MATH 242 – Principles of Analysis Problem Set 3 – due: Feb. 14

A' Section

1. A set *B* is said to be *finite* if there is some $n \in \mathbf{N}$ (the number of elements in *B*), and a one-to-one and onto mapping $f : \{1, 2, ..., n\} \to B$. (Intuitively, we think that $f(1) = b_1, f(2) = b_2, ...$ "counts through" all the elements of *B* one at a time without repetitions and without missing any elements in *B*.) For each of the following sets, either show *B* is finite by determining the *n* and constructing a mapping *f* as above, or say why no such mapping exists.

a.
$$B = \{r = p/q \in \mathbf{Q} \mid 1 \le q \le 4 \text{ and } 0 < r < 1\}$$

b. $B = \{r = p/q \in \mathbf{Q} \mid 0 < r < 1\}$
c. $B = \{n \in \mathbf{Z} \mid |n| \le 10^{14}\}$

- 2. Which of the following sequences converge to 0? Explain your answers, but you do not need to provide complete formal proofs of your assertions.
 - a. $\{x_n\}$, where

$$x_n = \begin{cases} 2^n & \text{if } n \le 1000\\ 2^{-n} & \text{if } n > 1000 \end{cases}$$

b. $\{y_n\}$, where

$$y_n = \begin{cases} 1 & \text{if } n \text{ is evenly divisible by } 100\\ \frac{1}{n} & \text{if } n \text{ is not evenly divisible by } 100 \end{cases}$$

c. $\{z_n\}$, where

$$z_n = \begin{cases} n & \text{if } n \text{ is a Mersenne prime number} \\ \frac{(-1)^n}{n^2} & \text{if } n \text{ is not a Mersenne prime number} \end{cases}$$

(look these up on Wikipedia and read about them.)

3. Let f(x) = [x] be the greatest integer function, defined as [x] = the greatest integer $\leq x$.

a. If $x_n \to a$, does it follow that $[x_n] \to [a]$? Prove or give a counterexample.

b. If $[x_n] \to [a]$, does it follow that $x_n \to a$? Prove or give a counterexample.

(over for 'B' Section problems)

- 1.
- a. Prove that $\sqrt{3}$ is an irrational number.
- b. If $r \neq 0$ and s are rational numbers, show that $r\sqrt{3} + s$ is also an irrational number. (Hint: Suppose not and derive a contradiction.)
- c. If $x = r\sqrt{3} + s$ and $x' = r'\sqrt{3} + s'$ are two numbers as in part b, what can be said about x + x' and xx'? Are they necessarily irrational too?
- 2. Let A and B be two nonempty sets of real numbers.
 - a. Assume that $x \leq y$ for all $x \in A$ and $y \in B$. Show that lub A and glb B must exist.
 - b. Under the same assumptions as part a, show that lub $A \leq \text{glb } B$.
 - c. Now assume that A and B are bounded. Is it true that lub $A \leq \text{glb } B$ implies that $x \leq y$ for all $x \in A$ and $y \in B$? Prove or give a counterexample.
- 3. Let A be a bounded set of real numbers and let $B = \{kx \mid x \in A\}$, where k < 0 is a strictly negative number. Show that B is also bounded. Then, determine formulas for computing lub B and glb B in terms of lub A and glb A, and prove your assertions.
- 4. Determine whether each of the following sequences converge and prove your assertions using the ε , n_0 definition of convergence.

a.
$$x_n = \frac{3n^2}{n^2+5}$$

b. $x_n = \frac{1}{\ln(n)}$
c. $x_n = \cos(n\pi)$