Mathematics 242 — Principles of Analysis
Solutions for Midterm Exam 3
May 2, 2014

I. (15) Let

4/5 . .
fla) = {a: sin(1/z) %f:z:géo
0 if x =0.
Is f continuous at x = 07 Is f differentiable at x = 0?7 Give complete reasons for your
assertions.

Solution: Since |sin(1/z)| <1 for all = # 0, we have
—at/? < f(z) <2t/

for all z # 0. Also lim,_o+x%°® = 0. By the limit squeeze theorem, lim, o f(z) = 0 =
f(0). Therefore, f is continuous at x = 0. However, f is not differentiable at = 0 because

o J@ = 1) _ - sin(1/a)

x—0 x—0 x—0 ,’1;‘1/5
does not exist. For instance, at x,, = m (a sequence converging to 0), we have
in(1/z, dn + D)r\° 1/5
% =sin((4n + 1) /2) (dn+ r = <2n7r + E) — +00
zr/ 2 2
as n — o0.

I1. Both parts of this question refer to the function f: R — R defined by f(z) =1 — 2.

A) (20) Consider the regular partitions P, of the interval [1,3] and show directly, using
the upper and lower sums, that f is integrable on [1, 3].

Solution: Note that f is decreasing on [1,3] since f'(z) = —2x < 0 for all z with
1 <z < 3. This means the desired statement can either be shown by following the
proof of our theorem that monotone functions are integrable, or directly. Here is the
direct way:

The partition is
Pn={1,1+2/n,1+4/n,...,3},

with x; = 1+ 2i/n for i = 0,1,...,n. Hence, since f is smallest at the right endpoint
in each subinterval,
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Similarly, f is largest at the left endpoint in each subinterval, so

n

Up, (F)= D (1= (426~ 1)/m)?)
s
3 n 3n?%
Therefore, for any given € > 0, if n > 16/¢,
16

Up,(f) — Lp,(f) = YN

This shows that f is integrable.

B) (15) Explain why the hypothesis of the Mean Value Theorem is satisfied for f on the
interval [1, 3] and find the number ¢ mentioned in the conclusion.
Solution: f is a polynomial function, so it is differentiable, hence continuous every-
where. On the interval [1,3], f(3) — f(1) = =8 — 0 = —8. The MVT says that there
is some ¢ € (1,3) where —8 = f’(c¢)- (3 —1). Since —8 = 2f’(¢) = —4c, this is true for
c=2.

III. (20) Show that if f is continuous on [a, b, then f is integrable on [a, b].

Solution: By a previous result we know that f(x) continuous on [a,b] implies that f(x)
is uniformly continuous on [a,b]. Therefore, given € > 0, there exists a § > 0 such that
|f(xz) — f(2")| < e/(b—a) whenever |x — 2’| < § (with z, 2" € [a, b], of course). Now, let P
be any partition of [a, b] with Az; < this § for all i. By the EVT, on the interval [z;_1, z;]
from the partition P, f attains a maximum M; = f(¢;) and a minimum m; = f(d;) at
some ¢;,d; € [x;—1,x;]. But then M; — m; <e/(b— a) since |¢; — d;| < . Hence

n

U(f,P) — L(f,P) < Zﬁmi - ﬁimi — .
=1

(This follows since ), Ax; = b — a.) Therefore f is integrable on [a, b].

IV. True-False. Say whether each of the following statements is true or false. For true
statements, give short proofs; for false ones give reasons or counterexamples. Do any three

parts. If you submit solutions for all four, then I will consider the other one for Extra
Credit.

A) (10) Let f(z) = e*® — e®. There exists some ¢ € (0,1n(2)) such that f(c) = 1.

Solution: The statement is TRUE. We apply the IVT. First, f is continuous every-
where since the exponentials e* and e?* are differentiable everywhere. On the interval
[0,1n(2)], we have f(0) =1 —1=0 and f(In(2)) =4 — 2 = 2. Since 1 is in the range



C)

between the endpoint values, the (“weak form” of) the IVT implies that there exists
c € (0,1n(2)) such that f(c) = 1.

(10) The function f(x) = arctan(z) is uniformly continuous on the interval (—1,1).

Solution: This is TRUE. Method 1: f(z) = arctan(z) is continuous at all z € R, hence
on the closed interval [—1,1]. Our general theorem implies that f(x) is uniformly
continuous on [—1, 1], hence also on the subset (—1,1).

Method 2: We can also apply the MVT to f on the interval [z, 2] where —1 < z < 2’ <
1 are arbitary. Then there exists a ¢ € (x,2’) such that f(z) — f(2') = f'(¢)(x — 2').
But |f'(x)| = ﬁ is bounded above by 1 on R, hence on this interval. Therefore
|f(x) — f(2)] < |x—2'|, so f is Lipschitz continuous (with Lipschitz constant k = 1),
hence uniformly continuous.

(10) There are continuous functions f(z) on [a, b] for which there exist no differentiable
function F'(z) on [a,b] with F'(x) = f(x).

Solution: This is FALSE. The Fundamental Theorem of Calculus (part 1) implies that
F(z) = [T f(t) dt is always an antiderivative of f(x) on [a, b].

(10) Let f be differentiable on an open interval I with [a,b] C I. If f'(a) > 0 and
f'(b) < 0, then there must exist some ¢ € (a,b) where f'(c) = 0.

Solution: This is TRUE. Since f is differentiable everywhere on |[a,b], it is also con-
tinuous on that interval. By the Extreme Value Theorem, f reaches a maximum
value M = f(c) for ¢ somewhere in that interval. On the other hand, the inequalities
f'(a) > 0 and f’'(b) > 0 imply that f must take values larger than both f(a) and f(b)
in the interval. For instance, to get
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> 0,

it must be true that f(z) > f(a) for = in some interval (a,a + 0) for § > 0. Similarly
f'(b) < 0 implies f(z) > f(b) for = in some (b — J,b). Hence the location where the
maximum is attained is ¢ € (a,b). It follows that f(c) must be a local maximum
(not an endpoint maximum) and hence f’(c) = 0 since we are assuming f is always
differentiable on I D [a, b].



