MATH 242 - Principles of Analysis
Problem Set 1 - due: Jan. 31

'A'Section

1. Assume that A, B are sets of integers.
a. What is the contrapositive of the statement: "If x is even then $x \in A \cup B$ "? Express without using not.
b. What is the converse of the statement in part a?
2. Let $A=\left\{x \in \mathbf{R} \mid x^{2}-5 x+4=0\right\}, B=(0,1)=\{x \in \mathbf{R} \mid 0<x<1\}$ and $C=\left\{\left.\frac{x}{x^{2}+9} \right\rvert\, x \in \mathbf{R}\right\}$ (Note: C is the range of the function f defined by $f(x)=\frac{x}{x^{2}+9}$.)
a. Express the set C as a closed interval $[a, b]$ in \mathbf{R} or as a union of such intervals. (Note: You should use facts from calculus to solve this. Don't worry that we have not justified them yet.)
b. Find the sets $B \cap A$ and $B \cap C$.
c. Find the sets $A \cup B$ and $A \cup C$ and express using set notation.
3. For n a general natural number, let $B_{n}=\{0,2 n\}$. What are $\cap_{n=1}^{\infty} B_{n}$ and $\cup_{n=1}^{\infty} B_{n}$?
4. Let $I_{n}=[-1 / n, 1 / n]$ for a general natural number $n \geq 1$. What are $\cap_{n=1}^{\infty} I_{n}$ and $\cup_{n=1}^{\infty} I_{n}$? (Explain your reasoning intuitively.)
5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by $f(x)=\tan ^{-1}(x)$.
a. Is f one-to-one? Why or why not?
b. Is f onto? Why or why not?
c. If $I=(0, \sqrt{3})$, what is the set $f(I)$? Explain.
d. If $J=(-\pi / 4, \pi / 4)$, what is the set $f^{-1}(J)$. Explain.

' B ' Section

1. Prove part (f) of Theorem 1.1.3 in the text. These are the DeMorgan Laws for unions and intersections.
2. Let A and B be arbitrary sets. Does $A=A-(B-B)$, as we might expect if we looked at the formula through the lens of ordinary algebra? If this is always true, prove it; if it is not, give both a counterexample (an example where the formula is not true).
3. Let $f: A \rightarrow B$ be a function.
a. Let C, D be subsets of A. Is it always true that $f(C \cap D)=f(C) \cap f(D)$? If this is always true prove it; if it is not, give a counterexample.
b. Show that f is one-to-one if and only if $f^{-1}(f(C))=C$ for all subsets C of A.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
a. Show that if f and g are both onto, then $g \circ f: A \rightarrow C$ is also onto.
b. Is the converse of the statement in part a true? That is, if you know that $g \circ f$ is onto, does it follow that f and g are onto? Prove or find a counterexample.
