
Mathematics 242 – Principles of Analysis
Solutions for Exam 2 – March 28, 2014

I.
A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may

give the proof in the case that the sequence is monotone increasing.)

Solution: The statement is that any monotone bounded sequence of real numbers
converges. If the sequence is monotone increasing, let a = lub{xn | n ∈ N}. Then
for all ε > 0, a − ε is not an upper bound for {xn | n ∈ N}, so there exist n0

such that a − ε < xn0
≤ a. But then since {xn} is monotone increasing, we have

a − ε < xn0
≤ xn ≤ a for all n ≥ n0. This implies |xn − a| < ε for all n ≥ n0. Hence

xn → a.

B) (10) Let {xn} be the sequence defined by x1 = 1 and

xn+1 =
√

3xn + 1

for all n ≥ 1. Does this sequence converge? Why? If it does, what is the limit?

Solution: We have x1 = 1 and x2 =
√

3 · 1 + 1 = 2. Assuming xk+1 > xk, it follows
that

xk+2 =
√

3xk+1 + 1 >
√

3xk + 1 = xk+1.

Therefore, the sequence is monotone (strictly) increasing. Next, we claim that all
the terms in the sequence are bounded above by 4. This is true for n = 1, 2 by the
above. Furthermore, if xk < 4, then xk+1 <

√
3 · 4 + 1 =

√
13 < 4 so the sequence is

bounded above by 4. Therefore, it converges by the Monotone Convergence Theorem.
The limit is found by letting n → ∞ in the recurrence. If a denotes the limit then

a =
√

3a + 1, so a2 − 3a − 1 = 0. By the quadratic formula, a = 3+
√

13

2
(the negative

sign gives a number < 0, so that cannot be the limit since xn > 0 for all n).

II.
A) (15) Show using the ε, n0 definition that

lim
n→∞

4n + 1

7n + 3
=

4

7
.

Solution: Given ε > 0, let n0 > 5

49ε
(such n0 exist since N is not bounded in R). This

implies that 5

49n0
< ε. Then for all n ≥ n0,

∣

∣

∣

∣

4n + 1

7n + 3
− 4

7

∣

∣

∣

∣

=
5

49n + 21
<

5

49n
≤ 5

49n0

< ε.

This shows the limit is 4

7
.



B) (15) Show using the ε, δ definition that

lim
x→1

4x + 1

7x + 3
=

1

2
.

Solution: Given ε > 0, let δ = min(1, 6ε). Then for all x in the deleted neighborhood
of 1 defined by 0 < |x − 1| < δ we have 0 < x < 2, so 1

|14x+6| < 1

6
and |x − 1| < 6ε.

Therefore
∣

∣

∣

∣

4x + 1

7x + 3
− 1

2

∣

∣

∣

∣

=
|x − 1|

|14x + 6| =< 6ε · 1

6
= ε.

This shows the limit is 1

2
.

III. (10) Suppose {xn} is a sequence such that |xn − 20| < 50 for all n ≥ 1. Show that
there exists some number a ∈ [−30, 70] and a subsequence {xnk

} such that xnk
→ a. State

any “big theorems” you are using.

Solution: We have −30 < xn < 70 for all n. This shows the sequence is bounded. Hence
the Bolzano-Weierstrass theorem implies it has a convergent subsequence xnk

→ a. By
the Order Limit theorem, it follows that −30 ≤ a ≤ 70.

IV. Give an example, or give a reason why there can be no such examples:

A) (10) A function f that is continuous at x = 0, but not continuous at any other x.

Solution: The function

f(x) =

{

x if x ∈ Q

−x if x /∈ Q

is an example. limx→0 f(x) = 0 = f(0), so f is continuous at x = 0. However, f is
not continuous at any other c, since all neighborhoods of any c 6= 0 contain x where
f(x) is close to c and other x where f(x) is close to −c. Therefore limx→c f(x) does
not exist if c 6= 0.

B) (10) A sequence xn such that xn → 3, but for all n0 ∈ N there exist n ≥ n0 with
xn < 0.

Solution: There cannot be such a sequence. Let ε = 1, for instance. Then if xn → 3,
there must equal an n0 ∈ N such that |xn − 3| < 1 for all n ≥ n0. But |xn − 3| < 1
implies 2 < xn < 4 so all the terms for n ≥ n0 must be strictly positive.

C) (10) A function f and a c in the domain of f such that limx→c+ f(x) = limx→c− f(x),
but f is not continuous at c.
Solution: Let

f(x) =
{

1 if x 6= 0
0 if x = 0



Then for c = 0, we have limx→0+ f(x) = 1 = limx→0− f(x). But f(0) = 0 6= 1.
Therefore f is not continuous at 0. (This is a removable discontinuity.)

Extra Credit. (10) Assume that {xn} is a sequence that converges to a. Construct a new
sequence {yn} by making yn the average of the first n terms in the original sequence:
yn = x1+x2+···+xn

n
. Show that {yn} also converges to a.

Solution: Intuitively, the idea is that as n gets big, most of the terms in the numerator of
yn will be getting close to a, but a few terms at the start might not be that close. However,
the n in the denominator means that those few terms at the start contribute less and less
as n → ∞. But we need a more precise way to say this to get an actual proof. Here’s an
idea. By the triangle inequality, note that

|yn − a| =

∣

∣

∣

∣

x1 + x2 + · · ·+ xn

n
− a

∣

∣

∣

∣

=
1

n
|x1 + x2 + · · ·+ xn − na|

≤ 1

n
(|x1 − a| + · · ·+ |xn − a|) .

Since {xn} converges to a, recall that we know the sequence is bounded. This implies that
there exists M such that |xn − a| ≤ M for all n as well. Now, given ε > 0, there exists N
such that |xn − a| < ε/2 for all n ≥ N . So if n ≥ N , continuing from the last line above,

≤ 1

n
(|x1 − a| + · · ·+ |xN−1 − a|) +

n − N + 1

n

ε

2

<
NM

n
+

ε

2
.

Since we can think of the N that works here as fixed, but n is still allowed to grow, note
that we can now find n large enough so that NM

n
< ε

2
as well by taking n > 2NM

ε
. In

other words, given ε > 0, we take n0 = max(N, 2NM

ε
). Then n ≥ n0 implies |yn − a| < ε.

This shows that yn → a as n → ∞.


