
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 5

Due: March 14, 2014

‘A’ Section

1. For each of the following sequences, determine three different subsequences, each con-
verging to a different limit. For each one, express your three subsequences as xnk

for a
suitably chosen (strictly increasing) index sequence nk, and give an explicit formula for nk

as a function of k:

(a) xn = sin
(

nπ

2

)

Solution: If nk = 2k, then xnk
= 0 for all k, so that subsequence converges to 0. If

nk = 4k + 1, then xnk
= 1 for all k, so that subsequence coverges to 1. Finally, if

nk = 4k + 3, then xnk
= −1 for all k so that subsequence converges to −1. There are

infinitely many other correct examples too.

(b) xn = n

5 −
[

n

5

]

(as usual, [ ] denotes the greatest integer function)

Solution: Let nk = 5k, then x5k = k − k = 0 for all k, so that subsequence converges
to 0. Let nk = 5k + 1, then x5k+1 = k + 1/5 − k = 1/5 for all k, so that subsequence
converges to 1/5. Finally, if nk = 5k + 2, then the subsequence x5k+2 converges to
2/5. (There are similar subsequences converging to 3/5 and 4/5 as well.)

2. Let xn =
√

n. For each of the following sequences, either express that sequence as a
subsequence of the sequence xnk

for some explicit (strictly increasing) index sequence nk,
or say why that is impossible:

(a) {2, 3, 4, 5, . . .}
Solution: This is the subsequence xnk

for nk = (k + 1)2, k ≥ 1.

(b) {
√

3,
√

6,
√

9,
√

12, . . .}
Solution: This is the subsequence xnk

for nk = 3k, k ≥ 1.

(c) {1, 2, 4, 8, 16, 32, . . .}
Solution: This is the subsequence xnk

for nk = 22(k−1), k ≥ 1.

3. Let xn = sin
(

nπ

4

)

and yn = cos
(

nπ

4

)

.

(a) Find a (strictly increasing) index sequence nk such that both xnk
and ynk

converge.

Solution: The sequence nk = 8k + 1 is such an index sequence since

sin

(

(8k + 1)π

4

)

= sin
(

2kπ +
π

4

)

=

√
2

2

1



and

cos

(

(8k + 1)π

4

)

= cos
(

2kπ +
π

4

)

=

√
2

2

for all k ≥ 1.

(b) Find a second (strictly increasing) index sequence nk such that both xnk
and ynk

diverge.

Solution: The sequence nk = k is such a sequence.

(c) Find a third (strictly increasing) index sequence nk such that one of xnk
and ynk

converges and the other diverges.

Solution: The sequence nk = 4k is such an example since sin(kπ) = 0 for all k, but
cos(kπ) = (−1)k does not converge.

‘B’ Section

1. (True or False) – If the statement is true give a proof; if it is false give a counterexample.

(a) If xn is a sequence of strictly positive numbers converging to 0, then xn has a strictly
decreasing subsequence xnk

.

Solution: This is TRUE. Here is one way to see it, constructing a strictly decreasing
subsequence inductively. We start with n1 = 1, so xn1

= x1. This is the base case.
Now assume we have found xn1

> xn2
> . . . > xnk

for 1 = n1 < n2 < · · · < nk. Since
xn → 0, given ε = xnk

, there exists N0 in N such that xn = |xn − 0| < xnk
for all

n ≥ N0. Take nk+1 = max(N0, nk + 1). Then we have xnk+1
< xnk

, and nk+1 > nk.
This shows we can continue to construct a strictly decreasing subsequence.

(b) If xn → 0, then xn contains a strictly increasing subsequence or a strictly decreasing
subsequence (or both).

Solution: This is FALSE. Counterexamples are the constant sequence xn = 0 for all
n ≥ 1, or any “eventually constant” sequence with xn = 0 for all n ≥ n0 for some
n0 ∈ N. (Comment: The statement would be true if we assumed xn 6= 0 for all n (or
even all n ≥ n0 for some n0 ∈ N). Any such sequence contains either infinitely many
positive terms or infinitely many negative terms, or both. If there are infinitely many
positive terms, we get a strictly decreasing subsequence of the positive terms by part
(a) of this question. If there are infinitely many strictly negative terms, then there is
a strictly increasing subsequence, as can be seen by taking negatives, using part (a),
then flipping signs again.)

(c) If xn is a monotone increasing sequence with a bounded subsequence xnk
, then xn

converges.

Solution: This is TRUE. Since the whole sequence is increasing, so is the subsequence
xnk

. But that subsequence is bounded above, say by a ∈ R. We claim that the whole
sequence xn is also bounded above by a. To see that, let n be any natural number.
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Since {nk} is a strictly increasing sequence of natural numbers, it follows that it is not
bounded above. So there is some k such that nk ≥ n. But then since xn is increasing
and a is an upper bound for the subsequence, a ≥ xnk

≥ xn. It follows that a ≥ xn

for all n, and hence the whole sequence is bounded above. Then {xn} converges as
well by the Monotone Convergence Theorem. (You can also show that the limit of
the whole sequence must be the same as the limit of the subsequence, but that was
not required.)

2. Consider the sequence xn = cos(n) (where we think of n as an angle expressed in
radians).

(a) Prove that xn has a convergent subsequence.

Solution: Since | cos(n)| ≤ 1 for all n ≥ 1, this is a bounded sequence. The statement
to be proved is a direct consequence of the Bolzano-Weierstrass Theorem.

(b) In this part of the question we will show that xn is not convergent, though. Suppose
limn→∞ cos(n) = a for some real number a. Using a trig identity for cos(n + 1) and
considering limn→∞(cos(n + 1) − cos(n)), show that

a(cos(1) − 1)

sin(1)
= lim

n→∞

sin(n).

But then use the sequence limn→∞(sin(n + 1) − sin(n)) to deduce that a = 0, so
limn→∞ cos(n) = limn→∞ sin(n) = 0. But this is a contradiction. Explain why to
conclude the proof.

Solution: The addition formula for cos implies that cos(n + 1) = cos(n) cos(1) −
sin(n) sin(1). If we assume that limn→∞ cos(n) = a, then using parts of the “Big
Theorem” and rearranging algebraically, we see

0 = lim
n→∞

(cos(n + 1) − cos(n))

= lim
n→∞

cos(n)(cos(1) − 1) − lim
n→∞

sin(n) sin(1)

= a(cos(1) − 1) − sin(1) lim
n→∞

sin(n).

Thus,

(1) lim
n→∞

sin(n) =
a(cos(1) − 1)

sin(1)
.

as claimed. Now the addition formula for sin shows

sin(n + 1) = sin(n) cos(1) + cos(n) sin(1)

Taking the limit as n → ∞ on both sides and substituting from (1), we get:

a(cos(1) − 1)

sin(1)
=

a(cos(1) − 1)

sin(1)
cos(1) + a sin(1),
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so
a(cos(1) − 1) = a(cos(1) − 1) cos(1) + a sin2(1),

and hence (because cos2(1) + sin2(1) = 1),

a(cos(1) − 1) = a(1 − cos(1)).

The only way this can be true is if a = 0. But then this implies that

lim
n→∞

sin(n) = 0 = lim
n→∞

cos(n).

But that is impossible because it would say limn→∞ cos2(n) + sin2(n) = 0 by parts
(a) and (b) of the “Big Theorem.” However, we know by the basic identity for the
trigonometric functions that

cos2(n) + sin2(n) = 1

for all n ≥ 1. Hence limn→∞ cos2(n)+ sin2(n) = 1 as well if the two limits exist. This
contradiction shows that limn→∞ cos(n) cannot exist.

3. A cluster point of a sequence xn is a limit of a convergent subsequence xnk
. (See

question 1 on the A section for examples of sequences with several different cluster points.)
Show that if am is a convergent sequence of cluster points of a given sequence xn, then
a = limm→∞ am is also a cluster point of the xn sequence.

Solution: We let am be a convergent sequence of cluster points of xn with a =
limm→∞ am. Since each am is a cluster point of the xn sequence, there is a sub-
sequence of xn converging to am. From the subsequence converging to a1, select any
xn1

with |xn1
− a1| < 1. Then from the subsequence converging to a2, select any xn2

with n2 > n1 and |xn2
− a2| < 1

2 , then from the subsequence converging to a3, select
xn3

with |xn3
− a3| < 1

3 and n3 > n2. By an induction argument, we can always
continue this process since for any ℓ ≥ 1, there are infinitely many index values nℓ

for which |xnℓ
− aℓ| < 1

ℓ
(all the indices giving terms in the subsequence converging

to aℓ that are distance 1
ℓ

or less from aℓ). In this way we get a subsequence {xnℓ
}

(indexed by ℓ ∈ N) with nℓ strictly increasing and |xnℓ
− aℓ| < 1

ℓ
for all ℓ ≥ 1. We

claim that the subsequence xnℓ
converges to a. To see this note that given any ε > 0,

there exists ℓ0 ∈ N such that 1
ℓ

< ε

2 and |aℓ − a| < ε

2 for all ℓ ≥ ℓ0. Then by the
triangle inequality, for all ℓ ≥ ℓ0,

|xnℓ
− a| = |xnℓ

− aℓ + aℓ − a| ≤ |xnℓ
− aℓ| + |aℓ − a| <

ε

2
+

ε

2
= ε.

This shows that the subsequence {xnℓ
} converges to a, so a is also a cluster point of

the {xn} sequence.
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