Mathematics 376 - Probability and Statistics 2
Problem Set 8
due: Wednesday, April 12, 2006
A) Assume we have a linear statistical model

$$
Y=\beta_{0}+\beta_{1} x+\epsilon
$$

and $\epsilon$ is normally distributed with mean $\mu=0$, and variance $\sigma^{2}$.

1) Given observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of $Y$ explain why the likelihood of these observations (as a function of $\beta_{0}$ and $\beta_{1}$ ) is given by

$$
L\left(\beta_{0}, \beta_{1}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left(\left(-\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right) \frac{1}{2 \sigma^{2}}\right)
$$

2) Find the maximum likelihood estimators for $\beta_{0}$ and $\beta_{1}$ by computing the appropriate partial derivatives of $\ln (L)$, setting equal to zero, and solving for $\beta_{0}, \beta_{1}$. (You should get the same formulas as we obtained for the least squares estimators.)
3) Show that your answer in part 2 is really a maximum of $L$ or $\ln (L)$ using the Second Derivative Test for functions of two variables.
B) In class, by solving the normal equations using Cramer's Rule, we obtained the following formulas (all summations extend from $i=1$ to $i=n$, so we omit limits of summation for simplicity):

$$
\begin{equation*}
\widehat{\beta}_{0}=\frac{\left(\Sigma y_{i}\right)\left(\Sigma x_{i}^{2}\right)-\left(\Sigma x_{i}\right)\left(\Sigma x_{i} y_{i}\right)}{n\left(\Sigma x_{i}^{2}\right)-\left(\Sigma x_{i}\right)^{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\beta}_{1}=\frac{n\left(\Sigma x_{i} y_{i}\right)-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)}{n\left(\Sigma x_{i}^{2}\right)-\left(\Sigma x_{i}\right)^{2}} \tag{2}
\end{equation*}
$$

Recall that in class we also introduced the quantities

$$
S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2} \quad S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Show that (2) is equivalent to

$$
\widehat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}
$$

and then that (1) is equivalent to

$$
\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x}
$$

From the text: Chapter 11/4,8,9,20,22,23 (use results from section 11.4),57. (Note: parts of problems that call for graphing can be done conveniently using Maple - see handouts from class).

