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Overview

• Experiments, data, and distributions
• Fitting distributions to data
• Implications for PRA: managing risk
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Objectives

 By the end of this talk you should know:
– exactly what a distribution is
– several ways to picture a distribution
– how to compare distributions
– how to evaluate discrepancies that are important
– how to determine whether a fitted distribution is 

appropriate for a probabilistic risk analysis
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Part I

Experiments, data, and 
distributions
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Outcomes

• An outcome is the result of an experiment 
or sequence of observations.

• Examples:
– The results of an opinion poll.
– Data from a medical study.
– Analytical results of soil samples collected for 

an environmental investigation.
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Sample spaces

• A sample space is a collection of possible 
outcomes.

• Examples:
– The set of answers that could be given by 1,052 

respondents to the question, “Do you believe that the 
Flat Earth theory should be taught to all third graders?”

– The set of arsenic concentrations that could be
produced by measurements of 38 soil samples.

– The set of all groups of people who might be selected 
for a drug trial.
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Events

• An event is a set of possible outcomes.
• Examples:

– The event that 5% of  respondents answer “yes”.   This 
event contains many outcomes because it does not 
specify exactly which 5% of the respondents.

– The event that the average arsenic concentration is less 
than 20 ppm.  This event includes infinitely many 
outcomes.
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Distributions

• A distribution describes the frequency or 
probability of possible events.

• When the outcomes can be described by 
numbers (such as measurements), the 
sample space is a set of numbers and 
events are formed from intervals of 
numbers.
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An example

• Experiment: sample a U.S. adult at random.  Measure the 
skin surface area.

• The sample space is the set of all surface areas for all U.S. 
adults. 

• This set (the “population”) is constantly changing as children 
become adults and others die.  Therefore there is no static 
population and there is no one distribution that is 
demonstrably the correct one.  At best we can hope to find a 
succinct mathematical description that approximately agrees 
with the frequencies at which various skin surface areas will 
be observed in independent repetitions of this experiment.
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Where data come in

• To help identify a good distribution, we sample
the present population.  This means we conduct 
a small number of independent repetitions of 
the experiment.  The results are the data.

• But: how do you go about finding a distribution 
that will describe the frequencies of future
repetitions of the experiment?

• We will probe this issue by picturing and 
comparing distributions.
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Picturing distributions: histograms

 One approach is to 
graph the distribution’s 
value for a bunch of 
tiny equal-size non-
overlapping intervals.  
(These are called bins.)

 The values on the 
vertical axis are relative 
frequencies.
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This is a portrait of a “square
root normal” distribution.  It

could describe natural variation
in skin surface area, for example

(units are 1000 cm2).
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Comparing distributions (1)

 The histogram method, 
although good, has a 
problem: Distributions that 
are almost the same can 
look different, depending on 
choice of bins.  Small 
random variations are also 
magnified.
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The lower distribution shows
the frequencies from 200 measure-
ments of people randomly selected 
from the upper distribution.
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Comparing sets of numbers
X 5 1 5 3 0 4 1 57
Y 7 2 0 2 7 3 9 55

 A more powerful 
way to compare two 
sets of numbers is to 
pair them and plot 
them in two 
dimensions as a 
“scatterplot.”

How quickly can you
determine the relationship

among these numbers?
How confident are you of

your answer?
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Comparing sets of numbers

• The numbers are closely 
associated--have the same 
statistical “pattern”--when 
the scatterplot is close to a 
straight line.

• This approach also works 
nicely for comparing 
distributions--but first we 
have to find a way to pair 
off values in the 
distributions.
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Comparing distributions (2)

• Given: one data set.
• To compare its 

distribution to a 
reference, generate the 
same number of values 
from the reference.  Pair 
data and reference 
values from smallest-
smallest to largest-
largest, as illustrated.

Order Percentile Reference Measured
1 0.25% - 2.81 10.0
2 0.75% - 2.43 10.8
3 1.25% - 2.24 11.0
4 1.75% - 2.11 11.2

197 98.25% 2.11 29.9
198 98.75% 2.24 30.3
199 99.25% 2.43 34.2
200 99.75% 2.81 35.3
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Probability plots
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 Finally, draw the 
scatterplot.  It is close to 
a straight line: the data 
and its reference 
distribution therefore 
have the same shape 
(although one might be 
shifted and rescaled 
relative to the other).

 This is a probability plot.
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Reading probability plots
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 To read a probability plot, 
you apply a magnifying 
glass to the areas that do 
not follow the trend.  This 
is a general principle: to 
characterize data, you 
provide a simple 
description of the general 
mass, and then highlight 
any discrepant results 
(they are the interesting
ones!).
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Statistical magnification

 The two largest points are 
slightly higher than the 
line.

 Interpretation: our largest 
measurements have a slight 
tendency to be larger than 
the largest measurements 
in the reference 
distribution.  (The amount 
by which they are larger is 
inconsequential, though.)
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Interpretation issues

• What do we use for a reference 
distribution?  Why?

• Which deviations from the reference 
should concern us?

• How much of a deviation is important?
• What risk do we run if a mistake is made 

in the interpretation?
All these questions are interrelated.
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Progress update

• We have a scientific framework and language 
for discussing measurements and 
observations, events and distributions.

• You have learned to picture distributions 
using histograms.

• You have learned to compare (and depict) 
distributions using probability plots.

• You have learned to use statistical 
magnification to evaluate deviations from a 
reference standard.
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Part II

Fitting distributions to data
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An example data set
As, ppm

3.9 32.9 68.9 116.0
5.2 32.9 68.9 116.0
6.0 36.0 78.4 117.5
7.5 37.6 79.9 150.4
9.9 43.9 84.6 172.4

10.7 45.4 89.3 219.4
15.7 45.4 89.3 220.9
21.9 50.1 94.0 222.5
25.1 51.7 111.3 264.8
31.3 112.8

• Let’s take a close 
look at some arsenic 
measurements of soil 
samples.

• What is the first 
thing you would do 
with these data?
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The first thing to do

• Ask why.
• If you don’t know how the data will be 

used to make a decision or take an action, 
then any analysis you attempt is likely to 
be misleading or irrelevant.

 Do not be tempted to embark on an 
analysis of data simply because they are 
there and you have some tools to do it with.
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The purpose and its implications

 In our example, the arsenic measurements 
will be used to develop a concentration term 
for a human health risk assessment.

 Therefore:
– We want to characterize the arithmetic mean 

concentration
– We do not want to grossly underestimate the mean
– We should focus on characterizing the largest 

values best.
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The second thing to do
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Draw a picture.

As, ppm

3.9 32.9 68.9 116.0
5.2 32.9 68.9 116.0
6.0 36.0 78.4 117.5
7.5 37.6 79.9 150.4
9.9 43.9 84.6 172.4

10.7 45.4 89.3 219.4
15.7 45.4 89.3 220.9
21.9 50.1 94.0 222.5
25.1 51.7 111.3 264.8
31.3 112.8
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A portrait gallery
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Histogram
Let t er   summa r y

M (1 9 h) 60.3
H (1 0 ) 31.3 72.1 112.8
E (5 h) 10.3 85.9 161.4
D (3 ) 6.0 113.5 220.9
X (1 ) 3.9 134.4 264.8
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The third thing to do: compare
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Shades of “normal”
Normal Cube root normal Lognormal
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The middle fits the best.  It is neither normal nor lognormal.
--But none fit as well as some of the previous distributions.
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A closer look at a good fit

• The fit to the upper 75% 
of data--the large ones, 
the ones that really 
count--is beautiful.

• Yet, the uniform 
distribution has lower 
and upper limits.  Do 
you really think the 
arsenic concentrations at 
a site would be so 
definitely limited?
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A key point, repeated

• Keep asking, “what effect could a (potential) 
characterization of the data have on the decision or 
action?”

• If we describe the example data in terms of a log-
uniform distribution, then we have decided to treat 
them as having an upper bound (of about 300 ppm) 
and are therefore implicitly not considering the 
possibility there may be much higher concentrations 
present.  This is usually not a good assumption to make 
when few measurements are available.



31

Fitting Distributions to Data, March 1, 1999

What the many comparisons show

• The question is not “what is the best fit?”  
(So don’t go on a distribution hunt!)

• The issue is to select a reference 
distribution that
– Fits the data well enough
– Has a basis in theory or empirical experience
– Manages the risk attached to using the 

reference distribution for further analysis and 
decision making.
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Measuring fits “well enough”
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• Recall that “statistical 
magnification” explores 
the differences between 
the data and the 
reference distribution.  
These differences can 
be graphed.
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What it means to fit “well enough”
 Statistical theory provides

– Methods to measure these 
differences

– Methods to determine the 
chance that such differences are 
just random deviations from the 
reference distribution:

• Kolmogorov-Smirnov
• Anderson-Darling
• Shapiro-Wilks

 However, do not become a slave 
to the P-value: it’s a 
measurement, not a rule.

P = 20.3428864%
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The role of theory and experience
• Observations or measurements may vary for many 

reasons, including
– Accumulated independent random “errors” not controlled by the 

experimenter
– Natural variation in the population sampled.

• The form of variation can also depend on
– Mechanism of sample selection or observation: random, stratified, 

focused, etc.
– What is being observed: representative objects, extreme objects 

(such as floods), etc.

• Both theory and experience often suggest a form for the 
reference distribution in these cases.
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Examples of reference distributions

• Normal distribution: variation arises from independent 
additive “errors.”

• Lognormal: variation arises from independent 
multiplicative errors.  Often observed in concentrations 
of substances in the environment.  (Often confused with 
mixtures of normal distributions, too!)

• Many other well known mathematical distributions 
describe extreme events, waiting times between random 
events, etc.
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Part III

Managing Risk
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Managing risk
• Begin by considering how discrepancies between reality 

and the model might affect the decision.
• Example: Concentration of pollutant due to direct 

deposition onto plant surfaces is estimated as

Pd =  [Dyd + (Fw * Dyw)] * Rp * [1 - exp(-kp * Tp)]
Yp * kp

 Dyd = yearly dry deposition rate, Dyw = wet rate, Fw = adhering fraction of wet 
deposition, Rp = interception fraction of edible portion, kp = plant surface loss 
coefficient, Tp = time of plant’s exposure to deposition, Yp = yield

 (USEPA 1990: Methodology for Assessing Health Risks Associated With
Indirect Exposure to Combustor Emissions).

 A large value of a red (italic) variable or a small value of a blue
variable creates a large value of Pd.
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Managing risk, continued
 Pd =  [Dyd + (Fw * Dyw)] * Rp * [1 - exp(-kp * Tp)]

Yp * kp
 A large value of a red variable or a small value of a blue variable 

creates a large value of Pd.
 Suppose:

– These variables are modeled as distributions in a probabilistic risk 
assessment

– The decision will be influenced by the large values of Pd (pollutant 
concentration potentially ingested by people).

 Then, look at the important tail:
– Make sure the upper tail fits the data for a red variable well
– Make sure the lower tail fits the data for a blue variable well.
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Managing risk: examples
A large value of a red variable or a small value of a blue variable 
creates a large value of Pd.
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On the left, a blue variable: the reference distribution (straight line) 
underestimates the data values; therefore using the reference distribution in 
a PRA may overestimate the pollutant concentration.  Now you evaluate 
the middle and right pictures for a blue and red variable, respectively.
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Evaluation Checklist

• A defensible choice of distribution simultaneously:
– Can be effectively incorporated in subsequent analyses; is 

mathematically or computationally tractable
– Fits the data well at the important tail
– Has a scientific, theoretical, or empirical rationale.

• Red flags (any of which is cause for scepticism):
– A distribution was fit from a very large family of possible 

distributions using an automated computer procedure
– The distribution was never pictured
– The distribution is unusual and has no scientific rationale
– The important tail of the distribution deviates from the data in an 

anti-conservative way.
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Conclusion

 You should now know
– exactly what a distribution is
– several ways to picture a distribution
– how to compare distributions
– how to evaluate discrepancies that are important
– how to determine whether a fitted distribution is 

appropriate for a probabilistic risk analysis.
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