MATH 242 - Principles of Analysis
Solutions for Problem Set 1 - due: Jan. 31

‘A'Section

1. Assume that A, B are sets of integers.
a. What is the contrapositive of the statement: "If x is even then $x \in A \cup B$ "?

Express without using not.
Solution: The contrapositive of "if p then q " is "if not q then not p." Here, by the DeMorgan Law, $x \notin A \cup B$ is equivalent to $x \in A^{c}$ and $x \in B^{c}$. Also, "not even" is equivalent to "odd." So, without using not, we can state the contrapositive as "If $x \in A^{c}$ and $x \in B^{c}$, then x is odd."
b. What is the converse of the statement in part a?

Solution: The converse is: "If $x \in A \cup B$, then x is even."
2. Let $A=\left\{x \in \mathbf{R} \mid x^{2}-5 x+4=0\right\}, B=(0,1)=\{x \in \mathbf{R} \mid 0<x<1\}$ and $C=\left\{\left.\frac{x}{x^{2}+9} \right\rvert\, x \in \mathbf{R}\right\}$ (Note: C is the range of the function f defined by $f(x)=\frac{x}{x^{2}+9}$.)
a. Express the set C as a union of one or more closed intervals $[a, b]$ in \mathbf{R}. (Note: You should use facts from calculus to solve this. Don't worry that we have not justified them yet.)
Solution: The function $f(x)=\frac{x}{x^{2}+9}$ has $f^{\prime}(x)=\frac{9-x^{2}}{\left(x^{2}+9\right)^{2}}$. This is $=0$ at $x= \pm 3$. Moreover $f^{\prime}(x)<0$ for $x<-3, f^{\prime}(x)>0$ for $-3<x<3$ and $f^{\prime}(x)<0$ for $x>3$. Therefore, at $x=-3, f$ has a local minimum with $f(-3)=-1 / 6$. Similarly, at $x=3, f$ has a local maximum with $f(3)=1 / 6$. We also see $\lim _{x \rightarrow \pm \infty} f(x)=0$. Hence $f(-3)=-1 / 6$ is also an absolute minimum, and $f(3)=1 / 6$ is also an absolute maximum. We will prove a general theorem later in the course that shows that every y with $-1 / 6<y<1 / 6$ must also be in the range, but this can also be checked directly here since the equation

$$
y=\frac{x}{x^{2}+9}
$$

can be rearranged to $y x^{2}-x+9 y=0$. If $y=0$, then $x=0$. Otherwise, by the quadratic formula this has roots

$$
x=\frac{1 \pm \sqrt{1-36 y^{2}}}{2 y} .
$$

The expression in the square root is nonnegative exactly when $-1 / 6 \leq y \leq 1 / 6$ and we get x with $f(x)=y$ (two of them in fact for $y \neq 0,-1 / 6,1 / 6$). Hence $C=[-1 / 6,1 / 6]$.
b. Find the sets $B \cap A$ and $B \cap C$.

Solution: Since $A=\{1,4\}$, we see that $B \cap A=\emptyset$ and $B \cap C=(0,1 / 6]$.
c. Find the sets $B \cup A$ and $B \cup C$ and express using set notation.

Solution: We have $B \cup A=(0,1] \cup\{4\}=B$. Then by part a, $B \cup C=(0,1) \cup$ $[-1 / 6,1 / 6]=[-1 / 6,1)$.
3. For n a general natural number, let $B_{n}=\{0,2 n\}$. What are $\cap_{n=1}^{\infty} B_{n}$ and $\cup_{n=1}^{\infty} B_{n}$? Solution: The union, $\cup_{n=1}^{\infty} B_{n}$, is the set

$$
\{0,2,4, \cdots\}=\{2 n \mid n \geq 0\}
$$

or the set of nonnegative even integers. The intersection, $\cap_{n=1}^{\infty} B_{n}$, is the set $\{0\}$, since that is the only element in B_{n} for all $n \geq 1$.
4. Let $I_{n}=[-1 / n, 1 / n]$ for any $n \geq 1$. What are $\cap_{n=1}^{\infty} I_{n}$ and $\cup_{n=1}^{\infty} I_{n}$. (Explain your reasoning intuitively.)
Solution: Note first that $I_{m} \subset I_{n}$ whenever $m>n$. This shows that the union is the same as $I_{1}=[-1,1]$. The intersection contains only 0 . We will see in about a week how to justify the claim that for any real $a>0$, there is some $n \geq 1$ such that $1 / n<a$. Hence a is not in the intersection. The same is true on the negative side: for any $b<0$, there exists some $n \geq 1$ such that $b<-1 / n$. Hence b is not in the intersection either. This leaves only 0 which does satisfy $-1 / n<0<1 / n$ for all $n \geq 1$.
5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by $f(x)=\tan ^{-1}(x)$.
a. Is f one-to-one? Why or why not?

Solution: Yes, the inverse tangent of x is defined as the unique angle θ in the interval $(-\pi / 2, \pi / 2)$ such that $\tan (\theta)=x$. So $\tan ^{-1}(x)=\theta=\tan ^{-1}\left(x^{\prime}\right)$ implies that $x=x^{\prime}$.
b. Is f onto? Why or why not?

Solution: No, since the range is just the interval $(-\pi / 2, \pi / 2)$.
c. If $I=(0, \sqrt{3})$, what is the set $f(I)$? Explain.

Solution: $f(I)=(0, \pi / 3)$ since $\tan (0)=0$ and $\tan (\pi / 3)=\sqrt{3}$.
d. If $J=(-\pi / 4, \pi / 4)$, what is the set $f^{-1}(J)$. Explain.

Solution: $f^{-1}(J)=\left\{x \mid-\pi / 4<\tan ^{-1}(x)<\pi / 4\right\}$, which is the same as $\tan (-\pi / 4)<x<\tan (\pi / 4)$, so $-1<x<1$. Hence $f^{-1}(J)$ is the open inter-$\operatorname{val}(-1,1)$.

1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for complements.
Solution: We show $(A \cap B)^{c}=A^{c} \cup B^{c}$. Let $x \in(A \cap B)^{c}$, then $x \notin A \cap B$, which says $x \notin A$ or $x \notin B$. But then $x \in A^{c} \cup B^{c}$, and it follows that $(A \cap B)^{c} \subset A^{c} \cup B^{c}$. Conversely, if $x \in A^{c} \cup B^{c}$, then $x \notin A$ or $x \notin B$. This shows $x \notin A \cap B$, so $x \in(A \cap B)^{c}$, and it follows that $A^{c} \cup B^{c} \subset(A \cap B)^{c}$. Since we have both inclusions, $(A \cap B)^{c}=A^{c} \cup B^{c}$. The second statement $(A \cup B)^{c}=A^{c} \cap B^{c}$ is proved similarly.
2. Let A and B be arbitrary sets. Does $A=A-(B-B)$, as we might expect if we looked at the formula through the lens of ordinary algebra? If this is always true, prove it; if it is not, give both a counterexample (an example where the formula is not true), and a correct statement with proof.
Solution: This is true since for any set B, we have $B-B=\emptyset$. This follows from part g of Theorem 1.1.3, for instance: $B-B=B \cap B^{c}=\emptyset$. But then $A-\emptyset=A$, since $A-\emptyset=A \cap \emptyset^{c}=A \cap U=A$ (where U denotes the universal set).
3. Let $f: A \rightarrow B$ be a function.
a. Let C, D be subsets of A. Is it always true that $f(C \cap D)=f(C) \cap f(D)$? If this is always true prove it; if it is not, give a counterexample.
Solution: This is not true. For instance, let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=x^{2}$. Let $C=(-1,0)$ and $D=(0,1)$. Then $f(C)=f(D)=(0,1)$, so $f(C) \cap f(D)=$ $(0,1)$. But $C \cap D=\emptyset$, so $f(C \cap D)=\emptyset$ as well. Note that other similar examples can be constructed any time that f is not one-to-one.
b. Show that f is one-to-one if and only if $f^{-1}(f(C))=C$ for all subsets C of A.

Solution: First note that $C \subseteq f^{-1}(f(C))$ for all f and all C since if $x \in C$, then $f(x) \in f(C)$, so $x \in f^{-1}(f(C))$ and hence $C \subseteq f^{-1}(f(C))$. So what we need to show here can be restated as follows: (1) if f is one-to-one, then we need to show $f^{-1}(f(C)) \subseteq C$ for all C. And conversely (2) if $f^{-1}(f(C)) \subseteq C$ for all C, then we need to show that f is one-to-one.
To prove (1), let f be one-to-one. For each $y \in f(C)$, there is some $x \in C$ such that $f(x)=y$. But if $f\left(x^{\prime}\right)=y$, then f being one-to-one implies that $x=x^{\prime}$. Hence the only elements of A that map to $f(C)$ are the elements of C, so $f^{-1}(f(C)) \subseteq C$.

To prove (2), let $f^{-1}(f(C)) \subseteq C$ for all subsets C of A. In particular, let $C=$ $\{x\}$ for some particular element $x \in A$. Suppose that $f\left(x^{\prime}\right)=f(x)$. Then by definition, x and x^{\prime} are both elements of $f^{-1}(f(C))$. But by assumption $f^{-1}(f(C))=\{x\}$, so $x=x^{\prime}$. This shows that f must be one-to-one.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
a. Show that if f and g are both onto, then $g \circ f: A \rightarrow C$ is also onto.

Solution: Let $z \in C$. Since g is onto, there exists $y \in B$ such that $g(y)=z$. But then since f is onto, there exists $x \in A$ such that $f(x)=y$. Combining these statements, we see that $g(f(x))=(g \circ f)(x)=z$. Since z was arbitrary, this shows that $g \circ f$ is onto.
b. Is the converse of the statement in part a true? That is, if you know that $g \circ f$ is onto, does it follow that f and g are onto? Prove or find a counterexample.
Solution: This statement is not true. Let $A=B=\mathbf{R}$ and $C=[0, \infty)$, and let $f: A \rightarrow B$ be defined by $f(x)=x^{2}$ and $g(y)=\sqrt{|y|}$. Then for all $z \in C$ we have $z=g(f(z))$, so $g \circ f$ is onto. However, f is not onto since its range contains no negative numbers. (It does follow in general that g must be onto, but as in the counterexample, if g is not one-to-one, the range of f only needs to contain one inverse image of each element $z \in C$.)

