MATH 242 – Principles of Analysis Problem Set 2 – due: Feb. 7

`A` Section

- 1. Let $x \in [-1, 2]$. Determine the largest and smallest values of |x 5|, |x + 5|.
- 2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.
 - a. Expand using the binomial theorem and simplify as much as possible:

$$(a^2 + 3b)^5$$
.

b. What is the coefficient of x^3 in the expansion of

$$\left(x^5 + \frac{3}{x^2}\right)^3.$$

- c. Express with no summation: $\sum_{k=0}^{n} \binom{n}{k} 2^k$? Explain. d. Express with no summation: $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$? Explain.
- 3. For each of the following statements, say whether the statement is true or false. If it is false, give a counterexample; if it is true, give a short reason.
 - a. A set $A \subset \mathbf{R}$ is bounded if there exists some B > 0 such that $|x| \leq B$ for all $x \in A$.
 - b. If $A, B \subset \mathbf{R}$ are bounded, then $A \cap B$ is also bounded.
 - c. If $A, B \subset \mathbf{R}$ are bounded, then $D = \{x + y \mid x \in A, y \in B\}$ is also bounded.
 - d. If $A, B \subset \mathbf{R}_{>0}$ are bounded, then $Q = \{y/x \mid x \in A, y \in B\}$ is also bounded.

4.

- a. Let $A = [0,3) \cap (2,5]$. What is a = lub A? What is b = glb A? Are $a, b \in A$?
- b. Let $B = \{x \in \mathbf{R} \mid 0 < x^2 2x + 1 < 1\}$. What is a = lub B? What is b = glb B? Are $a, b \in B$?

'B' Section

- 1. Let x, y be any real numbers.
 - a. Show that $|x| |y| \le |x y|$ and deduce that $||x| |y|| \le |x y|$.
 - b. Show that if x, y > 0, then x < y is equivalent to $x^n < y^n$ for all $n \ge 1$.
 - c. Show that if 0 < x < y, then $\sqrt{y} \sqrt{x} < \sqrt{y x}$.
- 2. Let a, b be any real numbers. Define $\max(a, b)$ and $\min(a, b)$ to be the larger and smaller of the two numbers, respectively. (That is, $\max(a,b) = a$ if $a \ge b$ and $\max(a,b) = b$ if $b \ge a$. Similarly for the minimum.) Show that

$$\max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2}$$

and

$$\min(a, b) = \frac{a+b}{2} - \frac{|a-b|}{2}.$$

(Hint: Consider the positions of a,b on the number line and then "think geometrically.")

3. Show by mathematical induction that

$$(1+x)^n \ge 1 + nx$$

for all x > -1 and all $n \ge 0$.

4. Find a suitable n_0 and then show by mathematical induction that $n! \geq 5^n$ for all $n \geq n_0$.