due: February 24, 2006
A) (A follow-up problem to C from Lab Project 3.) Recall that in Lab Project 3, to determine the endpoints of the confidence interval for the ratio of variances $\sigma_{1}^{2} / \sigma_{2}^{2}$, you needed to work with a formula like this

$$
P\left(\frac{S_{1}^{2} / S_{2}^{2}}{f_{\alpha / 2}} \leq \sigma_{1}^{2} / \sigma_{2}^{2} \leq \frac{S_{1}^{2} / S_{2}^{2}}{f_{1-\alpha / 2}}\right)=1-\alpha
$$

In the problem from the Lab Project, you were looking for a 95% confidence interval, so you needed $f_{.025}, f_{.975}$. The F-table in the back of the book gives the values f_{α} for $\alpha=.1, .05, .025, .01, .005$, but not the complementary values $\alpha=.9, .95, .975, .99, .995$. As you might have wondered, why aren't those other entries there?? Fortunately, with the FCDF function from our Maple package, you could compute $f_{.975}$, etc., by the same method we used for χ^{2} and t distributions in the lab, so this wasn't a problem. In this question you will show that the other values could be derived from the table entries given with a little cleverness, too!

1) Let the numbers $f_{\alpha}(n, m)$ be defined by

$$
P\left(Y \geq f_{\alpha}(n, m)\right)=\alpha
$$

if Y has an F-distribution with n numerator degrees of freedom and m denominator degrees of freedom. Show that for all $0<\alpha<1$, these numbers satisfy:

$$
f_{1-\alpha}(n, m)=\frac{1}{f_{\alpha}(m, n)}
$$

(note the reversal in the numbers of degrees of freedom on the right.) Hint: What is the standard way to get a random variable that has an F-distribution?
2) Using the table in the text and part 1 , determine the number $f_{.99}(7,10)$.

Additional problems from the text:

- Chapter $8 / 74,75,82,86$;

