Mathematics 375 - Probability and Statistics I
Solutions for Midterm Exam 1 - October 8, 2009
I. To test the effectiveness of a seal for air leaks in automobile tires, after the seal was installed in a tire, a needle was inserted into the tire and air pressure was increased until leakage was observed. The pressures (in lb per square inch) where leakage first occurred on 10 trials were:
A) (10) Construct a relative frequency histogram for this data on the interval [86.5, 96.5], subdividing into 5 equal "bins"

$$
(86.5,88.5],(88.5,90.5],(90.5,92.5],(92.5,94.5],(94.5,96.5] .
$$

Solution: The histogram should have a box of height $2 / 10$ on the first interval, a box of height $2 / 10$ on the second interval, a box of height $3 / 10$ on the third interval, a box of height $1 / 10$ on the fourth interval, and a box of height $2 / 10$ on the last interval.
C) (15) How many of the data points are within 1 standard deviation of the sample mean?

Solution: The sample mean is

$$
\bar{x}=\frac{93+87+91+90+92+88+95+91+90+96}{10}=91.3 .
$$

The sample variance is

$$
s^{2}=\frac{1}{9} \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2} \doteq 8.01
$$

So the sample standard deviation is $s=\sqrt{8.01} \doteq 2.83$. The interval $[\bar{x}-s, \bar{x}+s]=$ [88.47, 94.13]. Six of the 10 data values are in this interval. (Note: This is relatively close to the empirical rule of 68%.)
II. Sailors on a ship can send signal by arranging (exactly) 8 colored flags along a rope line.
A) (5) How many different signals can they send if they have flags of 8 different colors?

Solution: This is the number of permutations of 8 things, 8 at a time: 8! (factorial, not exclamation point).
B) (10) How many different signals can they send if they have 4 red, 2 green, and 2 blue flags? (There are no differences between the flags of the same color.)

Solution: The red flags can occur in any 4 of the 8 positions along the rope line. Once the reds are placed, the greens go in 2 of the remaining 4 , and then the blues go in the remaining two slots. By the " $m \cdot n$ rule," this gives

$$
\binom{8}{4} \cdot\binom{4}{2} \cdot\binom{2}{2}=420
$$

possible arrangements. Note: this is the same as the multinomial coefficient

$$
\left(\begin{array}{lll}
& 8 & \\
4 & 2 & 2
\end{array}\right) .
$$

C) (10) In the situation of part B, if a random arrangement of flags is constructed, what is the probability that at least 5 other flags appear between the two blue flags?

Solution: The answer from part B will be the denominator of the ratio giving the probability we want to compute. The numerator is the number of arrangements of the 8 flags where the two blues are separated by at least 5 other flags. Note that the possible locations for the blue flags are as shown:

$$
B X X X X X B X, B X X X X X X B, \text { or } X B X X X X X B
$$

In each case, the red and green flags can be placed in $\binom{6}{4}\binom{2}{2}$ ways (reasoning as in part B). Therefore the probability we want is

$$
\frac{3\binom{6}{4}\binom{2}{2}}{\binom{8}{4} \cdot\binom{4}{2} \cdot\binom{2}{2}}=\frac{3\binom{6}{4}}{\binom{8}{4}\binom{4}{2}} .
$$

III. Let A_{1}, A_{2}, A_{3} be events in a sample space S. Assume that $S=A_{1} \cup A_{2} \cup A_{3}$, where $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$. Let $P\left(A_{1}\right)=.35, P\left(A_{2}\right)=.4, P\left(A_{3}\right)=.25$. Finally, let B be another event with $P\left(B \mid A_{1}\right)=.1, P\left(B \mid A_{2}\right)=.2$ and $P\left(B \mid A_{3}\right)=.05$.
A) (10) State the Law of Total Probability and use it to compute $P(B)$.

The LTP says that if we have a partition $S=A_{1} \cup \cdots \cup A_{k}$ into events with $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$, then for all events B,

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right) .
$$

Applying this here:

$$
P(B)=(.1)(.35)+(.2)(.4)+(.05)(.25)=.1275
$$

B) (5) Are B and A_{2} independent events? Why or why not?

Solution: No. The events B and A_{2} are not independent, since $P\left(B \cap A_{2}\right)=$ $P\left(B \mid A_{2}\right) P\left(A_{2}\right)=.08$ is not the same as $P(B) P\left(A_{2}\right)=(.1275)(.4)=.051$.
C) (10) What is $P\left(A_{1} \cup A_{2} \mid B\right)$? State the name(s) of any general rule(s) you are using.

Solution: Using the definition of conditional probabilities, $P\left(A_{1} \cup A_{2} \mid B\right)=\frac{P\left(\left(A_{1} \cup A_{2}\right) \cap B\right)}{P(B)}$. Using standard properties of set operations, $\left(A_{1} \cup A_{2}\right) \cap B=\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right)$. Since $A_{1} \cap A_{2}=\emptyset$, it follows that $\left(A_{1} \cap B\right) \cap\left(A_{2} \cap B\right)=\emptyset$ also. Therefore,
$P\left(\left(A_{1} \cup A_{2}\right) \cap B\right)=P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)$ by the additive rule. It follows by Bayes' Rule that the probability we want is

$$
\frac{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)}{P(B)}=1-\frac{P\left(B \mid A_{3}\right)}{P(B)}=1-(.098) \doteq .902
$$

IV.
A) (10) Let Y have a binomial distribution with parameters $n=$ number of trials and $p=$ success probability on each trial. Show that $E(Y)=n p$.

Solution: See the class notes or the text.
B) (15) An army regiment has 20 different squads, 16 with 25 soldiers each, 3 with 100 soldiers each, and one with 300 soldiers, for a total of 1000 soldiers. Select a soldier at random out of the 1000 and let the random variable X equal the size of the squad to which that soldier belongs. Find the probability mass function, the expected value, and the variance of X.

Solution: The possible values with nonzero probabilities are $x=25,100,300$. The probability that X takes one of these values is the probability that the randomly selected soldier belongs to a squad of that size:

$$
\begin{aligned}
P(X=25) & =\frac{400}{1000}=.4 \\
P(X=100) & =\frac{300}{1000}=.3 \\
P(X=300) & =\frac{300}{1000}=.3 \\
P(X=x) & =0 \text { for all other } x .
\end{aligned}
$$

The expected value is $E(X)=(25)(.4)+(100)(.3)+(300)(.3)=130$. The variance is $V(X)=E\left((X-130)^{2}\right)=(25-130)^{2}(.4)+(100-130)^{2}(.3)+(300-130)^{2}(.3)=13350$.
(The standard deviation would be more meaningful here: $\sigma=\sqrt{13350} \doteq 115.5$.

Extra Credit (10)

Let X be a discrete random variable which takes as values all natural numbers $k \geq 1$. Assuming that $E(X)$ exists, show that

$$
E(X)=\sum_{k=1}^{\infty} P(X \geq k)
$$

(Also, why do we need to add the hypothesis that $E(X)$ exists in a case like this?)
Solution: We start from the definition of the expected value and then regroup the terms in the sum (this is justified since the infinite series must be absolutely convergent - it has all non-negative terms!) :

$$
\begin{aligned}
E(X)= & \sum_{k=1}^{\infty} k P(X=k) \\
= & P(X=1)+2 P(x=2)+3 P(X=3)+\cdots \\
= & P(X=1)+P(X=2)+P(X=3)+\cdots \\
& +P(X=2)+P(X=3)+\cdots \\
& +P(X=3)+\cdots \\
& +\cdots \\
= & P(X \geq 1)+P(X \geq 2)+P(X \geq 3)+\cdots \\
= & \sum_{k=1}^{\infty} P(X \geq k)
\end{aligned}
$$

The hypothesis on $E(X)$ is necessary for this kind of random variable since for some other $Y, \sum_{y=1}^{\infty} P(Y=y)$ would exist and sum to 1 , but the series $\sum_{y=1}^{\infty} y P(Y=y)$ might diverge. An example would be a random variable with

$$
P(Y=y)=\frac{6}{\pi^{2}} \frac{1}{y^{2}} .
$$

The series $\sum_{y=1}^{\infty} \frac{1}{y^{2}}$ converges (p-series with $p=2$). The sum is actually $\frac{\pi^{2}}{6}$, and that accounts for the normalization factor in the formula for $P(Y=y)$ above. But $\sum_{y=1} y \frac{1}{y^{2}}=$ $\sum_{y=1}^{\infty} \frac{1}{y}$ diverges (harmonic series).

