Mathematics 375 - Probability and Statistics 1
Discussion 2 - The "Event-Composition Method"
September 16, 2005

Background

We have discussed the "event-composition" method for computing probabilities in a discrete sample space. Recall that the idea is to recognize that the event of interest E can be defined using some combination of unions, intersections, or complements of other known events. Then apply the additive and multiplicative laws of probability:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

and

$$
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)
$$

to find $P(E)$ from the other given information.

Discussion Questions

A) Given: $P(A)=.2, P(B)=.3, P(A \cup B)=.4$. Determine:

1) $P(\bar{A} \cup \bar{B})$.
2) $P(\bar{A} \mid B)$.
B) The circles marked $1,2,3,4$ in the following diagrams represent electrical relays that operate independently and function properly with probability $p=.85$.

Which design yields the higher probability that current will flow when the relays are activated?
C) An accident victim will die unless he receives type $A+$ blood before 10 minutes elapse. He will be saved if he does get the blood transfusion. Potential donors and a reusable blood typing kit are available, but it takes 2 minutes to determine each donor's blood type, and only 40% of them have type $A+$ blood. What is the probability that the victim will be saved if only one donor's blood can be typed at a time?

Assignment
Group writeups due Wednesday, September 21.

