Mathematics 375 - Probability Theory
Solutions for Midterm Exam 1 - October 7, 2011
I. (15) To test the effectiveness of a seal designed to keep a tire patch airtight, a needle was inserted into the tire and air pressure was increased until leakage was observed. The pressures (in lb per square inch) where leakage first occurred on 10 trials were:

$$
8.1,8.5,8.3,8.8,8.2,7.8,8.9,7.5,8.3,8.0
$$

How many of the data points are within 1 standard deviation of the mean? How well does this fit the "empirical rule?"

Solution: We have the sample mean is

$$
\bar{y}=\frac{8.1+8.5+8.3+8.8+8.2+7.8+8.9+7.5+8.3+8.0}{10}=8.24
$$

and

$$
\begin{aligned}
s^{2} & =\frac{\left(8.1^{2}+8.5^{2}+8.3^{2}+8.8^{2}+8.2^{2}+7.8^{2}+8.9^{2}+7.5^{2}+8.3^{2}+8.0^{2}\right)-\frac{1}{10}(82.4)^{2}}{9} \\
& \doteq .1827
\end{aligned}
$$

Therefore, the sample standard devation is $s \doteq \sqrt{.1827} \doteq .4274$. The interval $[\bar{y}-s, \bar{y}+s] \doteq$ [7.8126, 8.6674$]$. Six of the ten data points fall into this interval. This is not too far from the 68% we expect for normally distributed data from the empirical rule (especially considering that with $n=10$ measurements, the value 6 gives one of the two closest possibilities to 6.8).
II. Students on a boat send signals back to the shore by stringing (exactly) 9 colored flags along a vertical rope (without overlapping). The signal is determined solely by the relative positions of the flags.
A) (5) How many different signals can they send if they have flags of 9 different colors?

Solution: This is the number of permutations of 9 distinct objects taken 9 at a time, or $9 \cdot 8 \cdot 7 \cdot \cdots \cdot 2 \cdot 1=9$!.
B) (10) Now suppose they have 4 red flags and 5 green flags. If a random arrangement of flags is constructed, what is the probability that all the green flags appear consecutively?

Solution: Think of putting the 9 flags into 9 slots. The arrangement is determined by where the 5 green flags go, so there are $\binom{9}{5}$ different arrangements. The ones in which green flags appear consecutively can be counted by noticing that the string of green
flags can start in position $1,2,3,4$, or 5 , but not after that since there is not enough room for them all. This gives

$$
P(\text { green consecutive })=\frac{5}{\binom{9}{5}}=\frac{5}{126} \doteq .03968
$$

This can also be derived by thinking of the arrangements as permutations:

$$
P(\text { green consecutive })=\frac{5 \cdot 5!\cdot 4!}{9!}
$$

(The factors of 5 ! and 4 ! in the numerator give the ways of permuting the red and green flags separately; the arrangements are indistinguishable if we think of all green flags and all red flags as the same.)
III. The first three parts of this question deal with this situation: Let A_{1}, A_{2}, A_{3} be events in a sample space S. Let $P\left(A_{1}\right)=.4, P\left(A_{2}\right)=.2, P\left(A_{3}\right)=.4$, and assume $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$. Finally, let B be another event with $P\left(B \mid A_{1}\right)=.1, P\left(B \mid A_{2}\right)=.2$ and $P\left(B \mid A_{3}\right)=.05$.
A) (10) What is $P(B)$?

Solution: The given information implies that the A_{i} form a partition of S. By the Law of Total Probability,

$$
\begin{aligned}
P(B) & =P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+P\left(B \mid A_{3}\right) P\left(A_{3}\right) \\
& =(.1)(.4)+(.2)(.2)+(.05)(.4) \\
& =.1
\end{aligned}
$$

B) (5) Are B and A_{2} independent events? Why or why not?

Solution: Since $P(B) \neq P\left(B \mid A_{2}\right)$, the answer is immediately "no."
C) (10) Find $P\left(A_{1} \cup A_{2} \mid B\right)$.

There are a number of different ways to do this. The most direct is probably to use the definition of conditional probability:

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \mid B\right) & =\frac{P\left(\left(A_{1} \cup A_{2}\right) \cap B\right)}{P(B)} \\
& =\frac{P\left(\left(\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right)\right)\right.}{P(B)} \\
& =\frac{P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)}{P(B)}
\end{aligned}
$$

(the last follows since $P\left(A_{1} \cap A_{2}\right)=0$). We know that $P\left(A_{1} \cap B\right)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)=$.04 and $P\left(A_{2} \cap B\right)=P\left(B \mid A_{2}\right) P\left(A_{2}\right)=.04$. So the desired probability is $\frac{.04+.04}{.1}=.8$
D) (15) Now, working in general, state and prove Bayes' Rule.

Solution: See text and class notes.
IV.
A) (20) A jar contains 7 red and 11 white balls. Draw two balls at random, replacing the first ball after it is drawn. Let X be the number of balls drawn that are red. Thinking of X as a discrete random variable, find its probability function, and compute its expected value and variance.

Solution: Since the first ball is replaced, the probabilities of getting a red or white ball on the second draw are the same as on the first. The number of reds is $X \sim$ $\operatorname{Binomial}(2,7 / 18)$ (a binomial distribution with $n=2$ and $p=7 / 18)$. The probability function is

$$
\begin{aligned}
& P(X=0)=\binom{2}{0}(7 / 18)^{0}(11 / 18)^{2} \doteq .3735 \\
& P(X=1)=\binom{2}{1}(7 / 18)(11 / 18) \doteq .4753 \\
& P(X=2)=\binom{2}{2}(7 / 18)^{2}(11 / 18)^{0} \doteq .1512
\end{aligned}
$$

The expected value is $E(X)=(0)(.3735)+(1)(.4753)+(2)(.1512) \doteq .7777$ (exact value is $2 \cdot 11 / 18=7 / 9$ from the formula for binomial random variables). The variance is $E\left(X^{2}\right)-(E(X))^{2} \doteq .4753$ (exact value $\left.2 \cdot(7 / 18) \cdot(11 / 18)=77 / 162\right)$. (Note that it is a general fact that $V(Y)=P(Y=1)$ for any $Y \sim \operatorname{Binomial}(2, p)$.)
B) (10) Now consider drawing two balls without replacing the first ball after it is drawn, and let Z be the number of red balls drawn. Give the probability function for this Z.

Solution: The probabilities are as follows:

$$
\begin{aligned}
& P(Z=0)=\frac{\binom{7}{0}\binom{11}{2}}{\binom{18}{2}}=(11 / 18)(10 / 17) \doteq .3595 \\
& P(Z=1)=\frac{\binom{7}{1}\binom{11}{1}}{\binom{18}{2}}=(11 / 18)(7 / 17)+(7 / 18)(11 / 17) \doteq .5033 \\
& P(Z=2)=\frac{\binom{7}{2}\binom{11}{0}}{\binom{18}{2}}=(7 / 18)(6 / 17) \doteq .1373
\end{aligned}
$$

(The problem did not ask for this, but note that the expected value becomes $E(Z) \doteq$.7779. The exact value is actually also $7 / 9$ as in part A. The variance becomes $V(Z) \doteq .4474$. Note: Z has a hypergeometric distribution.)

Extra Credit (10)

The probability that a randomly chosen male has a circulation problem is .25. Males who have a circulation problem are twice as likely to be smokers as those who do not have a circulation problem. What is the probability that a male has a circulation problem, given that he is a smoker?

Solution: Let C represent the event that a chosen male has the circulation problem, so $P(C)=.25$. Let S be the event that the male is a smoker. The second sentence says $P(S \mid C)=2 P(S \mid \bar{C})$. We want $P(C \mid S)$. Applying Bayes' Rule,

$$
\begin{aligned}
P(C \mid S) & =\frac{P(S \mid C) P(C)}{P(S \mid C) P(C)+P(S \mid \bar{C}) P(\bar{C})} \\
& =\frac{P(S \mid C)(.25)}{P(S \mid C)(.25)+P(S \mid C)(.75) / 2} \\
& =\frac{.25}{.625} \\
& =.4
\end{aligned}
$$

