
Mathematics 242 – Principles of Analysis
Solutions for Midterm Exam 3

May 2, 2014

I. (15) Let

f(x) =

{

x4/5 sin(1/x) if x 6= 0
0 if x = 0.

Is f continuous at x = 0? Is f differentiable at x = 0? Give complete reasons for your
assertions.

Solution: Since | sin(1/x)| ≤ 1 for all x 6= 0, we have

−x4/5 ≤ f(x) ≤ x4/5

for all x 6= 0. Also limx→0 ±x4/5 = 0. By the limit squeeze theorem, limx→0 f(x) = 0 =
f(0). Therefore, f is continuous at x = 0. However, f is not differentiable at x = 0 because

lim
x→0

f(x) − f(0)

x − 0
= lim

x→0

sin(1/x)

x1/5

does not exist. For instance, at xn = 2
(4n+1)π

(a sequence converging to 0), we have

sin(1/xn)

x
1/5
n

= sin((4n + 1)π/2)

(

(4n + 1)π

2

)1/5

=
(

2nπ +
π

2

)1/5

→ +∞

as n → ∞.

II. Both parts of this question refer to the function f : R → R defined by f(x) = 1 − x2.

A) (20) Consider the regular partitions Pn of the interval [1, 3] and show directly, using
the upper and lower sums, that f is integrable on [1, 3].

Solution: Note that f is decreasing on [1, 3] since f ′(x) = −2x < 0 for all x with
1 ≤ x ≤ 3. This means the desired statement can either be shown by following the
proof of our theorem that monotone functions are integrable, or directly. Here is the
direct way:

The partition is
Pn = {1, 1 + 2/n, 1 + 4/n, . . . , 3},

with xi = 1 + 2i/n for i = 0, 1, . . . , n. Hence, since f is smallest at the right endpoint
in each subinterval,

LPn
(f) =

n
∑

i=1

(

1 − (1 + 2i/n)2
) 2

n

= −
8

n3

n
∑

i=1

i2 −
8

n2

n
∑

i=1

i

= −
8

n3
·
n(n + 1)(2n + 1)

6
−

8

n2
·
n(n + 1)

2

= −
20

3
−

8

n
−

4

3n2
.



Similarly, f is largest at the left endpoint in each subinterval, so

UPn
(f) =

n
∑

i=1

(

1 − (1 + 2(i − 1)/n)2
) 2

n

= −
20

3
+

8

n
−

4

3n2
.

Therefore, for any given ε > 0, if n > 16/ε,

UPn
(f) − LPn

(f) =
16

n
< ε.

This shows that f is integrable.

B) (15) Explain why the hypothesis of the Mean Value Theorem is satisfied for f on the
interval [1, 3] and find the number c mentioned in the conclusion.
Solution: f is a polynomial function, so it is differentiable, hence continuous every-
where. On the interval [1, 3], f(3) − f(1) = −8 − 0 = −8. The MVT says that there
is some c ∈ (1, 3) where −8 = f ′(c) · (3− 1). Since −8 = 2f ′(c) = −4c, this is true for
c = 2.

III. (20) Show that if f is continuous on [a, b], then f is integrable on [a, b].

Solution: By a previous result we know that f(x) continuous on [a, b] implies that f(x)
is uniformly continuous on [a, b]. Therefore, given ε > 0, there exists a δ > 0 such that
|f(x)− f(x′)| < ε/(b− a) whenever |x− x′| < δ (with x, x′ ∈ [a, b], of course). Now, let P
be any partition of [a, b] with ∆xi < this δ for all i. By the EVT, on the interval [xi−1, xi]
from the partition P, f attains a maximum Mi = f(ci) and a minimum mi = f(di) at
some ci, di ∈ [xi−1, xi]. But then Mi − mi < ε/(b − a) since |ci − di| < δ. Hence

U(f,P) − L(f,P) <

n
∑

i=1

ε

(b − a)
∆xi =

ε

b − a

n
∑

i=1

∆xi = ε.

(This follows since
∑

i ∆xi = b − a.) Therefore f is integrable on [a, b].

IV. True-False. Say whether each of the following statements is true or false. For true
statements, give short proofs; for false ones give reasons or counterexamples. Do any three

parts. If you submit solutions for all four, then I will consider the other one for Extra
Credit.

A) (10) Let f(x) = e2x − ex. There exists some c ∈ (0, ln(2)) such that f(c) = 1.

Solution: The statement is TRUE. We apply the IVT. First, f is continuous every-
where since the exponentials ex and e2x are differentiable everywhere. On the interval
[0, ln(2)], we have f(0) = 1 − 1 = 0 and f(ln(2)) = 4 − 2 = 2. Since 1 is in the range



between the endpoint values, the (“weak form” of) the IVT implies that there exists
c ∈ (0, ln(2)) such that f(c) = 1.

B) (10) The function f(x) = arctan(x) is uniformly continuous on the interval (−1, 1).

Solution: This is TRUE. Method 1: f(x) = arctan(x) is continuous at all x ∈ R, hence
on the closed interval [−1, 1]. Our general theorem implies that f(x) is uniformly
continuous on [−1, 1], hence also on the subset (−1, 1).

Method 2: We can also apply the MVT to f on the interval [x, x′] where −1 < x < x′ <
1 are arbitary. Then there exists a c ∈ (x, x′) such that f(x) − f(x′) = f ′(c)(x − x′).
But |f ′(x)| = 1

1+x2 is bounded above by 1 on R, hence on this interval. Therefore
|f(x)− f(x′)| ≤ |x− x′|, so f is Lipschitz continuous (with Lipschitz constant k = 1),
hence uniformly continuous.

C) (10) There are continuous functions f(x) on [a, b] for which there exist no differentiable
function F (x) on [a, b] with F ′(x) = f(x).

Solution: This is FALSE. The Fundamental Theorem of Calculus (part 1) implies that
F (x) =

∫ x

a
f(t) dt is always an antiderivative of f(x) on [a, b].

D) (10) Let f be differentiable on an open interval I with [a, b] ⊂ I. If f ′(a) > 0 and
f ′(b) < 0, then there must exist some c ∈ (a, b) where f ′(c) = 0.

Solution: This is TRUE. Since f is differentiable everywhere on [a, b], it is also con-
tinuous on that interval. By the Extreme Value Theorem, f reaches a maximum
value M = f(c) for c somewhere in that interval. On the other hand, the inequalities
f ′(a) > 0 and f ′(b) > 0 imply that f must take values larger than both f(a) and f(b)
in the interval. For instance, to get

f ′(a) = lim
x→a

f(x) − f(a)

x − a
> 0,

it must be true that f(x) > f(a) for x in some interval (a, a + δ) for δ > 0. Similarly
f ′(b) < 0 implies f(x) > f(b) for x in some (b − δ, b). Hence the location where the
maximum is attained is c ∈ (a, b). It follows that f(c) must be a local maximum
(not an endpoint maximum) and hence f ′(c) = 0 since we are assuming f is always
differentiable on I ⊃ [a, b].


