MATH 242 - Principles of Analysis
Solutions for Problem Set 2 - due: Feb. 8

'A'Section

1. Let $x \in[-1,2]$. Determine the largest and smallest values of $|x-5|,|x+5|$.

Solution: If $x \in[-1,2]$, then $x-5 \in[-6,-3]$, so the largest and smallest values of $|x-5|$ are 6 and 3 respectively. (You can also see these as the distances from -1 to 5 and 2 to 5 along the number line, thinking geometrically.) Next, $x+5 \in[4,7]$, so the largest and smallest values of $|x+5|$ are 7 and 4 respectively.
2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.
a. Expand using the binomial theorem and simplify as much as possible:

$$
\left(a^{2}+3 b\right)^{5} .
$$

Solution: We have

$$
\left(a^{2}+3 b\right)^{5}=a^{10}+15 a^{8} b+90 a^{6} b^{2}+135 a^{4} b^{3}+405 a^{2} b^{4}+243 b^{5} .
$$

b. What is the coefficient of x^{3} in the expansion of

$$
\left(\frac{x^{5}+3}{x^{2}}\right)^{3}
$$

Solution: This coefficient is zero. The powers of x actually appearing in the binomial expansion will be $\left(x^{5}\right)^{3}=x^{15},\left(x^{5}\right)^{2} x^{-2}=x^{8}, x^{5}\left(x^{-2}\right)^{2}=x$ and $\left(x^{-2}\right)^{3}=x^{-6}$.
c. What is $\sum_{k=0}^{n}\binom{n}{k} 2^{k}$? Explain.

Solution: From the binomial theorem this sum is what we obtain from

$$
(1+2)^{n}=3^{n}
$$

d. What is $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$? Explain.

Solution: From the binomial theorem this sum is what we obtain from

$$
(1-1)^{n}=0^{n}=0
$$

3. For each of the following statements, say whether the statement is true or false. If it is false, give a counterexample; if it is true, give a short reason.
a. A set $A \subset \mathbf{R}$ is bounded if there exists some $B>0$ such that $|x| \leq B$ for all $x \in A$.
Solution: TRUE - the set is bounded above by B and below by $-B$.
b. If $A, B \subset \mathbf{R}$ are bounded, then $A \cap B$ is also bounded.

Solution: TRUE - If A is bounded above by M_{A} and B is bounded above by M_{B}, then $A \cap B$ is bounded above by $\min \left(M_{A}, M_{B}\right)$. Similarly, if A is bounded below by m_{A} and B is bounded below by m_{B}, then $A \cup B$ is bounded above by $\max \left(m_{A}, m_{B}\right)$.
c. If $A, B \subset \mathbf{R}$ are bounded, then $D=\{x+y \mid x \in A, y \in B\}$ is also bounded.

Solution: TRUE - Suppose A is bounded above by M_{A} and B is bounded above by M_{B}. Similarly, suppose A is bounded below by m_{A} and B is bounded below by m_{B}. Then for all $x \in A$ and $y \in B$ we have $m_{A} \leq x \leq M_{A}$ and $m_{B} \leq y \leq M_{B}$. It follows that $m_{A}+m_{B} \leq x+y \leq M_{A}+M_{B}$. Therefore D is bounded.
d. If $A, B \subset \mathbf{R}_{>0}$ are bounded, then $Q=\{y / x \mid x \in A, y \in B\}$ is also bounded.

Solution: FALSE - Let $A=(0,1)$ and let $B=\{1\}$. The set Q is the set $\{1 / y \mid y \in(0,1)\}$ which is not bounded above.
4.
a. Let $A=[0,3) \cap(2,5]$. What is $a=\operatorname{lub} A$? What is $b=\operatorname{glb} A$? Are $a, b \in A$?

Solution: We have $A=(2,3)$. Therefore $a=3$, which is not in A. Similarly, $b=2$ is not in A either.
b. Let $B=\left\{x \in \mathbf{R} \mid 0 \leq x^{2}-2 x+1 \leq 1\right\}$. What is $a=\operatorname{lub} B$? What is $b=\operatorname{glb} B$? Are $a, b \in B$?
Solution: B is the set where $(x-1)^{2} \leq 1$, or $x \in[0,2]$, so $a=2$ and $b=0$ are both in B.

'B'Section

1. Let x, y be any real numbers.
a. Show that $|x|-|y| \leq|x-y|$ and deduce that $||x|-|y|| \leq|x-y|$.

Solution: From the usual triangle inequality,

$$
|x|=|(x-y)+y| \leq|x-y|+|y| .
$$

Subtracting, we obtain $|x|-|y| \leq|x-y|$ as desired. Similarly, reversing the roles of x, y, we have $|y|-|x| \leq|y-x|=|x-y|$. Since either $|x| \geq|y|$ or $|y| \geq|x|$ is true, we have either $\| x|-|y||=|x|-|y|$ or $||x|-|y||=|y|-|x|$. Since both of those are $\leq|x-y|$, it follows that $\| x|-|y|| \leq|x-y|$ as desired.
b. Show that if $x, y>0$, then $x<y$ is equivalent to $x^{n}<y^{n}$ for all $n \geq 1$

Solution: \Rightarrow : We argue by induction on n. The base case is the same as the hypothesis so there is nothing to prove. Assume $x^{k}<y^{k}$ for some positive integer k. Then since $x>0$, we can multiply by x on both sides to get $x^{k+1}<y^{k} x$. Similarly, we can multiply the base case $x<y$ by $y^{k}>0$ on both sides to get $x y^{k}<y^{k+1}$. But then transitivity of the order relation implies $x^{k+1}<y^{k+1}$. This shows that $x^{n}<y^{n}$ for all $n \geq 1$ by induction. Conversely, if $x^{n}<y^{n}$ for all $n \geq 1$, then $x<y$ directly from the case $n=1$ (!)
c. Show that if $0<x<y$, then $\sqrt{y}-\sqrt{x}<\sqrt{y-x}$.

Solution: By part b with $n=2$, since $\sqrt{y}-\sqrt{x}>0$ and $\sqrt{y-x}>0$, it suffices to show that

$$
(\sqrt{y}-\sqrt{x})^{2}<(\sqrt{y-x})^{2} .
$$

But the left side here is $y-2 \sqrt{y} \sqrt{x}+x$ and the right side is $y-x$. We have

$$
(y-x)-(y-2 \sqrt{y} \sqrt{x}+x)=2 \sqrt{y} \sqrt{x}-2 x=2 \sqrt{x}(\sqrt{y}-\sqrt{x}) .
$$

This is >0 because of the assumption $y>x$ and part b. Hence the desired inequality follows.
2. Let a, b be any real numbers. Define $\max (a, b)$ and $\min (a, b)$ to be the larger and smaller of the two numbers, respectively. (That is, $\max (a, b)=a$ if $a \geq b$ and $\max (a, b)=b$ if $b \geq a$. Similarly for the minimum.) Show that

$$
\max (a, b)=\frac{a+b}{2}+\frac{|a-b|}{2}
$$

and

$$
\min (a, b)=\frac{a+b}{2}-\frac{|a-b|}{2} .
$$

Solution: Geometrically, the average $\frac{a+b}{2}$ is the midpoint of the line segment along \mathbf{R} between a and b and $|a-b|$ is the distance between a and b (the length of the line segment). So starting at the midpoint and going $1 / 2$ the distance to the right gives the maximum of the endpoints, and going $1 / 2$ the distance to the left gives the minimum of the endpoints. More analytically, we can also prove these by breaking into cases. Suppose first that $a \geq b$ so a is the right endpoint. Then $|a-b|=a-b$, and

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}+\frac{a-b}{2}=a=\max (a, b),
$$

while

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}-\frac{a-b}{2}=b=\min (a, b) .
$$

If b is the maximum and a is the minimum, then

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}+\frac{b-a}{2}=b=\max (a, b),
$$

while

$$
\frac{a+b}{2}-\frac{|a-b|}{2}=\frac{a+b}{2}-\frac{b-a}{2}=a=\min (a, b) .
$$

3. Show by mathematical induction that

$$
(1+x)^{n} \geq 1+n x
$$

for all $x>-1$ and all $n \geq 0$.
Solution: With $n=0$, we have $1=1$, so the base case is established. Now assume the inequality has been proved for $n=k$ and consider the next case $n=k+1$. We have by the induction hypothesis

$$
(1+x)^{k} \geq 1+k x
$$

Since $x>-1,1+x>0$, so multiplying this factor on both sides we get

$$
(1+x)^{k+1} \geq(1+k x)(1+x)=1+(k+1) x+k x^{2} \geq 1+(k+1) x
$$

since $k \geq 0$ and $x^{2} \geq 0$. This establishes the desired inequality in all cases.
4. Find a suitable n_{0} and then show by mathematical induction that $n!\geq 5^{n}$ for all $n \geq n_{0}$.
Solution: The smallest n_{0} such that $n_{0}!\geq 5^{n_{0}}$ is $n_{0}=12$ since $12!=479,001,600$, while $5^{12}=244,1140,625$. This gives the base case here: $12!>5^{12}$ is true. For the induction step, assume $k!>5^{k}$ and consider $(k+1)$!. We see, by the induction hypothesis (and since $k+1>5$ whenever $k \geq 12$):

$$
(k+1)!=(k+1) k!>(k+1) 5^{k}>5 \cdot 5^{k}=5^{k+1}
$$

