'A'Section

1. Determine whether each of the following limits exists using the "big theorem" for function limits and other results from section 3.2 of the text as needed.
(a) $\lim _{x \rightarrow 1} x^{2}-5 x+3$

Solution: By parts 1 and 2 of the "big theorem," the limit is

$$
\lim _{x \rightarrow 1} x^{2}-5 \lim _{x \rightarrow 1} x+3=1-5+1=-1
$$

(b) $\lim _{x \rightarrow \frac{1}{3}} x+\frac{1}{x^{2}}$

Solution: By parts 1 and 3 of the "big theorem," the limit is $1 / 3+9=\frac{28}{3}$.
(c) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$

Solution: The limit is $\frac{3}{2}$. Proof: For $x \neq 1$, we see

$$
\frac{x^{3}-1}{x^{2}-1}=\frac{\left(x^{2}+x+1\right)(x-1)}{(x-1)(x+1)}=\frac{x^{2}+x+1}{x+1}
$$

This shows $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1}=\frac{3}{2}$.
(d) Let

$$
f(x)= \begin{cases}x^{1 / 3} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 3 & \text { if } x=0\end{cases}
$$

and consider $\lim _{x \rightarrow 0} f(x)$.
Solution: The limit is 0 by the limit squeeze theorem. We have $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all $x \neq 0$. So

$$
-x^{1 / 3} \leq f(x) \leq x^{1 / 3}
$$

for all $x \neq 0$. Since $\lim _{x \rightarrow 0}-x^{1 / 3}=\lim _{x \rightarrow 0} x^{1 / 3}=0, \lim _{x \rightarrow 0} f(x)=0$ also.
2. Which of the functions in question 1 are continuous at the indicated c in the limits there? Explain.

Solution: The functions in parts (a) and (b) of problem 1 are continuous at the given c since $\lim _{x \rightarrow c} f(x)=f(c)$. The function in part (c) is not continuous at 2 since $f(1)$ is not defined.

The function in part (d) is not continuous at $x=0$ since $\lim _{x \rightarrow 0} f(x)=0 \neq 3=f(0)$ (by the definition of $f(x)$).
3. True-False. For the true statements, give a short proof. For the false statements give a counterexample.
(a) If $\lim _{x \rightarrow 1} f(x)=e-\frac{28}{10}$, then there exists a $\delta>0$ such that $f(x)<0$ for all x with $0<|x-1|<\delta$.

This is TRUE. The reason is that $a=e-\frac{28}{10}<0$ (since $e \doteq 2.71828<2.8$). So if we take $\varepsilon=|a| / 2$, then there is a corresponding $\delta>0$ such that for x with $0<|x-1|<\delta$,

$$
|f(x)-a|<|a| / 2
$$

But this implies $f(x)<a+|a| / 2=a / 2<0$ for all such x.
(b) If $|f(x)| \leq x^{3}$ for all x and $\lim _{x \rightarrow 2} f(x)$ exists, then $\lim _{x \rightarrow 2} f(x) \leq 8$.

Solution: This is TRUE. We have $f(x) \leq|f(x)| \leq x^{3}$ so $\lim _{x \rightarrow 2} f(x) \leq \lim _{x \rightarrow 2} x^{3}=8$, using Theorem 3.2.8.
(c) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by this rule:

$$
f(x)= \begin{cases}2 x & \text { if } x \text { is rational } \\ -2 x & \text { if } x \text { is irrational }\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)$ exists and equals 0 .
Solution: This is TRUE. Given any $\varepsilon>0$, let $\delta=\varepsilon / 2$. Then for all x with $0<$ $|x-0|<\delta=\varepsilon / 2$, we have $|2 x|=|-2 x|=2|x|$ for rational and irrational x, so

$$
|f(x)|=2|x|<2 \frac{\varepsilon}{2}=\varepsilon
$$

This shows the limit is 0 as claimed.
(d) If $f(x)<g(x)$ on a deleted neighborhood of $c, \lim _{x \rightarrow c} f(x)=L$, and $\lim _{x \rightarrow c} g(x)=M$, then $L<M$.

Solution: This is FALSE. Counterexample: Let $f(x)=x^{4}$ and $g(x)=x^{2}$. Then $f(x)<g(x)$ for all x with $0<|x-0|<1$. But $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)$. (The statement would be true if it said $L \leq M$.)

'B' Section

1. Show that your answers for parts a and d of 1 on the A section are correct using the ε, δ definition (not the "big theorem" or other results from Chapter 3, section 1 of the text.)

Solution: Part (a) first. Given $\varepsilon>0$, let $\delta=\min (1, \varepsilon / 4)$. For all x with $0<|x-1|<\delta<1$, we have $0<x<2$, so $|x-4|<4$ and hence

$$
\begin{aligned}
\left|x^{2}-5 x+3-(-1)\right| & =\left|x^{2}-5 x+4\right| \\
& =|x-4||x-1| \\
& <4 \cdot \frac{\varepsilon}{4} \\
& =\varepsilon .
\end{aligned}
$$

This shows $\lim _{x \rightarrow 1} x^{2}-5 x+3=-1$.
Part (b). Given $\varepsilon>0$, let $\delta=\varepsilon^{3}>0$. Then For all x with $0<|x-0|<\delta=\varepsilon^{3}$, we have

$$
|f(x)-0|=\left|x^{1 / 3} \sin \left(\frac{1}{x}\right)\right|=|x|^{1 / 3}\left|\sin \left(\frac{1}{x}\right)\right| \leq|x|^{1 / 3}<\left(\varepsilon^{3}\right)^{1 / 3}=\varepsilon .
$$

This shows $\lim _{x \rightarrow 0} f(x)=0$.
2. Assume that $\lim _{x \rightarrow c} f(x)=L$.
(a) Show that there exists a constant B and $\delta>0$ such that $|f(x)| \leq B$ for all x in the deleted neighborhood $\{x \in \mathbf{R}|0<|x-c|<\delta\}$.

Solution: Since $\lim _{x \rightarrow c} f(x)=L$, letting $\varepsilon=1$, there is a corresponding $\delta>0$ such that $|f(x)-L|<1$ for all x in the deleted neighborhood defined by $0<|x-c|<\delta$. But for those $x, L-1<f(x)<L+1$, so $|f(x)| \leq \max (|L+1|,|L-1|)$. We can take $B=\max (|L+1|,|L-1|)$.
(b) Using part (a), not the limit product rule, show that $\lim _{x \rightarrow c}(f(x))^{n}=L^{n}$ for all integers $n \geq 1$.

Solution: Let B and δ_{0} be as in part (a). That is assume that $|f(x)| \leq B$ for all x with $0<|x-c|<\delta_{0}$. Given ε, since $\lim _{x \rightarrow c} f(x)=L$, we have $|f(x)-L|<\varepsilon / M$, where

$$
M=B^{n-1}+B^{n-2}|L|+\cdots+B|L|^{n-2}+|L|^{n-1}
$$

for all x with $0<|x-c|<\delta_{1}$ for some $\delta_{1}>0$. Let $\delta=\min \left(\delta_{0}, \delta_{1}\right)$. Then for all x with $0<|x-c|<\delta$, we have (using the triangle inequality on the second factor on the right side):

$$
\begin{aligned}
\left|(f(x))^{n}-L^{n}\right| & =|f(x)-L|\left|(f(x))^{n-1}+(f(x))^{n-2} L+\cdots+f(x) L^{n-2}+L^{n-1}\right| \\
& \leq|f(x)-L|\left(|f(x)|^{n-1}+|f(x)|^{n-2}|L|+\cdots+|f(x)||L|^{n-2}+|L|^{n-1}\right) \\
& <\frac{\varepsilon}{M}\left(B^{n-1}+B^{n-2}|L|+\cdots+B|L|^{n-2}+|L|^{n-1}\right) \\
& =\frac{\varepsilon}{M} \cdot M=\varepsilon
\end{aligned}
$$

This shows $\lim _{x \rightarrow c}(f(x))^{n}=L^{n}$.
(c) Assume that $f(x) \geq 0$ on some deleted neighborhood of $x=c$. Show that

$$
\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}
$$

(Hint: It may help to treat the cases $L=0$ and $L \neq 0$ separately.)
Solution: First suppose $L=0$. Then for all $\varepsilon>0$, there exist corresponding $\delta>0$ such that $|f(x)|<\varepsilon^{2}$ for all x with $0<|x-c|<\delta$. But then for the same x, we have $|\sqrt{f(x)}|<\varepsilon$. So $\lim _{x \rightarrow c} \sqrt{f(x)}=0=\sqrt{0}$. Now assume $L \neq 0$ (so $L>0$). Given $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-L|<\varepsilon \sqrt{L}$ for all x with $0<|x-c|<\delta$. For these x,

$$
\begin{aligned}
|\sqrt{f(x)}-\sqrt{L}| & =\frac{|f(x)-L|}{f(x)+\sqrt{L}} \\
& \leq \frac{|f(x)-L|}{\sqrt{L}} \\
& <\frac{\varepsilon \sqrt{L}}{\sqrt{L}} \\
& =\varepsilon
\end{aligned}
$$

This shows $\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}$.
3. In this problem you will show that

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

For $0<\theta<\frac{\pi}{2}$, the point $P=(\cos (\theta), \sin (\theta))=(x, y)$ lies on the arc of the unit circle $x^{2}+y^{2}=1$ in the first quadrant.
(a) Let $O=(0,0), Q=(\cos (\theta), 0)$, and $R=(1,0)$. (Draw a picture!) By considering the areas of the triangle $\triangle O Q P$ and the circular sector $O R P$, deduce that if $0<\theta<\frac{\pi}{2}$, then $\sin (\theta) \cos (\theta) \leq \theta$. (You may use "intuitively reasonable" facts about areas such as the statement that if one plane region \mathcal{R} is completely completely contained in a second region \mathcal{S}, then $\operatorname{area}(\mathcal{R}) \leq \operatorname{area}(\mathcal{S})$.)

Solution: The area of the triangle $\Delta O Q P$ is $\frac{1}{2} \sin (\theta) \cos (\theta)$. The area of the sector is $\frac{1}{2} \theta$, since the area of the circular sector with angle Θ of a circle of radius r is $\frac{\Theta r^{2}}{2}$. Since the sector completely contains the triangle, the desired inequality follows.
(b) Now take the tangent line to the circle at R (a vertical line), and let $S=(1, \tan (\theta))$ be the intersection of that line and the radius $O P$ (extended). Considering the areas of the triangle $\triangle O R S$ and the sector $O R P$ as above, explain why $\theta \leq \tan (\theta)$.

Solution: The area of the triangle $\Delta O R S$ is $\frac{1}{2} \tan (\theta)$. (By the way, in case you never have seen this before, this is the reason that the tangent function is known by that name!) This time the sector $O R P$ is completely contained in the triangle, so the inequality follows again.
(c) Combine parts (a) and (b) to deduce that if $0<\theta<\frac{\pi}{2}$, then

$$
\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq \frac{1}{\cos (\theta)}
$$

Solution: Combining parts (a) and (b), we see

$$
\sin (\theta) \cos (\theta) \leq \theta \leq \tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}
$$

Since $\sin (\theta)>0$ for the θ in this range, it follows that

$$
\cos (\theta) \leq \frac{\theta}{\sin (\theta)} \leq \frac{1}{\cos (\theta)}
$$

and the desired inequalities follow by taking reciprocals.
(d) Using the one-sided form of Theorem 3.2.9 (The Limit Squeeze Theorem), show that

$$
\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta}=1
$$

(You will need to use the fact that $\cos (\theta)$ is continuous at $\theta=0$.)
Solution: Since $\cos (\theta)$ is continuous at $\theta=0$, we have $\lim _{\theta \rightarrow 0^{+}} \cos (\theta)=1$ and hence $\lim _{\theta \rightarrow 0^{+}} \frac{1}{\cos (\theta)}=1$ as well. By the one-sided version of the Limit Squeeze Theorem,

$$
\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta}=1
$$

also.
(e) Now, for $-\frac{\pi}{2}<\theta<0$, show that $\frac{\sin (\theta)}{\theta}=\frac{\sin (|\theta|)}{|\theta|}$ and use this to see that

$$
\lim _{\theta \rightarrow 0^{-}} \frac{\sin (\theta)}{\theta}=1
$$

as well.
Solution: This follows from the fact that \sin is an odd function. If $\theta<0$, then

$$
\frac{\sin (|\theta|)}{|\theta|}=\frac{\sin (-\theta)}{-\theta}=\frac{-\sin (\theta)}{-\theta}=\frac{\sin (\theta)}{\theta} .
$$

By letting $\varphi=|\theta|>0$, from part (d) we see that

$$
\lim _{\theta \rightarrow 0^{-1}} \frac{\sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0^{-}} \frac{\sin (|\theta|)}{|\theta|}=\lim _{\varphi \rightarrow 0^{+}} \frac{\sin (\varphi)}{\varphi}=1
$$

(f) Finally, explain how parts (d) and (e) combine to show the statement at the start of the problem.

Solution: The desired statement follows from parts (d) and (e) and Theorem 3.3.4 (equality of the two one-sided limits implies the two-sided limit exists and equals the common value).

