Mathematics 375 - Probability and Statistics 1
Solutions For Whole Class Discussion Problems - The "Event-Composition Method"
September 16, 2011

Discussion Questions

A) Given: $P(A)=.2, P(B)=.3, P(A \cup B)=.4$. Determine:

1) $P(\bar{A} \cup \bar{B})$.

Solution: By the additive law, we have

$$
P(\bar{A} \cup \bar{B})=P(\bar{A})+P(\bar{B})-P(\bar{A} \cap \bar{B})
$$

Since $P(A)=.2, P(\bar{A})=1-.2=.8$. Similarly, $P(\bar{B})=1-.3=.7$. Finally, $\bar{A} \cap \bar{B}=$ $\overline{A \cup B}$ by one of the DeMorgan Laws from set theory. So $P(\bar{A} \cap \bar{B})=1-.4=.6$. Putting everything together,

$$
P(\bar{A} \cup \bar{B})=.8+.7-.6=.9
$$

2) $P(\bar{A} \mid B)$.

Solution: By the definition of conditional probability,

$$
P(\bar{A} \mid B)=\frac{P(\bar{A} \cap B)}{P(B)}
$$

We know $P(B)=.3$ from the given information. In the course of solving part A , we saw $P(\bar{A} \cap \bar{B})=.6$ and $P(\bar{A})=.8$. Since

$$
\bar{A}=(\bar{A} \cap B) \cup(\bar{A} \cap \bar{B}),
$$

and the two intersections in the parentheses don't intersect each other, we have

$$
.8=P(\bar{A} \cap B)+.6, \text { hence } P(\bar{A} \cap B)=.2
$$

Then

$$
P(\bar{A} \mid B)=\frac{.2}{.3} \doteq .67
$$

B) The circles marked 1,2,3,4 in the diagrams on the sheet given in class represent electrical relays that operate independently and function properly with probability $p=.85$. Which design yields the higher probability that current will flow when the relays are activated?

Solution: Let $1,2,3,4$ represent the events that the corresponding relays function correctly. Layout I allows the current to flow if either 1 and 2 function correctly, or 3 and

4 do, or both sets of two do. So the probability we want is $P((1 \cap 2) \cup(3 \cap 4))$. By the additive law and independence, this is

$$
\begin{aligned}
P(1 \cap 2)+P(3 \cap 4)-P(1 \cap 2 \cap 3 \cap 4) & =(.85)^{2}+(.85)^{2}-(.85)^{4} \\
& \doteq .923
\end{aligned}
$$

Similarly, Layout II allows the current to flow if any one of the 4 relays functions correctly. The current does not flow only if all four relays fail, so we can compute the probability we want as

$$
1-P(\overline{1} \cap \overline{2} \cap \overline{3} \cap \overline{4})=1-(.15)^{4} \doteq .9995
$$

As you should have seen intuitively, Layout II gives a significantly higher probability.
C) An accident victim will die unless he receives type $A+$ blood (strictly) before 8 minutes elapse. He will be saved if he does get the blood transfusion. Potential donors and a reusable blood typing kit are available, but it takes 2 minutes to determine each possible donor's blood type, and only 40% of them have type $A+$ blood. What is the probability that the victim will be saved if only one donor's blood can be typed at a time? (Follow-up: Are you making an assumption in your solution?)

Solution: There are just three chances for an $A+$ donor to be found since each typing takes 2 minutes and the blood has to be given to the victim strictly before 8 minutes have passed. The chance of finding a good donor on the first test is .4. When that test fails, there is a (.6)(.4) chance of success on the second test. Similarly, when the first two tests fail, there is a $(.6)^{2}(.4)$ chance of success on the last test before time runs out. The total probability of finding a donor and saving the victim is

$$
(.4)+(.4)(.6)+(.4)(.6)^{2}=.784
$$

More formally, say F is the event that a match for the blood is found on or before the third try. Then

$$
F=F_{1} \cup F_{2} \cup F_{3}
$$

where $F_{i}=$ first match found on try i, for $i=1,2,3$. Then $F_{i} \cap F_{j}=\emptyset$ if $i \neq j$, so

$$
P(F)=P\left(F_{1}\right)+P\left(F_{2}\right)+P\left(F_{3}\right) .
$$

As before $P\left(F_{1}\right)=.4$. But then $F_{2}=$ match found on the second person but not on the first. So $P\left(F_{2}\right)$ is the probability that the first person tested does not have type $A+$ blood, and the second person does have type $A+$ blood. The value (.4)(.6) is OK here (only) as long as the two people's blood types are independent. Similarly for the $(.4)(.6)^{2}$ in the last term.

