
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 7 – due: Friday, April 4

‘A’ Section

1. Let f(x) = 15x
x4+3x2+1 . Use the Intermediate Value and/or Extreme Value Theorems to

show the following:
A) For all k ∈ [−3, 3], there exist c ∈ [−1, 1] such that f(c) = k.

Solution: First, f(x) is a rational function and x4 + 3x2 + 1 ≥ 1 for all x ∈ R, so
it follows that f(x) is continuous at all c ∈ R. We have f(−1) = −3 and f(1) = 3.
Therefore, by the IVT, for all k ∈ [−3, 3], there exist c ∈ [−1, 1] such that f(c) = k.

B) For all k with 0 < k < 3, there exist some c ∈ (1,∞) such that f(c) = k.

Solution: We see by the “Big Theorem” on function limits that limx→∞ f(x) = 0.
Hence if we have any k with 0 < k < 3, then there exists a B > 1 such that f(B) < k <
3 = f(1). Applying the IVT on the interval [1, B], we see there is a c ∈ (1, B) ⊂ (1,∞)
such that f(c) = k.

C) There is a c ∈ (0, 1) where f(c) = 3.

Solution: Consider the function

g(x) = f(x) − 3 =
15x − 3x4 − 9x2 − 3

x4 + 3x2 + 1

We see that g(0) = −3 < 0 and g(1/2) = 33
29 > 0. g(x) is also continuous on [0, 1/2].

Therefore, by the IVT, there exists c ∈ (0, 1/2) ⊂ (0, 1) where g(x) = 0.

D) There is a d ∈ (0, 1) where f ′(d) = 0.

Solution: Consider the number c from part c. We have f(c) = f(1) = 3, but f is
certainly not constant between c and 1. Therefore by the Extreme Value Theorem,
there must exist a maximum value f(d) > 3 or a minimum value f(d) < 3 for f on
the interval [c, 1] attained at some d ∈ (c, 1). By plotting the function f , we can see
that in fact the first statement is the one that is true – there is a maximum. We claim
that f ′(d) = 0. First note that

lim
x→d−

f(x) − f(d)

x − d
≥ 0

since f has a maximum at d. Similarly,

lim
x→d+

f(x) − f(d)

x − d
≤ 0

Since f is a rational function whose denominator never equals zero, f is differentiable
at d, so these one-sided limits must both exist and be equal. Therefore f ′(d) = 0.
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2. Show that there is a solution of the equation tan(x) = x in the interval
(

(2k−1)π
2 , (2k+1)π

2

)

for every k ∈ Z.

Solution: We know that tan(x) has infinite discontinuities at (2k−1)π
2 and (2k+1)π

2 and
hence

lim
x→

(2k−1)π

2

+
tan(x) = −∞ lim

x→
(2k+1)π

2

−

tan(x) = +∞

It follows that we also have

lim
x→

(2k−1)π

2

+
tan(x) − x = −∞ lim

x→
(2k+1)π

2

−

tan(x) − x = +∞

Therefore, tan(x) − x must change sign on some interval [a, b] ⊂
(

(2k−1)π
2 , (2k+1)π

2

)

and

the Intermediate Value Theorem implies tan(x) − x = 0 somewhere in that interval.

3. Using the definition of the derivative, find the value of f ′(c), or say why f is not
differentiable at x = c:

A) f(x) = x3 + 2x − 4 at c = 2.

Solution: We have

f ′(2) = lim
x→2

x3 + 2x − 12

x − 2

= lim
x→2

(x − 2)(x2 + 2x + 6)

x − 2

= lim
x→2

x2 + 2x + 6

= 14.

B) f(x) = sin(|x|) at c = 0. Hint: Look back at Problem Set 6, B 2.

Solution: f ′(0) does not exist for this function because

lim
x→0+

sin(|x|)

x
= +1

by the indicated problem on Problem Set 6, while

lim
x→0−

sin(|x|)

x
= lim

x→0−

− sin(x)

x
= −1.

Since the one-sided limits are not equal, the derivative at 0 does not exist.

C) The function defined by

f(x) =

{

x2 if x > 1
2x − 1 if x ≤ 1
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at c = 1.

Solution: We have

lim
x→1+

f(x) − f(1)

x − 1
= lim

x→1+

x2 − 1

x − 1
= lim

x→1+
x + 1 = 2.

On the other hand,

lim
x→1−

f(x) − f(1)

x − 1
= lim

x→1−

2x − 2

x − 1
= lim

x→1−

2 = 2.

Since the one-sided limits exist and are equal, f ′(1) exists and equals 2.

D) The function defined by

f(x) =

{

x2 if x ∈ Q

0 if x ∈ Qc

at c = 0.

Solution: We have for x 6= 0,

f(x) − f(0)

x − 0
=

{

x if x ∈ Q

0 if x ∈ Qc

Given any ε > 0, if we take δ = ε, then for all x in the deleted neighborhood defined
by 0 < |x| < ε,

∣

∣

∣

∣

f(x) − f(0)

x − 0
− 0

∣

∣

∣

∣

< ε.

It follows that

lim
x→0

f(x) − f(0)

x − 0
= 0 = f ′(0).

(It is not too hard to show that f ′(c) exists only for this one c = 0. This function is
not differentiable anywhere else.)

‘B’ Section

1. Let f be continuous on [0, 1] with f(0) < 0 and f(1) > 1. Suppose that g is another
continuous function on [0, 1] such that g(0) ≥ 0 and g(1) ≤ 1. Show that there exists some
c ∈ (0, 1) such that f(x) = g(x).

Solution: Let h(x) = f(x)−g(x). Since f, g are continuous on [0, 1], the same is true for h.
By the given information, h(0) = f(0) − g(0) < 0 and h(1) = f(1) − g(1) > 0. Therefore,
the IVT implies that h(c) = 0 for some c ∈ (0, 1). But then 0 = h(c) = f(c) − g(c), so
f(c) = g(c).

2. Let f be continuous on [a, b] with f(a) < k < f(b). Here is a variation on our proof of
the Intermediate Value Theorem.
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A) Let
T = {x ∈ [a, b] | f(x) > k}.

Show that T has a greatest lower bound and that f(glb(T )) = k.

Solution: T is contained in the interval [a, b], so it is a bounded subset of R. Then
c = glb(T ) exists by the LUB Axiom. Note that a < c since f(a) < k. Hence the
interval [a, c) is contained in the complement of T . If we let {xn} be any sequence
contained in [a, c) converging to c, then since f is continuous, limn→∞ f(xn) = f(c).
But f(xn) ≤ k for all n, so

(1) f(c) = lim
n→∞

f(xn) ≤ k

also (by Corollary 2.2.8 in the text). On the other hand, given any ε > 0, c + ε is not
a lower bound for T , so there exists some x ∈ T such that c ≤ x < c + ε. Apply this
for ε = 1

n for each natural number. Then we get a sequence x′

n such that x′

n ∈ T for
all n and c ≤ x′

n < c + 1
n
. It follows easily that x′

n → c as n → ∞. Therefore since f
is continuous at c, limn→∞ f(x′

n) = f(c). But x′

n ∈ T for all n, so f(x′

n) > k. Hence

(2) f(c) = lim
n→∞

f(x′

n) ≥ k.

The two inequalities (1) and (2) show that f(c) = k.

B) Will this glb(T ) always be the same as the c we found in our proof of the IVT with
f(c) = k? If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered

S = {x ∈ [a, b] | f(x) ≤ k}

and we showed that if c′ = lub(S), then f(c′) = k. The c found in part A and the c′

here do not have to be the same. For instance, let f(x) = x3 − 2x + 1 on [−2, 2]. We
have f(−2) = −3 and f(2) = 5. So the IVT will apply for any k with −3 < k < 5.
Consider k = 0. The equation x3 − 2x + 1 = 0 actually has three different roots in
the interval [−2, 2]: One between −2 and −1 (call this one α), a second between 1/2
and 1 (call this one β), and a third at x = 1. The set T as in part A is the union
T = (α, β) ∪ (1, 2), so c = glb(T ) = α. On the other hand, the set S as in the proof
we did in class is S = [−2, α] ∪ [β, 1], so c′ = lub(S) = 1.

3. This property deals with another property of real-valued functions of a real variable
sometimes called Lipschitz continuity.

A) Let f be a function on an interval I with the property that there exists a strictly
positive constant k such that |f(x) − f(x′)| ≤ k|x − x′| for all x, x′ ∈ I (this is the
definition of Lipschitz continuity). Show that f is uniformly continuous on I.
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Solution: Given ε > 0, let δ = ε/k. Then for any x, x′ ∈ I such that |x−x′| < δ = ε/k,
it follows that

|f(x) − f(x′)| ≤ k|x − x′| < k · ε/k = ε.

This shows that the definition of uniform continuity is satisfied for f on I.

B) The converse of the statement in part A is not true: Show that f(x) = x1/3 is uniformly
continuous on [−1, 1], but there is no constant k such that |f(x) − f(x′)| ≤ k|x − x′|
for all x, x′ ∈ [−1, 1]. Hint: Think slopes of secant lines to the graph y = x1/3.

Solution: First, f(x) is continuous on [−1, 1], hence it is uniformly continuous by the
result of Theorem 3.6.8 (proved in class before Easter break). Let x′ = 0 and take
arbitrary x > 0 we have

f(x) − f(0)

x − 0
=

x1/3

x
=

1

x
2
3

.

But limx→0+
1

x
2
3

= +∞. In other words, the value of the difference quotient will get

unboundedly large as x → 0+. Hence there is no single k such that

∣

∣

∣

∣

f(x) − f(0)

x − 0

∣

∣

∣

∣

≤ k

for all x in [−1, 1]. But that shows that there is no k such that |f(x)−f(0)| ≤ k|x−0|
for all x in [−1, 1].
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