MATH 242 – Principles of Analysis Problem Set 1 – due: Jan. 31

'A' Section

- 1. Assume that A, B are sets of integers.
 - a. What is the contrapositive of the statement: "If x is even then $x \in A \cup B$ "? Express without using not.
 - b. What is the converse of the statement in part a?
- 2. Let $A = \{x \in \mathbf{R} \mid x^2 5x + 4 = 0\}$, $B = (0,1) = \{x \in \mathbf{R} \mid 0 < x < 1\}$ and $C = \{\frac{x}{x^2 + 9} \mid x \in \mathbf{R}\}$ (Note: C is the range of the function f defined by $f(x) = \frac{x}{x^2 + 9}$.)
 - a. Express the set C as a closed interval [a, b] in \mathbf{R} or as a union of such intervals. (Note: You should use facts from calculus to solve this. Don't worry that we have not justified them yet.)
 - b. Find the sets $B \cap A$ and $B \cap C$.
 - c. Find the sets $A \cup B$ and $A \cup C$ and express using set notation.
- 3. For n a general natural number, let $B_n = \{0, 2n\}$. What are $\bigcap_{n=1}^{\infty} B_n$ and $\bigcup_{n=1}^{\infty} B_n$?
- 4. Let $I_n = [-1/n, 1/n]$ for a general natural number $n \geq 1$. What are $\bigcap_{n=1}^{\infty} I_n$ and $\bigcup_{n=1}^{\infty} I_n$? (Explain your reasoning intuitively.)
- 5. Let $f: \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = \tan^{-1}(x)$.
 - a. Is f one-to-one? Why or why not?
 - b. Is f onto? Why or why not?
 - c. If $I = (0, \sqrt{3})$, what is the set f(I)? Explain.
 - d. If $J = (-\pi/4, \pi/4)$, what is the set $f^{-1}(J)$. Explain.

'B' Section

- 1. Prove part (f) of Theorem 1.1.3 in the text. These are the *DeMorgan Laws* for unions and intersections.
- 2. Let A and B be arbitrary sets. Does A = A (B B), as we might expect if we looked at the formula through the lens of ordinary algebra? If this is always true, prove it; if it is not, give both a counterexample (an example where the formula is not true).
- 3. Let $f: A \to B$ be a function.
 - a. Let C, D be subsets of A. Is it always true that $f(C \cap D) = f(C) \cap f(D)$? If this is always true prove it; if it is not, give a counterexample.
 - b. Show that f is one-to-one if and only if $f^{-1}(f(C)) = C$ for all subsets C of A.
- 4. Let $f: A \to B$ and $g: B \to C$.

- a. Show that if f and g are both onto, then $g\circ f:A\to C$ is also onto.
- b. Is the converse of the statement in part a true? That is, if you know that $g \circ f$ is onto, does it follow that f and g are onto? Prove or find a counterexample.