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Mathematics 242 — Principles of Analysis
Solutions for Exam 2 — March 28, 2014

(20) State and prove the Monotone Convergence Theorem for sequences. (You may
give the proof in the case that the sequence is monotone increasing.)

Solution: The statement is that any monotone bounded sequence of real numbers
converges. If the sequence is monotone increasing, let a = lub{z,, | n € N}. Then
for all € > 0, a — ¢ is not an upper bound for {z, | n € N}, so there exist ng
such that a — e < z,,, < a. But then since {z,} is monotone increasing, we have
a—e < Tp, <xp <aforall n>ng. This implies |z, — a| < € for all n > ny. Hence

Ty — a.
(10) Let {x,} be the sequence defined by x; = 1 and

Tpn+1 = V3T, +1
for all n > 1. Does this sequence converge? Why? If it does, what is the limit?

Solution: We have 1 = 1 and 9 = v/3-1+ 1 = 2. Assuming 1 > w, it follows
that

Thio = \/3Tps1 +1>V3x, + 1= 2441

Therefore, the sequence is monotone (strictly) increasing. Next, we claim that all
the terms in the sequence are bounded above by 4. This is true for n = 1,2 by the
above. Furthermore, if ), < 4, then x4, < v/3-4+ 1 = v/13 < 4 so the sequence is
bounded above by 4. Therefore, it converges by the Monotone Convergence Theorem.
The limit is found by letting n — oo in the recurrence. If a denotes the limit then

a=+3a+1,s0a’?—-3a—1=0. By the quadratic formula, a = w (the negative
sign gives a number < 0, so that cannot be the limit since z,, > 0 for all n).

(15) Show using the e, ng definition that

I dn+1 4
im = —.
n—oo n + 3 7

Solution: Given € > 0, let ng > 4%5 (such ng exist since N is not bounded in R). This
implies that ﬁ < e. Then for all n > ny,

<e.

dn +1 4‘ ) ) )
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This shows the limit is %.



B) (15) Show using the €, ¢ definition that

. 4xr + 1 1
m = .
sl Tz +3 2

Solution: Given € > 0, let § = min(1, 6¢). Then for all z in the deleted neighborhood

of 1 defined by 0 < |x — 1| < § we have 0 < x < 2, som < £ and |z — 1| < 6e.
Therefore
dr+1 1 |z — 1| <6 1
— | =g—— =<6 - ==
Tc+3 2| |14z + 6| 6

This shows the limit is %

IT1. (10) Suppose {z,} is a sequence such that |z, — 20| < 50 for all n > 1. Show that
there exists some number a € [—30, 70] and a subsequence {z,, } such that z,,, — a. State
any “big theorems” you are using.

Solution: We have —30 < x,, < 70 for all n. This shows the sequence is bounded. Hence
the Bolzano-Weierstrass theorem implies it has a convergent subsequence z,, — a. By
the Order Limit theorem, it follows that —30 < a < 70.

IV. Give an example, or give a reason why there can be no such examples:
A) (10) A function f that is continuous at = 0, but not continuous at any other z.

Solution: The function
Jx ifzeQ
f(x)_{—x if v ¢ Q
is an example. lim,_,o f(x) = 0 = f(0), so f is continuous at x = 0. However, f is
not continuous at any other ¢, since all neighborhoods of any ¢ # 0 contain x where

f(x) is close to ¢ and other x where f(x) is close to —c. Therefore lim,_,. f(z) does
not exist if ¢ # 0.

B) (10) A sequence z,, such that z,, — 3, but for all ng € N there exist n > ng with
Ty < 0.

Solution: There cannot be such a sequence. Let € = 1, for instance. Then if z,, — 3,
there must equal an ng € N such that |z, — 3| < 1 for all n > ng. But |z, — 3| <1
implies 2 < x,, < 4 so all the terms for n > ng must be strictly positive.

C) (10) A function f and a ¢ in the domain of f such that lim,_,.+ f(z) = lim,_,.- f(z),
but f is not continuous at c.

Solution: Let

_J1 ifx#0
f(x>_{o itz =0



Then for ¢ = 0, we have lim, g+ f(z) = 1 = lim, ,o- f(z). But f(0) = 0 # 1.
Therefore f is not continuous at 0. (This is a removable discontinuity.)

Extra Credit. (10) Assume that {x,} is a sequence that converges to a. Construct a new
sequence {y,} by making y, the average of the first n terms in the original sequence:
Yy = Dttt Show that {y,} also converges to a.

Solution: Intuitively, the idea is that as n gets big, most of the terms in the numerator of
yn Will be getting close to a, but a few terms at the start might not be that close. However,
the n in the denominator means that those few terms at the start contribute less and less
as n — oo. But we need a more precise way to say this to get an actual proof. Here’s an
idea. By the triangle inequality, note that

1 +x2+ -+ Ty
|yn_a|: n —a

1
:E|x1+x2+---+xn—na|

1
< g(|x1—a|+---+|xn—a|).
Since {x,} converges to a, recall that we know the sequence is bounded. This implies that
there exists M such that |z, — a| < M for all n as well. Now, given € > 0, there exists N
such that |z, —a| < e/2 for all n > N. So if n > N, continuing from the last line above,

1 n—N+1le

< —(lxy—al+- -+ |xny-1—a|]) + ————=

n n 2
NM ¢
<—+-.
n 2

Since we can think of the N that works here as fixed, but n is still allowed to grow, note
that we can now find n large enough so that % < 5 as well by taking n > % In
other words, given ¢ > 0, we take ng = max(N, 2YM) Then n > ng implies |y, — a| < ¢.

g
This shows that y,, — a as n — oo.




