I.
A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may give the proof in the case that the sequence is monotone increasing.)

Solution: The statement is that any monotone bounded sequence of real numbers converges. If the sequence is monotone increasing, let $a=\operatorname{lub}\left\{x_{n} \mid n \in \mathbf{N}\right\}$. Then for all $\varepsilon>0, a-\varepsilon$ is not an upper bound for $\left\{x_{n} \mid n \in \mathbf{N}\right\}$, so there exist n_{0} such that $a-\varepsilon<x_{n_{0}} \leq a$. But then since $\left\{x_{n}\right\}$ is monotone increasing, we have $a-\varepsilon<x_{n_{0}} \leq x_{n} \leq a$ for all $n \geq n_{0}$. This implies $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq n_{0}$. Hence $x_{n} \rightarrow a$.
B) (10) Let $\left\{x_{n}\right\}$ be the sequence defined by $x_{1}=1$ and

$$
x_{n+1}=\sqrt{3 x_{n}+1}
$$

for all $n \geq 1$. Does this sequence converge? Why? If it does, what is the limit?
Solution: We have $x_{1}=1$ and $x_{2}=\sqrt{3 \cdot 1+1}=2$. Assuming $x_{k+1}>x_{k}$, it follows that

$$
x_{k+2}=\sqrt{3 x_{k+1}+1}>\sqrt{3 x_{k}+1}=x_{k+1}
$$

Therefore, the sequence is monotone (strictly) increasing. Next, we claim that all the terms in the sequence are bounded above by 4 . This is true for $n=1,2$ by the above. Furthermore, if $x_{k}<4$, then $x_{k+1}<\sqrt{3 \cdot 4+1}=\sqrt{13}<4$ so the sequence is bounded above by 4 . Therefore, it converges by the Monotone Convergence Theorem. The limit is found by letting $n \rightarrow \infty$ in the recurrence. If a denotes the limit then $a=\sqrt{3 a+1}$, so $a^{2}-3 a-1=0$. By the quadratic formula, $a=\frac{3+\sqrt{13}}{2}$ (the negative sign gives a number <0, so that cannot be the limit since $x_{n}>0$ for all n).
II.
A) (15) Show using the ε, n_{0} definition that

$$
\lim _{n \rightarrow \infty} \frac{4 n+1}{7 n+3}=\frac{4}{7}
$$

Solution: Given $\varepsilon>0$, let $n_{0}>\frac{5}{49 \varepsilon}$ (such n_{0} exist since \mathbf{N} is not bounded in \mathbf{R}). This implies that $\frac{5}{49 n_{0}}<\varepsilon$. Then for all $n \geq n_{0}$,

$$
\left|\frac{4 n+1}{7 n+3}-\frac{4}{7}\right|=\frac{5}{49 n+21}<\frac{5}{49 n} \leq \frac{5}{49 n_{0}}<\varepsilon .
$$

This shows the limit is $\frac{4}{7}$.
B) (15) Show using the ε, δ definition that

$$
\lim _{x \rightarrow 1} \frac{4 x+1}{7 x+3}=\frac{1}{2} .
$$

Solution: Given $\varepsilon>0$, let $\delta=\min (1,6 \varepsilon)$. Then for all x in the deleted neighborhood of 1 defined by $0<|x-1|<\delta$ we have $0<x<2$, so $\frac{1}{|14 x+6|}<\frac{1}{6}$ and $|x-1|<6 \varepsilon$. Therefore

$$
\left|\frac{4 x+1}{7 x+3}-\frac{1}{2}\right|=\frac{|x-1|}{|14 x+6|}=<6 \varepsilon \cdot \frac{1}{6}=\varepsilon .
$$

This shows the limit is $\frac{1}{2}$.
III. (10) Suppose $\left\{x_{n}\right\}$ is a sequence such that $\left|x_{n}-20\right|<50$ for all $n \geq 1$. Show that there exists some number $a \in[-30,70]$ and a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow a$. State any "big theorems" you are using.

Solution: We have $-30<x_{n}<70$ for all n. This shows the sequence is bounded. Hence the Bolzano-Weierstrass theorem implies it has a convergent subsequence $x_{n_{k}} \rightarrow a$. By the Order Limit theorem, it follows that $-30 \leq a \leq 70$.
IV. Give an example, or give a reason why there can be no such examples:
A) (10) A function f that is continuous at $x=0$, but not continuous at any other x.

Solution: The function

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbf{Q} \\ -x & \text { if } x \notin \mathbf{Q}\end{cases}
$$

is an example. $\lim _{x \rightarrow 0} f(x)=0=f(0)$, so f is continuous at $x=0$. However, f is not continuous at any other c, since all neighborhoods of any $c \neq 0$ contain x where $f(x)$ is close to c and other x where $f(x)$ is close to $-c$. Therefore $\lim _{x \rightarrow c} f(x)$ does not exist if $c \neq 0$.
B) (10) A sequence x_{n} such that $x_{n} \rightarrow 3$, but for all $n_{0} \in \mathbf{N}$ there exist $n \geq n_{0}$ with $x_{n}<0$.

Solution: There cannot be such a sequence. Let $\varepsilon=1$, for instance. Then if $x_{n} \rightarrow 3$, there must equal an $n_{0} \in \mathbf{N}$ such that $\left|x_{n}-3\right|<1$ for all $n \geq n_{0}$. But $\left|x_{n}-3\right|<1$ implies $2<x_{n}<4$ so all the terms for $n \geq n_{0}$ must be strictly positive.
C) (10) A function f and a c in the domain of f such that $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)$, but f is not continuous at c.
Solution: Let

$$
f(x)= \begin{cases}1 & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then for $c=0$, we have $\lim _{x \rightarrow 0^{+}} f(x)=1=\lim _{x \rightarrow 0^{-}} f(x)$. But $f(0)=0 \neq 1$. Therefore f is not continuous at 0 . (This is a removable discontinuity.)

Extra Credit. (10) Assume that $\left\{x_{n}\right\}$ is a sequence that converges to a. Construct a new sequence $\left\{y_{n}\right\}$ by making y_{n} the average of the first n terms in the original sequence: $y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$. Show that $\left\{y_{n}\right\}$ also converges to a.

Solution: Intuitively, the idea is that as n gets big, most of the terms in the numerator of y_{n} will be getting close to a, but a few terms at the start might not be that close. However, the n in the denominator means that those few terms at the start contribute less and less as $n \rightarrow \infty$. But we need a more precise way to say this to get an actual proof. Here's an idea. By the triangle inequality, note that

$$
\begin{aligned}
\left|y_{n}-a\right| & =\left|\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}-a\right| \\
& =\frac{1}{n}\left|x_{1}+x_{2}+\cdots+x_{n}-n a\right| \\
& \leq \frac{1}{n}\left(\left|x_{1}-a\right|+\cdots+\left|x_{n}-a\right|\right) .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ converges to a, recall that we know the sequence is bounded. This implies that there exists M such that $\left|x_{n}-a\right| \leq M$ for all n as well. Now, given $\varepsilon>0$, there exists N such that $\left|x_{n}-a\right|<\varepsilon / 2$ for all $n \geq N$. So if $n \geq N$, continuing from the last line above,

$$
\begin{aligned}
& \leq \frac{1}{n}\left(\left|x_{1}-a\right|+\cdots+\left|x_{N-1}-a\right|\right)+\frac{n-N+1}{n} \frac{\varepsilon}{2} \\
& <\frac{N M}{n}+\frac{\varepsilon}{2}
\end{aligned}
$$

Since we can think of the N that works here as fixed, but n is still allowed to grow, note that we can now find n large enough so that $\frac{N M}{n}<\frac{\varepsilon}{2}$ as well by taking $n>\frac{2 N M}{\varepsilon}$. In other words, given $\varepsilon>0$, we take $n_{0}=\max \left(N, \frac{2 N M}{\varepsilon}\right)$. Then $n \geq n_{0}$ implies $\left|y_{n}-a\right|<\varepsilon$. This shows that $y_{n} \rightarrow a$ as $n \rightarrow \infty$.

