elements of A have inverses?

(b) Show� is associative. Suggestion: Use Light’s test (Exercise 11.1).

(c) Is � commutative? Does � have an identity element? If so, which
elements of A have inverses?

Exercise 11.3. Let (A, µ) be a set equipped with an associative binary
operation, assume µ has an identity element e, and assume a ∈ A.
Prove that if b and b′ are inverses of a, then b = b′.

Exercise 11.4. Consider the intersection operation on P(A). Deter-
mine which subsets of A (if any) are invertible, and find the inverse of
any invertible set, cf. Example 11.40.

Exercise 11.5. On the set Z of integers, define a binary operation by
a ∗ b = a+ b− 1.

(a) Prove ∗ is associative and commutative.

(b) Prove ∗ has an identity element.

(c) Prove every integer has an inverse with respect to ∗.

(d) Define φ : Z → Z by φ(a) = a + 1. Starting with the operation
of ordinary addition, use the method of Example 11.10 to define a
new binary operation µ on Z. Try to re-do the first three parts of
this question by “transferring” a property of addition to the corre-
sponding property of µ.
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Exercise 11.6. Let A = {0, 1, 2, 3} and B = {a, b, c, d}. Each part
concerns the following binary operation on A:

· 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(a) Is · commutative? Does · have an identity element? If so, which
elements have inverses?

(b) Define a bijection φ : A → B by φ(0) = a, φ(1) = b, φ(2) = c,
φ(3) = d. Write out the Cayley table for the induced operation ∗
on B.

(c) Is ∗ commutative? Does ∗ have an identity element? If so, which
elements have inverses? How are your answers related to your an-
swers for part (a)?

(d) Show the set {a, c} ⊆ B is closed under ∗, and write out the Cayley
table for ∗ restricted to {a, c}.

(e) Find all proper subsets of B that are closed under ∗.

Exercise 11.7. For each integer n, define the mapping Tn : Z→ Z by
Tn(x) = x+ n, and let M (T ) = {Tn : n ∈ Z}.

(a) Prove that each Tn is a bijection, and find a formula for the inverse
mapping.

(b) Show that M (T ) is closed under composition of functions.

(c) Show that M (T ) contains an identity element, and that M (T ) is
closed under inversion.

Exercise 11.8. For each integer n, define the mapping Sn : Z→ Z by
Sn(x) = nx, and let M (S) = {Sn : n ∈ Z}.

(a) Determine (with proof) which mappings Sn are injective, and which
are surjective.

(b) Show that M (S) is closed under composition of functions.
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(c) Show that M (S) contains an identity element. Which elements
of M (S) are invertible?

Exercise 11.9. For each non-zero real number a, define the mapping
Sa : R→ R by Sa(x) = ax, and let M (S) = {Sa : a ∈ R×}.

(a) Prove that each mapping Sa is a bijection, and find a formula for
the inverse mapping.

(b) Show that M (S) is closed under composition of functions.

(c) Show that M (S) contains an identity element, and that M (S) is
closed under inversion.

Exercise 11.10. For each non-zero real number a and each real num-
ber b, define the mapping Ta,b : R → R by Ta,b(x) = ax + b, and let
M (T ) = {Ta,b : a ∈ R×, b ∈ R}.

(a) Prove that each mapping Ta,b is a bijection, and find a formula for
the inverse mapping.

(b) Show that M (T ) is closed under composition of functions.

(c) Show that M (T ) contains an identity element, and that M (T ) is
closed under inversion.

Exercise 11.11. Let A be a non-empty set. The set RA of real-valued
functions on A consists of all mappings f : A → R. Define binary
operations of addition and multiplication on RA by

(f + g)(a) = f(a) + g(a), (f · g)(a) = f(a) · g(a), for all a in A.

(a) Prove that + is an associative and commutative binary operation
on RA, there is an identity element for +, and every element of RA

has an additive inverse.

(b) Prove that · is an associative and commutative binary operation
on RA. Does · have an identity element? If so, which elements
of RA have a multiplicative inverse?

Exercise 11.12. This question concerns a set of mappings from the
plane R2 to itself. Let e be the identity map, α the counterclockwise
quarter-turn about the origin, α2 the half-turn about the origin (i.e.,



CHAPTER 11. BINARY OPERATIONS 211

α performed twice), and α3 the clockwise quarter turn about the origin
(α performed three times). Let A = {e, α, α2, α3}.
(a) Find formulas for each element of A, and check that your formulas

are geometrically sensible. (For example, e(x, y) = (x, y).)

(b) Show A is closed under mapping composition, and write out the
Cayley table.

(c) Is composition commutative on A? Does composition have an
identity element? If so, which elements of A have inverses?

(d) Explain how your work in this exercise shows the binary operations
of Exercise 11.6 are associative.

Exercise 11.13. Consider an equilateral triangle with vertices labeled
0, 1, 2 (below, left). Let α be a counterclockwise rotation by one-third
of a turn about the center (middle), and β the reflection about the
horizontal axis (right).

0

1

2

2

0

1

α 0

2

1

β

(a) Sketch the six possible configurations of vertex labels on the tri-
angle. (Three of them are shown.)

(b) For each of the following compositions of maps, determine which
of your sketches gives the corresponding vertex configuration: α2,
α3, β2, αβ, α2β, βα, βα2. (Note: Function composition is read
right to left. For example, αβ means “first apply β, then α”.)

(c) Let A = {e, α, α2, β, αβ, α2β}. Write out the Cayley table for
mapping composition on A.
Hints: Find a formula βα = αkβ` for suitable exponents k and `.
To simplify an arbitrary product of αs and βs, use this formula to
move all the factors of α to the left.

(d) Is composition commutative on A? Does composition have an
identity element? If so, which elements of A have inverses?
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(e) Find all proper, non-empty subsets of A that are closed under
composition.
Hints: There are five of them. If A′ ⊆ A is closed under composition,
and if α ∈ A′ and β ∈ A′, then A′ = A. (Why?)

The next two questions concern composition of certain functions.
For notational brevity, write f2 instead of ff , f3 instead of fff , etc.

Exercise 11.14. In each part, f(x) =
1 + x

1− x for x 6= −1, 0, 1.

(a) Compute the compositions f2, f3, f4 and f5. On the basis of your
findings, what are f10 and f100?

(b) Let S denote the set of distinct functions found in part (a). List
the elements of S, show S is closed under composition, and make a
Cayley table for S.

(c) Show composition is a commutative operation on S, there is an
identity element, and every element of S has an inverse in S.

Exercise 11.15. In each part, f(x) =
1

1− x and g(x) =
1

x
for x 6= 0, 1.

(a) Compute the compositions f2, f3, and f4. On the basis of your
findings, what are f10 and f2010?

(b) Compute the composition g2. Based on this finding, what is g1729?

(c) Compute gf , gf2 and fg, f2g.

(d) Let S denote the set of distinct functions found in parts (a)–(c).
List the elements of S (there are six), and show each element of S
has the form fkg` for some integers k and `. Show the set S is
closed under composition, and make a Cayley table for S.
Hints: Show gf can be written in the stated form. Then argue that
in any composition of f and g (in arbitrary order), the “factors”
of f can be gathered on the left.

(e) Let h(x) be an arbitrary rational function obtainable by repeat-
edly composing f and/or g in arbitrary order. Use part (d) to show
h ∈ S. (If you can see how, set up a formal argument using mathe-
matical induction.)

(f) Is composition a commutative operation on S? Is there an identity
element? Does every element of S have an inverse in S?
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Absolutely convergent
series, 189–191

Addition
associativity of, 33, 47
commutativity of, 33, 47
definition of, 33

All-you-can-eat buffet, see Buffet
Alternating series, 192
Approximately equal to, 171
Archimedean property, 138
Axioms

for the integers, 58
for the reals numbers, 106

Bijective, 149
Binary operation, 199

associativity of, 202, 207
Cayley table of, 200
commutativity of, 206
identity element for, 204
inverse elements under, 205

uniqueness of, 208
Binomial coefficient, 45
Binomial theorem, 121
Bounded set, 133
Buffet

all-you-can-eat, 43

Cantor set, 132–133
approximations to, 133

ternary representation, 196 ex.
Cantor’s diagonal argument, 27
Cartesian product, 19

with empty set, 19
Cauchy sequence, see Sequence
Cayley table, 200
Closed under

a binary operation, 202
addition, 64, 113
multiplication, 117

Complex conjugate, 112
Complex number

argument of, 116
imaginary part of, 111
magnitude of, 116
non-real, 111
real part of, 111
unit, 117

Complex numbers
product of, 114

Congruence mod n, 81
Coprime integers, 72

De Morgan’s laws, 6, 26
Deleted interval, 130
Division algorithm, 62

Empty set
Cartesian product with, 19

ε-N game, 171–174
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Equivalence class, 50
definition of, 159
mod n, 81

Euclid’s algorithm, 68
Euler’s formula, 116, 128, 166
Existential quantifier, 7

negation of, 8
Exponentiation

definition of, 35
integer power, 119–121

bounds on, 111
Extended real number, 137

Factorial, 36, 43, 55 ex.
Fermat’s Little Theorem, 93
For every, 7–9
Fundamental theorem of

arithmetic, 74

Gaussian integers, 114
Geometric series, 187
Greater than, 107
Greatest common divisor, 70, 78

definition of, 65
Euclid’s algorithm, 68

Greatest lower bound, see
Infimum

Group
of units, 87

Harmonic series, 187

Image of a mapping, 41, 146
Induced mapping, 162
Induction, 35–41
Inequalities, 109–111
Infimum, 136
Infinite series, 185–192

absolutely convergent,
189–191

alternating series test, 192

divergent, 185

geometric, 187

ratio test, 191

Infinity, see Extended real
number

Injective, 148

Integers

addition of, 51, 52

axioms for, 58

coprime, 72

definition of, 50

divides, 64

even, 17, 63

gcd, 65

multiplication of, 51, 52

odd, 17, 63

positive, 16

prime, 71

residue classes of, 81

subgroup of, 64

subtraction, 59

unique factorization of, 74

Intersection of sets, 130

Interval, 129

deleted, 130

Irrational numbers, 108

Isomorphism

as a commutative diagram,
201

Joke

black sheep, 160

meeting at dawn, 100

negative numbers, 50
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Largest element, 135
Law of exponents

integer power, 119
Least common multiple, 70, 78
Least upper bound, see

Supremum
Less than, 107
Limit

of a sequence, 170–174,
177–181, 184

Logical implication, 5–6
Lower bound, 133

Mapping, 41
bijective, 42
definition of, 19
empty domain or codomain,

20
image, 41, 146
induced, 162
injective, 42
level set of, 168
preimage of a set under, 147,

164
surjective, 42

Mathematical induction, 35–41
Morphism condition

commutative diagram for, 201
Multiplication

definition of, 34

Natural numbers
addition of, 33
axioms for, 32
exponentiation of, 35
multiplication of, 34
ordering of, 34
well-ordering of, 34

Negative part
of a sequence, 190

nth roots of unity, 118

One
definition of, 32

Ordered set, 43, 44
Ordering of natural numbers, 34

Partition of a set, 18
defined by an equivalence

relation, 159
Pascal’s triangle, 122
Peak, see Sequence
Peano axioms, 32
Pigeonhole Principle, 164
Playing cards, 43
Positive part

of a sequence, 190
Power set, 18
Preimage of a set, 147

Quotient
mapping, 162
of a set by an equivalence

relation, 161

Ratio test, 191
Rational numbers, 108

density of, 140–141
Real numbers, 105–107

algebraic properties, 108–109
axioms for, 106
order properties, 109–111

Recursive definition, 33
Residue class

definition of, 81
group of units, 87
zero divisor, 89

Reverse triangle inequality, 142
Riemann ζ function, 128
Roots of unity, 118
Russell’s paradox, 16
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Sequence
absolutely summable, 189–191
algebraic properties of limits,

177–178
bounded, 174
Cauchy, 184–185
divergent to ∞, 179–181
ε-N game, 171–174
limit of, 170
monotone, 175–177
partial sums of, 185
peak, 183
of powers of x, 174, 180
summable, 185
tail of, 182
terms of, 169
uniqueness of limit, 171

Set
complement of, 17
empty, 16
intersection, 130
ordered, 43, 44
partition of, 18

by an equivalence relation,
159

scaling, 131
subsets of, see Power set
translation, 131
union, 130

Sets
Cartesian product of, 19
difference of, 26
disjoint, 18

equality of, 16
intersection of, 17
subsets of, 16
union of, 17

Sheep, 31
joke regarding, 160

Sieve of Eratosthenes, 77, 80
Smallest element, 135
Squeeze theorem

for sequences, 193 ex.
Subsequence, 182–185

monotone, 183
Subtraction of integers, 59
Supremum, 135
Surjective, 148

There exists, 7–9
Tower of Hanoi, 39
Triangle inequality, 142
Tuple

difficulties of naming and
pronunciation, 44

Twin primes, 71
Two-column proof, 27

Union of sets, 130
Universal quantifier, 7

implicit, 8
negation of, 8

Upper bound, 133

Vacuous, 5

00 = 1, 35, 43
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