# MATH 376 - Mathematical Statistics 

Solutions for Exam 1 Sample Problems
March 12, 2012
I.
A) This has a $\chi^{2}(7)$ distribution (see Theorems 6.4 and 7.2 in the text).
B) From the $\chi^{2}$ table on pages $850-851$ of the text, we see:

$$
1.68987=\chi_{.975}^{2}, \quad \text { and } \quad 14.0671=\chi_{.05}^{2}
$$

Hence

$$
P(1.68987 \leq W \leq 14.0671)=.975-.05=.925
$$

(Drawing the picture helps if this is not clear!)
C) Leaving out $Z_{6}^{2}$ in the sum means $U$ has a $\chi^{2}(6)$ distribution. Since

$$
V=\frac{6 Z_{7}^{2}}{U}=\frac{Z_{7}^{2} / 1}{U / 6}
$$

has the form given in Definition $7.3, V$ has an $F$ distribution with 1 d.f. in the numerator and 6 d.f. in the denominator.
D) By the conventions used in our book, this means that $y=f .05(1,6)$. From the $F$-table (on page 852) we find $y=5.99$.
E) For this, we need the relation derived on Lab 1:

$$
f_{1-\alpha}(n, d)=\frac{1}{f_{\alpha}(d, n)}
$$

Here,

$$
y=f_{.95}(1,6)=\frac{1}{f_{.05}(6,1)}=\frac{1}{234.0} \doteq .0043
$$

F) Recalling Definition 7.2 , let $X=\sum_{i=1}^{5} Z_{i}^{2}$. Then

$$
T=\frac{Z_{6}}{\sqrt{X / 5}}
$$

has a $t$-distribution with 5 degrees of freedom.
II.
A) By the formulas from $\S 6.7$, the $\operatorname{cdf}$ for $Y_{(n)}$ is

$$
F_{(n)}(y)=\left(1-e^{-y / \theta}\right)^{n}
$$

Hence

$$
P\left(Y_{(n)} \geq 2 \theta\right)=1-P\left(Y_{(n)}<2 \theta\right)=1-\left(1-e^{-2 \theta / \theta}\right)^{n}=1-\left(1-e^{-2}\right)^{n}
$$

Since $0<1-e^{-2}<1$,

$$
\lim _{n \rightarrow \infty} P\left(Y_{(n)} \geq 2 \theta\right)=\lim _{n \rightarrow \infty} 1-\left(1-e^{-2}\right)^{n}=1
$$

This should seem intuitively reasonable, since the exponential distributions have very long right-hand tails and the expected value is $\theta$. If you take $n \rightarrow \infty$, the probability that the largest sample value exceeds $2 \theta$ is tending to 1 .
B) The pdf for the sample minimum is

$$
f_{(1)}(y)=n\left(1-\left(1-e^{-y / \theta}\right)\right)^{n-1} \frac{e^{-y / \theta}}{\theta}=\frac{e^{-y /(\theta / n)}}{\theta / n} .
$$

We recognize the form of an exponential density with mean $\theta / n$. Therefore $E\left(Y_{(1)}\right)=$ $\theta / n$. As a result $n Y_{(1)}$ is an unbiased estimator for $\theta$.
III.
A) The usual point estimator for $\mu$ would be the sample mean:

$$
\bar{Y}=\frac{16.0+15.2+12.0+16.9+14.4+16.3+15.6+12.9}{8} \doteq 14.90
$$

The usual point estimator for $\sigma$ would be the sample standard deviation:

$$
S=\sqrt{\frac{1}{7} \sum_{i=1}^{8}\left(Y_{i}-\bar{Y}\right)^{2}} \doteq 1.707
$$

B) Under the assumptions that the data are from a normal population, we can compute a $90 \%$ confidence interval using the small sample formulas. The endpoints are

$$
\bar{Y} \pm t .05 \frac{S}{\sqrt{n}}=14.9 \pm 1.895 \frac{1.707}{\sqrt{8}} \doteq 14.90 \pm 1.14
$$

To see whether the normality assumption is valid, by what we saw in Lab 3, we could use either a normal quantile-quantile plot and look for approximate linearity, or we could use the Shapiro-Wilk normality test.
C) No, $\mu=16$ is contained in the interval. It is a "believable" value for $\mu$ based on this data.
D) Using the formula from page 435 (also see Lab 3), the "standard" way to get such an interval is

$$
\left(\frac{7 S^{2}}{\chi_{.025}^{2}(7)}, \frac{7 S^{2}}{\chi_{.975}^{2}(7)}\right) \doteq(1.27,12.08)
$$

IV.
A) $\overline{p_{A}}=\frac{24}{642} \doteq .0373$.
B) Since $n_{A}=642>30$, we use the large sample formula and the approximation for the standard error making use of the value from part A. We have $z_{.025}=1.96$, so

$$
p_{A}=.0374 \pm 1.96 \sqrt{\frac{(.0374)(.9626)}{642}} \doteq .0374 \pm .0147
$$

C) The interval is

$$
p_{A}-p_{B}=.0374-.0440 \pm 1.96 \sqrt{\frac{(.0374)(.9626)}{642}+\frac{(.0440)(.9560)}{500}} \doteq-.0066 \pm .0232
$$

Since this interval contains both positive and negative numbers, there is not enough evidence to say that $p_{A}<p_{B}$ (i.e. not sufficient evidence to say the quality of the output from shop $A$ is higher than the quality from shop $B$ ). The observed differences in the proportions of defectives could be explained by random variations in the sampling process.
D) In general the best way to answer a question like this is to apply the "conservative" method to estimate the standard error - use $p_{A}=.5$ in the standard error formula, since that gives the largest possible standard error. Then the estimator is within .01 of the true value with probability at least when

$$
\begin{aligned}
\frac{.01}{\sqrt{(.5)(.5) / n}} & \geq 1.96, \quad \text { or } \\
n & \geq\left(\frac{(1.96)(.5)}{.01}\right)^{2}=9604
\end{aligned}
$$

Depending on what the actual value of $p_{A}$ is, a much smaller $n$ might work too. For instance, if it was true that $p_{A}=.0374$ exactly, then applying the standard error formula with that value of $p_{A}$, we would require only

$$
\begin{aligned}
\frac{.01}{\sqrt{(.0374)(.9626) / n}} & \geq 1.96, \quad \text { or } \\
n & \geq\left(\frac{(1.96) \sqrt{(.0374)(.9626)}}{.01}\right)^{2} \doteq 1383.02
\end{aligned}
$$

So only $n \geq 1384$ is needed.

