Mathematics 242 - Principles of Analysis Solutions for Problem Set 7 - due: Friday, April 4
' A ' Section

1. Let $f(x)=\frac{15 x}{x^{4}+3 x^{2}+1}$. Use the Intermediate Value and/or Extreme Value Theorems to show the following:
A) For all $k \in[-3,3]$, there exist $c \in[-1,1]$ such that $f(c)=k$.

Solution: First, $f(x)$ is a rational function and $x^{4}+3 x^{2}+1 \geq 1$ for all $x \in \mathbf{R}$, so it follows that $f(x)$ is continuous at all $c \in \mathbf{R}$. We have $f(-1)=-3$ and $f(1)=3$. Therefore, by the IVT, for all $k \in[-3,3]$, there exist $c \in[-1,1]$ such that $f(c)=k$.
B) For all k with $0<k<3$, there exist some $c \in(1, \infty)$ such that $f(c)=k$.

Solution: We see by the "Big Theorem" on function limits that $\lim _{x \rightarrow \infty} f(x)=0$. Hence if we have any k with $0<k<3$, then there exists a $B>1$ such that $f(B)<k<$ $3=f(1)$. Applying the IVT on the interval $[1, B]$, we see there is a $c \in(1, B) \subset(1, \infty)$ such that $f(c)=k$.
C) There is a $c \in(0,1)$ where $f(c)=3$.

Solution: Consider the function

$$
g(x)=f(x)-3=\frac{15 x-3 x^{4}-9 x^{2}-3}{x^{4}+3 x^{2}+1}
$$

We see that $g(0)=-3<0$ and $g(1 / 2)=\frac{33}{29}>0 . g(x)$ is also continuous on $[0,1 / 2]$. Therefore, by the IVT, there exists $c \in(0,1 / 2) \subset(0,1)$ where $g(x)=0$.
D) There is a $d \in(0,1)$ where $f^{\prime}(d)=0$.

Solution: Consider the number c from part c. We have $f(c)=f(1)=3$, but f is certainly not constant between c and 1 . Therefore by the Extreme Value Theorem, there must exist a maximum value $f(d)>3$ or a minimum value $f(d)<3$ for f on the interval $[c, 1]$ attained at some $d \in(c, 1)$. By plotting the function f, we can see that in fact the first statement is the one that is true - there is a maximum. We claim that $f^{\prime}(d)=0$. First note that

$$
\lim _{x \rightarrow d^{-}} \frac{f(x)-f(d)}{x-d} \geq 0
$$

since f has a maximum at d. Similarly,

$$
\lim _{x \rightarrow d^{+}} \frac{f(x)-f(d)}{x-d} \leq 0
$$

Since f is a rational function whose denominator never equals zero, f is differentiable at d, so these one-sided limits must both exist and be equal. Therefore $f^{\prime}(d)=0$.
2. Show that there is a solution of the equation $\tan (x)=x$ in the interval $\left(\frac{(2 k-1) \pi}{2}, \frac{(2 k+1) \pi}{2}\right)$ for every $k \in \mathbf{Z}$.

Solution: We know that $\tan (x)$ has infinite discontinuities at $\frac{(2 k-1) \pi}{2}$ and $\frac{(2 k+1) \pi}{2}$ and hence

$$
\lim _{x \rightarrow \frac{(2 k-1) \pi^{+}}{2}} \tan (x)=-\infty \lim _{x \rightarrow \frac{(2 k+1) \pi^{-}}{2}} \tan (x)=+\infty
$$

It follows that we also have

$$
\lim _{x \rightarrow \frac{(2 k-1) \pi^{+}}{2}} \tan (x)-x=-\infty \lim _{x \rightarrow \frac{(2 k+1) \pi^{-}}{2}} \tan (x)-x=+\infty
$$

Therefore, $\tan (x)-x$ must change sign on some interval $[a, b] \subset\left(\frac{(2 k-1) \pi}{2}, \frac{(2 k+1) \pi}{2}\right)$ and the Intermediate Value Theorem implies $\tan (x)-x=0$ somewhere in that interval.
3. Using the definition of the derivative, find the value of $f^{\prime}(c)$, or say why f is not differentiable at $x=c$:
A) $f(x)=x^{3}+2 x-4$ at $c=2$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{x^{3}+2 x-12}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+6\right)}{x-2} \\
& =\lim _{x \rightarrow 2} x^{2}+2 x+6 \\
& =14 .
\end{aligned}
$$

B) $f(x)=\sin (|x|)$ at $c=0$. Hint: Look back at Problem Set 6, B 2.

Solution: $f^{\prime}(0)$ does not exist for this function because

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin (|x|)}{x}=+1
$$

by the indicated problem on Problem Set 6 , while

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin (|x|)}{x}=\lim _{x \rightarrow 0^{-}} \frac{-\sin (x)}{x}=-1
$$

Since the one-sided limits are not equal, the derivative at 0 does not exist.
C) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x>1 \\ 2 x-1 & \text { if } x \leq 1\end{cases}
$$

at $c=1$.
Solution: We have

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1^{+}} x+1=2 .
$$

On the other hand,

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x-2}{x-1}=\lim _{x \rightarrow 1^{-}} 2=2 .
$$

Since the one-sided limits exist and are equal, $f^{\prime}(1)$ exists and equals 2.
D) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{Q}^{c}\end{cases}
$$

at $c=0$.
Solution: We have for $x \neq 0$,

$$
\frac{f(x)-f(0)}{x-0}= \begin{cases}x & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{Q}^{c}\end{cases}
$$

Given any $\varepsilon>0$, if we take $\delta=\varepsilon$, then for all x in the deleted neighborhood defined by $0<|x|<\varepsilon$,

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|<\varepsilon .
$$

It follows that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0=f^{\prime}(0)
$$

(It is not too hard to show that $f^{\prime}(c)$ exists only for this one $c=0$. This function is not differentiable anywhere else.)

' B ' Section

1. Let f be continuous on $[0,1]$ with $f(0)<0$ and $f(1)>1$. Suppose that g is another continuous function on $[0,1]$ such that $g(0) \geq 0$ and $g(1) \leq 1$. Show that there exists some $c \in(0,1)$ such that $f(x)=g(x)$.

Solution: Let $h(x)=f(x)-g(x)$. Since f, g are continuous on $[0,1]$, the same is true for h. By the given information, $h(0)=f(0)-g(0)<0$ and $h(1)=f(1)-g(1)>0$. Therefore, the IVT implies that $h(c)=0$ for some $c \in(0,1)$. But then $0=h(c)=f(c)-g(c)$, so $f(c)=g(c)$.
2. Let f be continuous on $[a, b]$ with $f(a)<k<f(b)$. Here is a variation on our proof of the Intermediate Value Theorem.
A) Let

$$
T=\{x \in[a, b] \mid f(x)>k\} .
$$

Show that T has a greatest lower bound and that $f(\operatorname{glb}(T))=k$.
Solution: T is contained in the interval $[a, b]$, so it is a bounded subset of \mathbf{R}. Then $c=\operatorname{glb}(T)$ exists by the LUB Axiom. Note that $a<c$ since $f(a)<k$. Hence the interval $[a, c)$ is contained in the complement of T. If we let $\left\{x_{n}\right\}$ be any sequence contained in $[a, c)$ converging to c, then since f is continuous, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$. But $f\left(x_{n}\right) \leq k$ for all n, so

$$
\begin{equation*}
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq k \tag{1}
\end{equation*}
$$

also (by Corollary 2.2.8 in the text). On the other hand, given any $\varepsilon>0, c+\varepsilon$ is not a lower bound for T, so there exists some $x \in T$ such that $c \leq x<c+\varepsilon$. Apply this for $\varepsilon=\frac{1}{n}$ for each natural number. Then we get a sequence x_{n}^{\prime} such that $x_{n}^{\prime} \in T$ for all n and $c \leq x_{n}^{\prime}<c+\frac{1}{n}$. It follows easily that $x_{n}^{\prime} \rightarrow c$ as $n \rightarrow \infty$. Therefore since f is continuous at $c, \lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)=f(c)$. But $x_{n}^{\prime} \in T$ for all n, so $f\left(x_{n}^{\prime}\right)>k$. Hence

$$
\begin{equation*}
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right) \geq k . \tag{2}
\end{equation*}
$$

The two inequalities (1) and (2) show that $f(c)=k$.
B) Will this $\operatorname{glb}(T)$ always be the same as the c we found in our proof of the IVT with $f(c)=k$? If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered

$$
S=\{x \in[a, b] \mid f(x) \leq k\}
$$

and we showed that if $c^{\prime}=\operatorname{lub}(S)$, then $f\left(c^{\prime}\right)=k$. The c found in part A and the c^{\prime} here do not have to be the same. For instance, let $f(x)=x^{3}-2 x+1$ on $[-2,2]$. We have $f(-2)=-3$ and $f(2)=5$. So the IVT will apply for any k with $-3<k<5$. Consider $k=0$. The equation $x^{3}-2 x+1=0$ actually has three different roots in the interval $[-2,2]$: One between -2 and -1 (call this one α), a second between $1 / 2$ and 1 (call this one β), and a third at $x=1$. The set T as in part A is the union $T=(\alpha, \beta) \cup(1,2)$, so $c=\operatorname{glb}(T)=\alpha$. On the other hand, the set S as in the proof we did in class is $S=[-2, \alpha] \cup[\beta, 1]$, so $c^{\prime}=\operatorname{lub}(S)=1$.
3. This property deals with another property of real-valued functions of a real variable sometimes called Lipschitz continuity.
A) Let f be a function on an interval I with the property that there exists a strictly positive constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in I$ (this is the definition of Lipschitz continuity). Show that f is uniformly continuous on I.

Solution: Given $\varepsilon>0$, let $\delta=\varepsilon / k$. Then for any $x, x^{\prime} \in I$ such that $\left|x-x^{\prime}\right|<\delta=\varepsilon / k$, it follows that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|<k \cdot \varepsilon / k=\varepsilon .
$$

This shows that the definition of uniform continuity is satisfied for f on I.
B) The converse of the statement in part A is not true: Show that $f(x)=x^{1 / 3}$ is uniformly continuous on $[-1,1]$, but there is no constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in[-1,1]$. Hint: Think slopes of secant lines to the graph $y=x^{1 / 3}$.

Solution: First, $f(x)$ is continuous on $[-1,1]$, hence it is uniformly continuous by the result of Theorem 3.6.8 (proved in class before Easter break). Let $x^{\prime}=0$ and take arbitrary $x>0$ we have

$$
\frac{f(x)-f(0)}{x-0}=\frac{x^{1 / 3}}{x}=\frac{1}{x^{\frac{2}{3}}} .
$$

But $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{\frac{2}{3}}}=+\infty$. In other words, the value of the difference quotient will get unboundedly large as $x \rightarrow 0^{+}$. Hence there is no single k such that

$$
\left|\frac{f(x)-f(0)}{x-0}\right| \leq k
$$

for all x in $[-1,1]$. But that shows that there is no k such that $|f(x)-f(0)| \leq k|x-0|$ for all x in $[-1,1]$.

