To test the effectiveness of a seal for air leaks in automobile tires, after the seal was installed in a tire, a needle was inserted into the tire and air pressure was increased until leakage was observed. The pressures (in lb per square inch) where leakage first occurred on 10 trials were:

A) (10) Construct a relative frequency histogram for this data on the interval [86.5, 96.5], subdividing into 5 equal “bins”

(86.5, 88.5], (88.5, 90.5], (90.5, 92.5], (92.5, 94.5], (94.5, 96.5].

Solution: The histogram should have a box of height 2/10 on the first interval, a box of height 2/10 on the second interval, a box of height 3/10 on the third interval, a box of height 1/10 on the fourth interval, and a box of height 2/10 on the last interval.

C) (15) How many of the data points are within 1 standard deviation of the sample mean?

Solution: The sample mean is

$$\mu = \frac{93 + 87 + 91 + 90 + 92 + 88 + 95 + 91 + 90 + 96}{10} = 91.3.$$

The sample variance is

$$s^2 = \frac{1}{9} \sum_{i=1}^{10} (x_i - \mu)^2 = 8.01.$$

So the sample standard deviation is

$$s = \sqrt{8.01} \approx 2.83. $$

The interval $[\mu - s, \mu + s] = [88.47, 94.13].$ Six of the 10 data values are in this interval. (Note: This is relatively close to the empirical rule of 68%.)

II. Sailors on a ship can send signal by arranging (exactly) 8 colored flags along a rope line.

A) (5) How many different signals can they send if they have flags of 8 different colors?

Solution: This is the number of permutations of 8 things, 8 at a time: 8! (factorial, not exclamation point).

B) (10) How many different signals can they send if they have 4 red, 2 green, and 2 blue flags? (There are no differences between the flags of the same color.)

Solution: The red flags can occur in any 4 of the 8 positions along the rope line. Once the reds are placed, the greens go in 2 of the remaining 4, and then the blues go in the remaining two slots. By the “$m \cdot n$ rule,” this gives

$$\binom{8}{4} \cdot \binom{4}{2} \cdot \binom{2}{2} = 420.$$
possible arrangements. Note: this is the same as the multinomial coefficient
\[
\binom{8}{4, 2, 2}.
\]

C) (10) In the situation of part B, if a random arrangement of flags is constructed, what is the probability that at least 5 other flags appear between the two blue flags?

Solution: The answer from part B will be the denominator of the ratio giving the probability we want to compute. The numerator is the number of arrangements of the 8 flags where the two blues are separated by at least 5 other flags. Note that the possible locations for the blue flags are as shown:

\[BXXXXXXBX, BXXXXXXB, \text{ or } XBXXXXXB.\]

In each case, the red and green flags can be placed in \(\binom{6}{4}\binom{2}{2}\) ways (reasoning as in part B). Therefore the probability we want is
\[
\frac{3\binom{6}{4}\binom{2}{2}}{\binom{8}{4}\binom{4}{2}} = \frac{3\binom{6}{4}}{\binom{8}{4}\binom{4}{2}}.
\]

III. Let \(A_1, A_2, A_3\) be events in a sample space \(S\). Assume that \(S = A_1 \cup A_2 \cup A_3\), where \(A_i \cap A_j = \emptyset\) if \(i \neq j\). Let \(P(A_1) = .35\), \(P(A_2) = .4\), \(P(A_3) = .25\). Finally, let \(B\) be another event with \(P(B|A_1) = .1\), \(P(B|A_2) = .2\) and \(P(B|A_3) = .05\).

A) (10) State the Law of Total Probability and use it to compute \(P(B)\).

The LTP says that if we have a partition \(S = A_1 \cup \cdots \cup A_k\) into events with \(A_i \cap A_j = \emptyset\) whenever \(i \neq j\), then for all events \(B\),
\[
P(B) = P(B|A_1)P(A_1) + \cdots + P(B|A_k)P(A_k).
\]

Applying this here:
\[
P(B) = (.1)(.35) + (.2)(.4) + (.05)(.25) = .1275.
\]

B) (5) Are \(B\) and \(A_2\) independent events? Why or why not?

Solution: No. The events \(B\) and \(A_2\) are not independent, since \(P(B \cap A_2) = P(B|A_2)P(A_2) = .08\) is not the same as \(P(B)P(A_2) = (.1275)(.4) = .051\).

C) (10) What is \(P(A_1 \cup A_2|B)\)? State the name(s) of any general rule(s) you are using.

Solution: Using the definition of conditional probabilities, \(P(A_1 \cup A_2|B) = \frac{P((A_1 \cup A_2) \cap B)}{P(B)}\).

Using standard properties of set operations, \((A_1 \cup A_2) \cap B = (A_1 \cap B) \cup (A_2 \cap B)\).

Since \(A_1 \cap A_2 = \emptyset\), it follows that \((A_1 \cap B) \cup (A_2 \cap B) = \emptyset\) also. Therefore,
\[P((A_1 \cup A_2) \cap B) = P(A_1 \cap B) + P(A_2 \cap B) \] by the additive rule. It follows by Bayes’ Rule that the probability we want is
\[
\frac{P(B|A_1)P(A_1) + P(B|A_2)P(A_2)}{P(B)} = 1 - \frac{P(B|A_3)}{P(B)} = 1 - (0.098) \approx 0.92.
\]

IV.

A) (10) Let \(Y \) have a binomial distribution with parameters \(n = \) number of trials and \(p = \) success probability on each trial. Show that \(E(Y) = np \).

\textit{Solution:} See the class notes or the text.

B) (15) An army regiment has 20 different squads, 16 with 25 soldiers each, 3 with 100 soldiers each, and one with 300 soldiers, for a total of 1000 soldiers. Select a soldier at random out of the 1000 and let the random variable \(X \) equal the size of the squad to which that soldier belongs. Find the probability mass function, the expected value, and the variance of \(X \).

\textit{Solution:} The possible values with nonzero probabilities are \(x = 25, 100, 300 \). The probability that \(X \) takes one of these values is the probability that the randomly selected soldier belongs to a squad of that size:
\[
\begin{align*}
P(X = 25) &= \frac{400}{1000} = 0.4 \\
P(X = 100) &= \frac{300}{1000} = 0.3 \\
P(X = 300) &= \frac{300}{1000} = 0.3 \\
P(X = x) &= 0 \text{ for all other } x.
\end{align*}
\]

The expected value is \(E(X) = (25)(0.4) + (100)(0.3) + (300)(0.3) = 130 \). The variance is
\[
V(X) = E((X - 130)^2) = (25 - 130)^2(0.4) + (100 - 130)^2(0.3) + (300 - 130)^2(0.3) = 13350.
\]
(The standard deviation would be more meaningful here: \(\sigma = \sqrt{13350} \approx 115.5 \).

\textit{Extra Credit} (10)

Let \(X \) be a discrete random variable which takes as values all natural numbers \(k \geq 1 \). Assuming that \(E(X) \) exists, show that
\[
E(X) = \sum_{k=1}^{\infty} P(X \geq k).
\]
(Also, why do we need to add the hypothesis that $E(X)$ exists in a case like this?)

Solution: We start from the definition of the expected value and then regroup the terms in the sum (this is justified since the infinite series must be absolutely convergent – it has all non-negative terms!):

\[
E(X) = \sum_{k=1}^{\infty} kP(X = k)
\]

\[
= P(X = 1) + 2P(X = 2) + 3P(X = 3) + \cdots
\]

\[
= P(X = 1) + P(X = 2) + P(X = 3) + \cdots
\]

\[
+ P(X = 2) + P(X = 3) + \cdots
\]

\[
+ P(X = 3) + \cdots
\]

\[
= P(X \geq 1) + P(X \geq 2) + P(X \geq 3) + \cdots
\]

\[
= \sum_{k=1}^{\infty} P(X \geq k).
\]

The hypothesis on $E(X)$ is necessary for this kind of random variable since for some other Y, $\sum_{y=1}^{\infty} P(Y = y)$ would exist and sum to 1, but the series $\sum_{y=1}^{\infty} yP(Y = y)$ might *diverge*. An example would be a random variable with

\[
P(Y = y) = \frac{6}{\pi^2} \frac{1}{y^2}.
\]

The series $\sum_{y=1}^{\infty} \frac{1}{y^2}$ converges (*p*-series with $p = 2$). The sum is actually $\frac{\pi^2}{6}$, and that accounts for the normalization factor in the formula for $P(Y = y)$ above. But $\sum_{y=1}^{\infty} \frac{1}{y} = \sum_{y=1}^{\infty} \frac{1}{y}$ diverges (harmonic series).