
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 4
Due: February 28, 2014

‘A’ Section

1. Using the ‘Big Theorem’ on limits of sequences (Theorem 2.2.5 in the text), find the
limit of each of the following:

(a) xn = (4n+9n/2)2

25n

Solution: Expanding the top by the binomial theorem, then dividing by 25n = 32n,
we have

xn =
16n + 2 · 12n + 9n

32n

= (1/2)n + 2 · (3/8)n + (9/32)n.

Hence by Theorem 2.2.5(a), and the fact that (1/2)n → 0, (6/9)n → 0 and (4/9)n → 0,
the limit is 0.

(b) xn =
√

n(
√

25n + 3 − 5
√

n) (Hint:
√

a −
√

b = a−b√
a+

√
b

– do you see why? Also, you

may use the result of question 1 in the B section if needed.)

Solution: By the algebraic identity in the Hint, we have:

xn =
√

n · (25n + 3) − 25n√
25n + 3 + 5

√
n

=
3
√

n√
25n + 3 + 5

√
n

=
3

√

25 + 3/n + 5
.

By Theorem 2.2.5(c) and question 1 in the B section, limn→∞ xn = 3
10

.

(c) xn = 1
n4

∑4
k=0

(

n
k

)

1
3k . (The

(

n
k

)

are the binomial coefficients as in Problem Set 2.)

Solution: By the definition, after cancellation

(

n

k

)

=
n!

k!(n − k)!
=

n(n − 1) · · · (n − (k − 1))

k!
,

with k factors on the top. As a polynomial in n, the degree of the top is k. Hence,
for k < 4, we will have limn→∞

1
n4

(

n
k

)

= 0 and limn→∞
1

n4

(

n
4

)

= 1
4!

by applying the
Limit Sum Rule. Therefore

lim
n→∞

xn =
1

4!
· 1

34
=

1

1944
.
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2. For each of the following statements, first say whether the statement is true. Then, if
the statement is true, give a reason; if it is false give a counterexample.

(a) Let {xn} and {yn} be sequences. If it is known that {xn} and {xn − yn} converge,
then {yn} converges too.

Solution: This is true, since we can apply parts (a) and (b) of Theorem 2.2.5 to deduce
that yn = xn + (−1)(xn − yn) converges.

(b) If {xn} and {yn} both diverge, then so does {xn · yn}.
Solution: This is false. A counterexample: Let xn = (−1)n = yn. Then both xn and
yn diverge, but xn · yn is the constant sequence 1, which certainly converges.

(c)
(c) If xn → 1/1000, then there exists n0 ∈ N such that xn > 0 for all n ≥ n0.

Solution: This true. Let 0 < ε < 1/2000. Then there exists an n0 ∈ N such that
|xn − 1/1000| < 1/2000 for all n ≥ n0. But this implies xn > 1/1000 − 1/2000 =
1/2000 > 0 for all such n.

(d) If xn > 0 and xn+1

xn
≤ 1 for all n ≥ 1, then xn → 0.

Solution: This is also false. The given information says xn is strictly positive for all
n, hence xn+1 ≤ xn. So xn is a monotone decreasing sequence that is bounded below
by 0. It must converge, but not necessarily to zero. For example xn = 1 + 1

n
satisfies

all the conditions, but xn → 1.

3. For each of the following sequences, first explain why the sequence is monotonic and
bounded, then determine the limit:

(a) xn+1 =
√

4 + xn, x1 = 1.

Solution: We have x1 = 1 and x2 =
√

5 > 1. Now assume we know xk+1 > xk and
consider xk+2 =

√
4 + xk+1. Since xk+1 > xk, we have 4 + xk+1 > 4 + xk, hence

xk+2 =
√

4 + xk+1 >
√

4 + xk = xk+1. By induction, it follows that xn is a monotone
strictly increasing sequence. We claim next that xn is bounded above. For instance,
we claim xn < 3 for all n. This can also be proved by induction: x1 = 1 < 3 for
the base case. If we assume xk < 3, then xk+1 =

√
4 + xk <

√
4 + 3 =

√
7 < 3

also. Therefore by induction, xn is bounded above. By the Monotone Convergence
Theorem, it follows that xn converges to some α ∈ R. If we take the limit as n → ∞
in the recursion equation, we get

α = lim
n→∞

xn+1 =
√

4 + lim
n→∞

xn =
√

4 + α

Squaring, we get α2 = 4 + α, which has the roots α = 1±
√

17
2

. Since xn > 0 for all n,

the limit must be α = 1+
√

17
2 .

(b) xn+1 = 3xn+7
8 , x1 = 2.
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Solution: We hve x1 = 2 and x2 = 13
8 < 2. Assuming xk+1 < xk, consider

xk+2 =
3xk+1 + 7

8
<

3xk + 7

8
= xk+1.

By induction the sequence is monotone decreasing. It is easy to see that xn > 0 for all n,
so the sequence is also bounded below, hence converges to some β ∈ R. Taking limits as
in part (a), we get β = 3β+7

8
, so β = 7

5
.

‘B’ Section

1. Let a > 0. Show that if xn → a and xn ≥ 0 for all n, then
√

xn → √
a. (Hint: See part

(b) of question 1 in the A section.)

Solution: Let ε > 0. Since xn → a, there exists a natural number n0 such that |xn − a| <
ε
√

a for all n ≥ n0. Then for all n ≥ n0 we have, using the identity from question 1 in the
A section:

|√xn −
√

a| =

∣

∣

∣

∣

xn − a√
xn +

√
a

∣

∣

∣

∣

≤ |xn − a|√
a

<
ε
√

a√
a

= ε.

This shows
√

xn → √
a.

2. In this problem, you will show that the sequence xn =
∑n

k=1
1
k! converges.

(a) First show that 1
k!

≤ 1
2k−1 for all integers k ≥ 1.

Solution: With k = 1, we have 1 ≤ 1 so the base case for an induction is established.
Now assume that the inequality has been shown for k = ℓ and consider

1

(ℓ + 1)!
=

1

ℓ!
· 1

ℓ + 1
≤ 1

2ℓ−1
· 1

2
=

1

2ℓ
.

Hence the inequality is true for all k ≥ 1.

(b) Show that for all n ≥ 1,

1 +
1

2
+ · · ·+ 1

2n−1
=

1 − 1
2n

1 − 1
2

and deduce that xn is bounded above by 2.

Solution: Let yn = 1 + 1
2 + · · ·+ 1

2n−1 . We see that yn − 1
2yn “telescopes” as follows:

yn − 1

2
yn = 1 − 1

2n
, hence yn =

1 − 1
2n

1 − 1
2

as claimed. (This can also be proved by induction, of course.) Note that after some
rearrangement,

yn = 2 − 1

2n−1
< 2
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for all n. To make the connection with xn above, we apply the inequality from part
(a) term by term to the sum in the formula for xn:

xn =
1

1!
+

1

2!
+ · · · + 1

n!
≤ 1 +

1

2
+ · · ·+ 1

2n−1
= yn

Combining these observations we have

xn =
n

∑

k=1

1

k!
≤

n
∑

k=1

1

2n
< 2

(c) Use part (b) to show that xn converges.

Solution: We see xn is a monotone increasing sequence since the terms that are added
into xn are all positive. Hence xn+1 = xn + 1

(n+1)!
> xn for all n ≥ 1. By part (b)

xn is also bounded above. It follows from the Monotone Convergence Theorem that
xn converges to some α ∈ R. (The limit is actually the number e − 1 (where e is the
base of the natural logarithms).

3. In class, we proved the Monotone Convergence Theorem for sequences, the result stated
as Theorem 2.3.3 in the text. In the proof we used the Least Upper Bound Axiom in a
crucial way. It is an interesting fact that the implication goes the other way too. Namely
if we assume that monotone increasing sequences of reals always converge to real numbers,
it follows that that every set of reals that is bounded above has a least upper bound. You
will show this in this problem using the following construction. Let A be any nonempty set
of real numbers that is bounded above. The proof is based on constructing two sequences
xn and yn by this inductive procedure:

(i) Let x1 ∈ A be any element of A, and let y1 be any upper bound for A.
(ii) Assuming xk and yk have been constructed such that xk ∈ A and yk is an upper

bound for A, find xk+1 and yk+1 like this: Let mk = xk+yk

2 . If mk is also an upper
bound for A, then set xk+1 = xk and yk+1 = mk. Otherwise, there is some x ∈ A
with mk < x ≤ yk, and in this case let xk+1 = x and yk+1 = yk.

Note that an easy induction argument shows that this construction will produce sequences
such that xn ∈ A for all n ≥ 1 and yn is an upper bound for A for all n ≥ 1.

Now prove the following statements to show that A has a least upper bound in R assuming
the Monotone Convergence Theorem:

(a) Prove that both sequences {xn} and {yn} converge to elements of R, using the Mono-
tone Convergence Theorem and its Corollary.

Solution: The xn are all bounded above by y1 and the yn are all bounded below by x1.
By the construction, we also see xn is monotone increasing (whenever xn+1 6= xn, we
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necessarily have xn+1 > xn), and similarly yn is monotone decreasing. Therefore both
sequences converge in R by the Monotone Convergence Theorem and its Corollary.

(b) Show that limn→∞ xn = limn→∞ yn by showing that |xn −yn| ≤ |x1−y1|
2n−1 for all n ≥ 1.

Solution: First, note that each time we go from one integer k to the next integer
k + 1, the construction of the sequences xn and yn using the midpoints mn shows the
distance from xk+1 to yk+1 is at most one half of the distance from xk to yk:

|xk+1 − yk+1| ≤
1

2
|xk − yk|.

It follows that |xn − yn| ≤ |x1−y1|
2n−1 for all n ≥ 1 as claimed. Now, say limn→∞ xn = α

and limn→∞ yn = β. We want to show that α = β. To see this, note that we have,
for all n,

xn ≤ α ≤ β ≤ yn

Therefore

|α − β| ≤ |xn − yn| =
|x1 − y1|

2n−1

for all n ≥ 1. Since 1
2n−1 → 0 as n → ∞, while |x1 − y1| is constant, it follows that

|α − β| = 0, hence α = β.

(c) Let α be the common limit of the xn and yn sequences. Show that α = lub(A) by
showing it satisfies the definition of a least upper bound.

Solution: We must show first that α ≥ x for all x ∈ A, and second that no number
α− ε for ε > 0 is an upper bound for A. The first statement follows since each of the
yn satisfy yn ≥ x for all x ∈ A. It follows from Theorem 2.2.7 in the text (applied to
the yn sequence and the constant sequence zn = x) that limn→∞ yn = α ≥ x for all
x ∈ A. Now let ε > 0 and consider α − ε. Since we have limn→∞ xn = α, it follows
that there exists an n0 ∈ N such that α− ε < xn0

≤ α. Since xn0
∈ A, it follows that

α − ε is not an upper bound for A. Therefore α = lub(A).
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