
Mathematics 376 – Mathematical Statistics
Lab Project 3 and Problem Set 4 – More on Confidence Intervals

February 27 and 29, 2012 – due: Friday, March 2

Background

We have now discussed constructing:

• Large-sample confidence intervals for means, differences of subpopulation means, pro-
portions and differences of subpopulation proportions (using pivotal quantities that
have normal distributions)

• Small-sample confidence intervals for means and differences of means under the as-
sumption that the population has a normal distribution (using pivotal quantities that
have t distributions)

• Confidence intervals for variances or standard deviations (using pivotal quantities that
have χ2 distributions).

• Confidence intervals for a ratio of subpopulation variances (using pivotal quantities
that have F distributions).

In this week’s lab we will begin by studying how statisticians might test to see whether the
assumptions underlying the small-sample cases are reasonable. Then we will apply some
of this to an applied problem.

Worked Example and Background

In deriving the small-sample formulas for confidence intervals for population means and
differences of population means, recall that we had to make some rather restrictive addi-
tional hypotheses in order to apply the facts we know about t-distributions:

• we need to assume that the samples are drawn from normal populations
• for the difference of means case, we need to assume the two population variances are

equal.

We have seen how to derive some evidence about whether the equality of popula-
tion variances is reasonable, via our confidence intervals for σ2

1/σ2
2 (derived using the

F -distribution). But this still leaves some questions:

• Can we test whether it is reasonable to assume the samples are coming from a normal
population?

• How much of a difference does it make if they are not?

Thus, it becomes important to know that there are ways–some more intuitive, some
more precise–to get some indication whether it is reasonable to make the assumption that
a collection of sampled data has been drawn from a normal population.

The first way we will discuss is a graphical method called the normal quantile-quantile

plot. The idea here is to compare the distribution of the sampled data values with the
distribution we would expect from a normal population in a particular way. Doing this by
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hand, we would order the sample and compare the quantiles (i.e. order statistics) for the
data to the expected values of the quantiles for a sample of the same size drawn from a
normal population. A scatter plot of data points constructed from the two sets of quantiles
is generated to give a visual comparison. To make life easier, R has a built-in command
called qqnorm that does this computation and produces the plot. To see how this works,
we will work with the following (simulated) net income data (in units of $1000) from a
random selection of n = 9 tax returns. Enter in R:

incomes <- c(20.1,35.5,44.7,50.3,60.8,90.7,140.2,240.9,357.3)

qqnorm(incomes)

What does this plot mean? Well, for example, the sample maximum (the Y(9)) in our
incomes is the 357.3 (that is one of the “Sample Quantiles”). On the other hand, if we
took a random sample Z1, . . . , Z9 from a standard normal distribution, the expected value
of the maximum there is E(Z(9))

.
= 1.485 (that is one of the “Theoretical Quantiles”).

(This value can be computed by numerically integrating the density function for Z(9)

using the formulas from §6.7.) The point farthest to the right in the QQ Plot is in fact
(1.485, 357.3)(!)

What are we looking for?? Well, if the data are coming from a normal population
then as usual Y −µ

σ = Z has a standard normal distribution. So

Y = σZ + µ,

and we would expect the scatter plot to be nearly a straight line, since the quantiles would
also be related by this linear equation. Some “random up and down variation” from that
line would also be expected because of chance errors coming from the sampling process.

In this example, though, notice that there is an apparent systematic curvature (con-
cavity) in the scatter plot. If you see this kind of pattern, it is a strong indication that
assuming normality of the underlying population is probably not justified!!

For now, we will leave this discussion at this somewhat intuitive level. We will return
to these questions later on, in our discussion of regression (finding a line that “best fits a
collection of data”) and the correlation coefficient that we discussed briefly last semester
in connection with covariances.

For your general “statistical literacy,” it is also important to be aware that there are
a number of other much more sophisticated statistical normality tests that are commonly
used to get information in this situation. R has a very good one (called the Shapiro-Wilk
W Test). Try entering

shapiro.test(incomes)

We will discuss the ideas involved in this sort of test (especially the exact meaning of
the p-value) after Spring Break. For now, what this is saying is that (with a p-value less
than .05 or so), there is actually pretty strong evidence to reject the assumption that these

samples were coming from a normal population! On the other hand, larger p-values (say .1
or larger) could be the result of random variations in the sampling, so we don’t necessarily
want to reject the normality assumption in those cases.
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Lab Problems

A) We can test for normality now, but does it really matter if we compute confidence
intervals using the small sample formulas when the normality assumption is violated? In
this problem you will be working with a new family of distributions in R, the lognormal
distributions. These are defined in problem 4.128 in our book – the idea is that if Y is
lognormal with parameters µ, σ then X = ln(Y ) is normal with the same µ and σ. There
is a family of functions in R for the lognormals just like the other cases we have seen:

• dlnorm gives the lognormal density
• plnorm gives the lognormal cumulative distribution
• qlnorm gives the lognormal quantiles
• rlnorm generates random samples from a lognormal

With this background, we can get down to work.

1) To get a feeling for what lognormal distributions look like, plot

curve(dlnorm(x,0,1),from=0,to=10)

to see the density for the lognormal with µ = 0 and σ = 1. This is different from a
normal density, but similar too in some ways (it’s also “unimodal” for instance).

2) Generate a single random sample of size n = 100 from the lognormal distribution and
use the qqnorm and shapiro.test commands discussed above on it. What is the
conclusion you draw.

3) Following what we did in Lab 1, generate 1000 random samples of size 8 from a
lognormal distribution with µ = 0 and σ = 1. The expected value of this lognormal
is e1/2 .

= 1.6487. Compute the T -statistic

T =
√

8
Y − e1/2

S
for each sample, and plot a histogram of the T values. Overlay a t(7) density curve.
Discuss your results and think about the main question posed at the start of this
problem.

(Comment: The following statement comes from page 525 of Wackerly, Mendenhall, and
Scheaffer – “... investigations [of the empirical distributions of the T -statistic] have shown
that moderate departures from normality in the distribution of the population have little
effect on the distribution of the test statistic.” In order not to be misled by what they
say, I think one would have to have a more precise notion of “moderate departures from
normality!” There is actually a lot of interest in developing “robust statistics” today –
ones that don’t require assumptions like the ones we have used for the T -statistic, and
that give reasonable results even when those assumptions don’t hold.)

B) A lab technician tests blood samples from 20 men and measures the total serum choles-
terol level (LDL + HDL) for each. The data obtained were as follows:

199 272 261 248 235 192 203 278 268
230 242 305 286 310 345 289 326
335 297 328
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(Ouch!! Not a healthy-eating, regular-exercise group on the whole – current guidelines say
this level should be no higher than 200 in adult males to minimize risk of heart disease
and strokes.)

1) Use R to test whether it is reasonable to assume that this data comes from a normal
population. Explain your conclusions.

2) Use R to compute a 90% confidence interval for the population mean serum cholesterol
level based on this data. You may want to refer back to the assignment sheet from
Lab 2, although that used the large sample formulas.

In deriving our formulas for the (1 − α) × 100% confidence interval for the variance, we
used an interval where the “tails” of the χ2-distributions had equal probabilities (areas)
α/2. This gives the general form

[
(n − 1)S2

χ2
α/2(n − 1)

,
(n − 1)S2

χ2
1−α/2(n − 1)

]

for the (1− α)× 100% confidence interval, where, as in the notation of the text book’s χ2

tables, if Y has a χ2 distribution,

P (Y ≥ χ2
β) = β.

Of course, this method also gives confidence intervals for standard deviations by taking
square roots: [√

(n − 1)S2

χ2
α/2(n − 1)

,

√
(n − 1)S2

χ2
1−α/2(n − 1)

]

3) Determine a 95% confidence interval for the population σ for the cholesterol data.

B) (This one will require some thought before you start plugging numbers into R!) A group
of pediatric nurses were interested in the effect of prenatal care on the birthweight of babies.
Mothers were divided into two groups, and their babies’ weights were compared. The
mothers in group 1 had 5 or fewer prenatal care sessions, and their babies had birthweights:

49, 108, 110, 82, 93, 114, 134, 114, 96, 52, 101, 114, 120, 116

(all in ounces). The mothers in group 2 had 6 or more prenatal care sessions, and their
babies had birthweights:

133, 108, 93, 119, 119, 98, 106, 87, 153, 116, 129, 97, 110, 131

(also in ounces). One question they were trying to address with this study was:

Was there more variation in the birthweights of the babies whose mothers had fewer prenatal

care visits than in the birthweights of the babies whose mothers had more visits?
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1) Explain why θ = σ2
1/σ2

2 is an appropriate target parameter to consider, and why

the statistic θ̂ = S2
1/S2

2 is a reasonable estimator (S2
i = sample variance for group

i = 1, 2).
2) What is the value of this statistic here, and what does it suggest?
3) But now, the next question is: How reliable is that conclusion? How likely is it

that we could get a different conclusion for different random samples from the same
distributions? To answer this we can try to construct a confidence interval for the
ratio θ = σ2

1/σ2
2 . To do this, explain why (S2

1/σ2
1)/(S2

2/σ2
2) is an appropriate “pivotal

quantity” to use to derive confidence intervals for σ2
1/σ2

2 . Recall this means that:
• σ2

1/σ2
2 must be the only unknown part and

• the distribution of the pivotal quantity must be known.
4) Explain how to get a (1 − α) × 100% confidence interval for σ2

1/σ2
2 , and use your

method to find a 95% confidence interval for σ2
1/σ2

2 using the data above. What does
this suggest about your conclusion from part 2?

Problems from the text – Solve using R

• Chapter 8/88,89,96,100
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