Mathematics 242 - Principles of Analysis

Solutions for Midterm Exam 3
May 2, 2014
I. (15) Let

$$
f(x)= \begin{cases}x^{4 / 5} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Is f continuous at $x=0$? Is f differentiable at $x=0$? Give complete reasons for your assertions.

Solution: Since $|\sin (1 / x)| \leq 1$ for all $x \neq 0$, we have

$$
-x^{4 / 5} \leq f(x) \leq x^{4 / 5}
$$

for all $x \neq 0$. Also $\lim _{x \rightarrow 0} \pm x^{4 / 5}=0$. By the limit squeeze theorem, $\lim _{x \rightarrow 0} f(x)=0=$ $f(0)$. Therefore, f is continuous at $x=0$. However, f is not differentiable at $x=0$ because

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sin (1 / x)}{x^{1 / 5}}
$$

does not exist. For instance, at $x_{n}=\frac{2}{(4 n+1) \pi}$ (a sequence converging to 0), we have

$$
\frac{\sin \left(1 / x_{n}\right)}{x_{n}^{1 / 5}}=\sin ((4 n+1) \pi / 2)\left(\frac{(4 n+1) \pi}{2}\right)^{1 / 5}=\left(2 n \pi+\frac{\pi}{2}\right)^{1 / 5} \rightarrow+\infty
$$

as $n \rightarrow \infty$.
II. Both parts of this question refer to the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=1-x^{2}$.
A) (20) Consider the regular partitions \mathcal{P}_{n} of the interval $[1,3]$ and show directly, using the upper and lower sums, that f is integrable on $[1,3]$.
Solution: Note that f is decreasing on $[1,3]$ since $f^{\prime}(x)=-2 x<0$ for all x with $1 \leq x \leq 3$. This means the desired statement can either be shown by following the proof of our theorem that monotone functions are integrable, or directly. Here is the direct way:
The partition is

$$
\mathcal{P}_{n}=\{1,1+2 / n, 1+4 / n, \ldots, 3\},
$$

with $x_{i}=1+2 i / n$ for $i=0,1, \ldots, n$. Hence, since f is smallest at the right endpoint in each subinterval,

$$
\begin{aligned}
L_{\mathcal{P}_{n}}(f) & =\sum_{i=1}^{n}\left(1-(1+2 i / n)^{2}\right) \frac{2}{n} \\
& =-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}-\frac{8}{n^{2}} \sum_{i=1}^{n} i \\
& =-\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{8}{n^{2}} \cdot \frac{n(n+1)}{2} \\
& =-\frac{20}{3}-\frac{8}{n}-\frac{4}{3 n^{2}} .
\end{aligned}
$$

Similarly, f is largest at the left endpoint in each subinterval, so

$$
\begin{aligned}
U_{\mathcal{P}_{n}}(f) & =\sum_{i=1}^{n}\left(1-(1+2(i-1) / n)^{2}\right) \frac{2}{n} \\
& =-\frac{20}{3}+\frac{8}{n}-\frac{4}{3 n^{2}} .
\end{aligned}
$$

Therefore, for any given $\varepsilon>0$, if $n>16 / \varepsilon$,

$$
U_{\mathcal{P}_{n}}(f)-L_{\mathcal{P}_{n}}(f)=\frac{16}{n}<\varepsilon .
$$

This shows that f is integrable.
B) (15) Explain why the hypothesis of the Mean Value Theorem is satisfied for f on the interval $[1,3]$ and find the number c mentioned in the conclusion.
Solution: f is a polynomial function, so it is differentiable, hence continuous everywhere. On the interval $[1,3], f(3)-f(1)=-8-0=-8$. The MVT says that there is some $c \in(1,3)$ where $-8=f^{\prime}(c) \cdot(3-1)$. Since $-8=2 f^{\prime}(c)=-4 c$, this is true for $c=2$.
III. (20) Show that if f is continuous on $[a, b]$, then f is integrable on $[a, b]$.

Solution: By a previous result we know that $f(x)$ continuous on $[a, b]$ implies that $f(x)$ is uniformly continuous on $[a, b]$. Therefore, given $\varepsilon>0$, there exists a $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon /(b-a)$ whenever $\left|x-x^{\prime}\right|<\delta$ (with $x, x^{\prime} \in[a, b]$, of course). Now, let \mathcal{P} be any partition of $[a, b]$ with $\Delta x_{i}<$ this δ for all i. By the EVT, on the interval $\left[x_{i-1}, x_{i}\right]$ from the partition \mathcal{P}, f attains a maximum $M_{i}=f\left(c_{i}\right)$ and a minimum $m_{i}=f\left(d_{i}\right)$ at some $c_{i}, d_{i} \in\left[x_{i-1}, x_{i}\right]$. But then $M_{i}-m_{i}<\varepsilon /(b-a)$ since $\left|c_{i}-d_{i}\right|<\delta$. Hence

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\sum_{i=1}^{n} \frac{\varepsilon}{(b-a)} \Delta x_{i}=\frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_{i}=\varepsilon .
$$

(This follows since $\sum_{i} \Delta x_{i}=b-a$.) Therefore f is integrable on $[a, b]$.
IV. True-False. Say whether each of the following statements is true or false. For true statements, give short proofs; for false ones give reasons or counterexamples. Do any three parts. If you submit solutions for all four, then I will consider the other one for Extra Credit.
A) (10) Let $f(x)=e^{2 x}-e^{x}$. There exists some $c \in(0, \ln (2))$ such that $f(c)=1$.

Solution: The statement is TRUE. We apply the IVT. First, f is continuous everywhere since the exponentials e^{x} and $e^{2 x}$ are differentiable everywhere. On the interval $[0, \ln (2)]$, we have $f(0)=1-1=0$ and $f(\ln (2))=4-2=2$. Since 1 is in the range
between the endpoint values, the ("weak form" of) the IVT implies that there exists $c \in(0, \ln (2))$ such that $f(c)=1$.
B) (10) The function $f(x)=\arctan (x)$ is uniformly continuous on the interval $(-1,1)$.

Solution: This is TRUE. Method 1: $f(x)=\arctan (x)$ is continuous at all $x \in \mathbf{R}$, hence on the closed interval $[-1,1]$. Our general theorem implies that $f(x)$ is uniformly continuous on $[-1,1]$, hence also on the subset $(-1,1)$.

Method 2: We can also apply the MVT to f on the interval $\left[x, x^{\prime}\right]$ where $-1<x<x^{\prime}<$ 1 are arbitary. Then there exists a $c \in\left(x, x^{\prime}\right)$ such that $f(x)-f\left(x^{\prime}\right)=f^{\prime}(c)\left(x-x^{\prime}\right)$. But $\left|f^{\prime}(x)\right|=\frac{1}{1+x^{2}}$ is bounded above by 1 on \mathbf{R}, hence on this interval. Therefore $\left|f(x)-f\left(x^{\prime}\right)\right| \leq\left|x-x^{\prime}\right|$, so f is Lipschitz continuous (with Lipschitz constant $k=1$), hence uniformly continuous.
C) (10) There are continuous functions $f(x)$ on $[a, b]$ for which there exist no differentiable function $F(x)$ on $[a, b]$ with $F^{\prime}(x)=f(x)$.

Solution: This is FALSE. The Fundamental Theorem of Calculus (part 1) implies that $F(x)=\int_{a}^{x} f(t) d t$ is always an antiderivative of $f(x)$ on $[a, b]$.
D) (10) Let f be differentiable on an open interval I with $[a, b] \subset I$. If $f^{\prime}(a)>0$ and $f^{\prime}(b)<0$, then there must exist some $c \in(a, b)$ where $f^{\prime}(c)=0$.

Solution: This is TRUE. Since f is differentiable everywhere on $[a, b]$, it is also continuous on that interval. By the Extreme Value Theorem, f reaches a maximum value $M=f(c)$ for c somewhere in that interval. On the other hand, the inequalities $f^{\prime}(a)>0$ and $f^{\prime}(b)>0$ imply that f must take values larger than both $f(a)$ and $f(b)$ in the interval. For instance, to get

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}>0
$$

it must be true that $f(x)>f(a)$ for x in some interval $(a, a+\delta)$ for $\delta>0$. Similarly $f^{\prime}(b)<0$ implies $f(x)>f(b)$ for x in some $(b-\delta, b)$. Hence the location where the maximum is attained is $c \in(a, b)$. It follows that $f(c)$ must be a local maximum (not an endpoint maximum) and hence $f^{\prime}(c)=0$ since we are assuming f is always differentiable on $I \supset[a, b]$.

