In our first example of using a "pivotal quantity" to derive confidence intervals this day, I wasn't very clear about exactly how you derive the formulas for the endpoints. This sheet should clarify the algebra involved.

We considered the case of sampling from a $N\left(\mu, \sigma^{2}\right)$ population to estimate the target parameter μ (the population mean). From our work in section 7.2 of the text, we know that with n independent samples, the quantity

$$
Q=\frac{\bar{Y}-\mu}{s / \sqrt{n}}
$$

(where $s=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$, the sample standard deviation) satisfies

- Q contains μ as the only unknown, and
- Q has a $t(n-1)$ distribution.

Hence we can use Q as a pivotal quantity to derive confidence intervals. Here are complete derivations of each of the three cases (being more careful about signs than I was in class):

Two-sided, $(1-\alpha) \times 100 \%$ confidence interval
Let $t_{\alpha / 2}$ be the $\alpha / 2$-percentile point for the t-distribution: that is $P\left(T>t_{\alpha / 2}\right)=\alpha / 2$. Then by symmetry:

$$
\begin{aligned}
1-\alpha & =P\left(-t_{\alpha / 2}(n-1)<\frac{\bar{Y}-\mu}{s / \sqrt{n}}<t_{\alpha / 2}(n-1)\right) \\
& =P\left(-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}<\bar{Y}-\mu<t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right) \\
& =P\left(-\bar{Y}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}<-\mu<-\bar{Y}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right) \\
& =P\left(\bar{Y}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}>\mu>\bar{Y}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right) \\
& =P\left(\bar{Y}-t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}<\mu<\bar{Y}+t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}\right)
\end{aligned}
$$

(Note: at the next-to-last step, we multiply through by -1 , which reverses all inequalities, then we switch back to write the terms increasing left to right as usual).
(turn over)

One-sided, $(1-\alpha) \times 100 \%$ lower confidence bound
Note: The formula I gave for this in class was correct, but the way I suggested to derive it wasn't (d'oh!). We start from the statement (with t_{α} instead of $t_{\alpha / 2}$):

$$
\begin{aligned}
1-\alpha & =P\left(\frac{\bar{Y}-\mu}{s / \sqrt{n}}<t_{\alpha}(n-1)\right) \\
& =P\left(\bar{Y}-\mu<t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right) \\
& =P\left(-\mu<-\bar{Y}+t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right) \\
& =P\left(\mu>\bar{Y}-t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right)
\end{aligned}
$$

One-sided, $(1-\alpha) \times 100 \%$ upper confidence bound
Starting from

$$
1-\alpha=P\left(-t_{\alpha}(n-1)<\frac{\bar{Y}-\mu}{s / \sqrt{n}}\right)
$$

and proceeding as for the lower confidence bound,

$$
1-\alpha=P\left(\mu<\bar{Y}+t_{\alpha}(n-1) \frac{s}{\sqrt{n}}\right)
$$

