Mathematics 242 — Principles of Analysis
Solutions for Problem Set 7 — due: Friday, April 4

‘A’ Section

1. Let f(x) = 222~ Use the Intermediate Value and/or Extreme Value Theorems to

2432241

show the following:

A)

For all k € [—3, 3], there exist ¢ € [—1, 1] such that f(c) = k.

Solution: First, f(z) is a rational function and 2* 4+ 322 +1 > 1 for all z € R, so
it follows that f(x) is continuous at all ¢ € R. We have f(—1) = —3 and f(1) = 3.
Therefore, by the IVT, for all k € [-3, 3], there exist ¢ € [—1, 1] such that f(c) = k.

For all k£ with 0 < k < 3, there exist some ¢ € (1, 00) such that f(c) = k.

Solution: We see by the “Big Theorem” on function limits that lim, . f(z) = 0.
Hence if we have any k with 0 < k < 3, then there exists a B > 1 such that f(B) < k <
3 = f(1). Applying the IVT on the interval [1, B], we see thereisa c € (1, B) C (1, 00)
such that f(c) = k.

There is a ¢ € (0,1) where f(c) = 3.

Solution: Consider the function

152 — 3z* — 922 — 3
p— —_ 3 p—
9(z) = f(z) t+ 312 +1

We see that g(0) = —3 < 0 and g(1/2) = 23 > 0. g(z) is also continuous on [0,1/2].
Therefore, by the IVT, there exists ¢ € (0,1/2) C (0,1) where g(z) = 0.

There is a d € (0,1) where f/(d) = 0.

Solution: Consider the number ¢ from part c. We have f(c) = f(1) = 3, but f is
certainly not constant between ¢ and 1. Therefore by the Extreme Value Theorem,
there must exist a maximum value f(d) > 3 or a minimum value f(d) < 3 for f on
the interval [c, 1] attained at some d € (c,1). By plotting the function f, we can see

that in fact the first statement is the one that is true — there is a maximum. We claim
that f/(d) = 0. First note that

iy 101

r—d~ xr —

since f has a maximum at d. Similarly,

iy 1010

r—dt xTr —

Since f is a rational function whose denominator never equals zero, f is differentiable
at d, so these one-sided limits must both exist and be equal. Therefore f'(d) = 0.
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(2k—1)m (2k:—|—1)7r)
)

2. Show that there is a solution of the equation tan(z) = z in the interval ( 5

for every k € Z.

Solution: We know that tan(z) has infinite discontinuities at (zkgl)ﬁ and (%;1)” and
hence
lim  tan(z) = —o0 lim  tan(z) = o0
I_)(2k71)7r+ s 2EFDT
2 2

It follows that we also have

lim  tan(z) —x = —o0 lim  tan(z) —x = +o0
(2k—1)7 + (2k+1)7 —
r— e z— 2T

(2k—1)m (2k—|—1)7r>
2 0 2

Therefore, tan(x) — x must change sign on some interval [a,b] C ( and

the Intermediate Value Theorem implies tan(x) — x = 0 somewhere in that interval.

3. Using the definition of the derivative, find the value of f’(¢), or say why f is not
differentiable at = = ¢:

A) f(x)=23+2x—4at c=2.
Solution: We have
r—2 €Xr — 2
— (2 +2
o (z )(x* + 2z + 6)

x—2 xr—2
= lir%x2+2x+6

= 14.
B) f(x)=sin(]z|) at ¢ = 0. Hint: Look back at Problem Set 6, B 2.

Solution: f'(0) does not exist for this function because

tim 500D

z—0+ T
by the indicated problem on Problem Set 6, while

sin(|z|) — sin(z)

lim = lim = —1.

z—0~ T r—0~ x
Since the one-sided limits are not equal, the derivative at 0 does not exist.
C) The function defined by

f(a:):{xz if x >1

20—1 ifz<l1
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at c = 1.

Solution: We have
flx) = f(1) oxt—1

lim ————~2 = lim = lim z+1=2.
r—1+ x—1 z—1+ r —1 r—1+

On the other hand,

fim L@ =W 22 e
rx—1— r—1 r—1— T — r—1—

Since the one-sided limits exist and are equal, f/(1) exists and equals 2.

D) The function defined by
2 ifzeqQ
ﬂ@={x :

0 ifzeQ°
at c = 0.
Solution: We have for x # 0,

flx)=f(0) [z ifzxeqQ
z—0 10 ifzreQ°

Given any € > 0, if we take § = ¢, then for all z in the deleted neighborhood defined

by 0 < |z| < ¢,
'ﬂ@—f@)_%<a
z—0

It follows that F(2) — £(0)
x J—
lim ——————~~2 =0 = f(0).
lim ——"—3 f(0)
(It is not too hard to show that f’(c) exists only for this one ¢ = 0. This function is
not differentiable anywhere else.)

‘B’ Section

1. Let f be continuous on [0,1] with f(0) < 0 and f(1) > 1. Suppose that g is another
continuous function on [0, 1] such that g(0) > 0 and ¢g(1) < 1. Show that there exists some
¢ € (0,1) such that f(z) = g(x).

Solution: Let h(z) = f(z)—g(x). Since f, g are continuous on [0, 1], the same is true for h.
By the given information, h(0) = f(0) — ¢(0) < 0 and h(1) = f(1) — g(1) > 0. Therefore,
the IVT implies that h(c) = 0 for some ¢ € (0,1). But then 0 = h(c) = f(c) — g(c), so
fle) =g(e).

2. Let f be continuous on [a,b] with f(a) < k < f(b). Here is a variation on our proof of
the Intermediate Value Theorem.



A) Let
T={z€la,b]| f(x) > k}.

Show that T has a greatest lower bound and that f(glb(T")) = k.

Solution: T is contained in the interval [a, b], so it is a bounded subset of R. Then
¢ = glb(T) exists by the LUB Axiom. Note that a < ¢ since f(a) < k. Hence the
interval [a,c) is contained in the complement of T'. If we let {x,} be any sequence
contained in [a, ¢) converging to ¢, then since f is continuous, lim, . f(z,) = f(c).
But f(z,) < k for all n, so

& F(e) = lim f(,) <k
also (by Corollary 2.2.8 in the text). On the other hand, given any € > 0, ¢+ € is not
a lower bound for T, so there exists some x € T such that ¢ < z < ¢+ . Apply this
for e = % for each natural number. Then we get a sequence z/, such that x], € T for
alln and ¢ < ), <c+ % It follows easily that x, — ¢ as n — oo. Therefore since f
is continuous at ¢, lim, .. f(z}) = f(c). But 2/, € T for all n, so f(x]) > k. Hence

(2) fle) = lim f(a;) > k.

n—oo

The two inequalities (1) and (2) show that f(c) = k.

B) Will this glb(T") always be the same as the ¢ we found in our proof of the IVT with
f(c) = k7 If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered
S=A{zela,b]| f(z) <k}

and we showed that if ¢/ = lub(S), then f(¢/) = k. The ¢ found in part A and the ¢/
here do not have to be the same. For instance, let f(z) = 2% — 2z + 1 on [-2,2]. We
have f(—2) = —3 and f(2) = 5. So the IVT will apply for any k with —3 < k < 5.
Consider k = 0. The equation 2 — 2z + 1 = 0 actually has three different roots in
the interval [—2,2]: One between —2 and —1 (call this one «), a second between 1/2
and 1 (call this one (3), and a third at x = 1. The set T" as in part A is the union
T = (a,0)U(1,2), so ¢ =glb(T) = a. On the other hand, the set S as in the proof
we did in class is S = [-2,a] U [3, 1], so ¢ = lub(S) = 1.

3. This property deals with another property of real-valued functions of a real variable
sometimes called Lipschitz continuity.

A) Let f be a function on an interval I with the property that there exists a strictly
positive constant k such that |f(z) — f(2")| < klz — 2’| for all ,2" € I (this is the
definition of Lipschitz continuity). Show that f is uniformly continuous on I.
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Solution: Given e > 0, let 6 = ¢/k. Then for any x, 2’ € I such that |z—2'| < 6 = ¢/k,
it follows that
[f(x) = f@) < klz—2'| <k-e/k=e.
This shows that the definition of uniform continuity is satisfied for f on I.
The converse of the statement in part A is not true: Show that f(z) = /3 is uniformly

continuous on [—1, 1], but there is no constant k such that |f(z) — f(2)| < k|z — 2/|
for all 2,2’ € [—1,1]. Hint: Think slopes of secant lines to the graph y = /3.

Solution: First, f(z) is continuous on [—1, 1], hence it is uniformly continuous by the
result of Theorem 3.6.8 (proved in class before Easter break). Let 2/ = 0 and take
arbitrary x > 0 we have

fl@)— f(0) a1

x—0 T x5

But lim, g+ — = 400. In other words, the value of the difference quotient will get
x 3
unboundedly large as  — 0%. Hence there is no single k such that
LOB I
z—0

for all x in [—1, 1]. But that shows that there is no k such that |f(z) — f(0)| < k|z —0|
for all z in [—1,1].



